㈠ 汉字系统中的汉字字库里存放的是汉字的
汉字系统中的汉字字库里存放的是汉字的:机内码。
1.机内码是汉字在计算机内部存储、传送、交换的内部编码。
2.输入码就是使用英文键盘输入汉字时的编码。
3.国标码是一个四位十六进制数,区位码是一个四位的十进制数,每个国标码或区位码都对应着一个唯一的汉字或符号,但因为十六进制数我们很少用到,所以大家常用的是区位码,它的前两位叫做区码,后两位叫做位码。
4.国标码是汉字信息交换的标准编码。
(1)空位存储器扩展阅读:
字节结构
在使用GB2312的程序中,通常采用EUC储存方法,以便兼容于ASCII。浏览器编码表上的“GB2312”,通常都是指“EUC-CN”表示法。
每个汉字及符号以两个字节来表示。第一个字节称为“高位字节”(也称“区字节)”,第二个字节称为“低位字节”(也称“位字节”)。
“高位字节”使用了0xA1-0xF7(把01-87区的区号加上0xA0),“低位字节”使用了0xA1-0xFE(把01-94加上 0xA0)。 由于一级汉字从16区起始,汉字区的“高位字节”的范围是0xB0-0xF7,“低位字节”的范围是0xA1-0xFE,占用的码位是 72*94=6768。其中有5个空位是D7FA-D7FE。
㈡ 。存入1024个字符和1024个汉字共需要存储容量______
存入1024个字符和1024个汉字共需要存储容量1KB和2KB。
1024 个汉字的机内码,共有 2048 字节,需要两片1KX8bit 的存储芯片。
字节通常简写为“B”,而位通常简写为小写“b”,计算机存储器的大小通常用字节来表示。1KB=1024B。一个字节来表示一个字符,存入1024个字符即1024B,即1KB。
由于计算机学家长期使用二进制系统,一个千字节是基于2的幂次的。事实上一千字节是2或者说是1024个字节。KB常用于描述磁盘容量、文件大小、内存地址及其大小。请小心注意,由于1000/1024的不一致,通常的应用有时是近似的。
(2)空位存储器扩展阅读:
计算机内部处理的信息,都是用二进制代码表示的,汉字也不例外。而二进制代码使用起来是不方便的,于是需要采用信息交换码。中国标准总局1981年制定了中华人民共和国国家标准GB2312--80《信息交换用汉字编码字符集--基本集》,即国标码。
区位码是国标码的另一种表现形式,把国标GB2312--80中的汉字、图形符号组成一个94×94的方阵,分为94个“区”,每区包含94个“位”,其中“区”的序号由01至94,“位”的序号也是从01至94。94个区中位置总数=94×94=8836个,其中7445个汉字和图形字符中的每一个占一个位置后,还剩下1391个空位,这1391个位置空下来保留备用。
㈢ 内存的结构原理
内存也叫主存,是PC系统存放数据与指令的半导体存储器单元,也叫主存储器(Main Memory),通常分为只读存储器(ROM-Read Only Memory)、随机存储器(RAM-Red Access Memory)和高速缓存存储器(Cache)。我们平常所指的内存条其实就是RAM,其主要的作用是存放各种输入、输出数据和中间计算结果,以及与外部存储器交换信息时做缓冲之用。
下面是结构:
1、PCB板
内存条的PCB板多数都是绿色的。如今的电路板设计都很精密,所以都采用了多层设计,例如4层或6层等,所以PCB板实际上是分层的,其内部也有金属的布线。理论上6层PCB板比4层PCB板的电气性能要好,性能也较稳定,所以名牌内存多采用6层PCB板制造。因为PCB板制造严密,所以从肉眼上较难分辩PCB板是4层或6层,只能借助一些印在PCB板上的符号或标识来断定。
2、金手指
黄色的接触点是内存与主板内存槽接触的部分,数据就是靠它们来传输的,通常称为金手指。金手指是铜质导线,使用时间长就可能有氧化的现象,会影响内存的正常工作,易发生无法开机的故障,所以可以隔一年左右时间用橡皮擦清理一下金手指上的氧化物。
3、内存芯片
内存的芯片就是内存的灵魂所在,内存的性能、速度、容量都是由内存芯片组成的。
4、内存颗粒空位
5、电容
PCB板上必不可少的电子元件就是电容和电阻了,这是为了提高电气性能的需要。电容采用贴片式电容,因为内存条的体积较小,不可能使用直立式电容,但这种贴片式电容性能一点不差,它为提高内存条的稳定性起了很大作用。
6、电阻
电阻也是采用贴片式设计,一般好的内存条电阻的分布规划也很整齐合理。
7、内存固定卡缺口:内存插到主板上后,主板上的内存插槽会有两个夹子牢固的扣住内存,这个缺口便是用于固定内存用的。
8、内存脚缺口
内存的脚上的缺口一是用来防止内存插反的(只有一侧有),二是用来区分不同的内存,以前的SDRAM内存条是有两个缺口的,而DDR则只有一个缺口,不能混插。
9、SPD
SPD是一个八脚的小芯片,它实际上是一个EEPROM可擦写存贮器,这的容量有256字节,可以写入一点信息,这信息中就可以包括内存的标准工作状态、速度、响应时间等,以协调计算机系统更好的工作。从PC100时代开始,PC100规准中就规定符合PC100标准的内存条必须安装SPD,而且主板也可以从SPD中读取到内存的信息,并按SPD的规定来使内存获得最佳的工作环境。
㈣ 半导体的作用是啥
以非晶态半导体材料为主体制成的固态电子器件。非晶态半导体虽然在整体上分子排列无序,但是仍具有单晶体的微观结构,因此具有许多特殊的性质。1975年,英国W.G.斯皮尔在辉光放电分解硅烷法制备的非晶硅薄膜中掺杂成功,使非晶硅薄膜的电阻率变化10个数量级,促进非晶态半导体器件的开发和应用。同单晶材料相比,非晶态半导体材料制备工艺简单,对衬底结构无特殊要求,易于大面积生长,掺杂后电阻率变化大,可以制成多种器件。非晶硅太阳能电池吸收系数大,转换效率高,面积大,已应用到计算器、电子表等商品中。非晶硅薄膜场效应管阵列可用作大面积液晶平面显示屏的寻址开关。利用某些硫系非晶态半导体材料的结构转变来记录和存储光电信息的器件已应用于计算机或控制系统中。利用非晶态薄膜的电荷存储和光电导特性可制成用于静态图像光电转换的静电复印机感光体和用于动态图像光电转换的电视摄像管的靶面。
具有半导体性质的非晶态材料。非晶态半导体是半导体的一个重要部分。50年代B.T.科洛米耶茨等人开始了对硫系玻璃的研究,当时很少有人注意,直到1968年S.R.奥弗申斯基关于用硫系薄膜制作开关器件的专利发表以后,才引起人们对非晶态半导体的兴趣。1975年W.E.斯皮尔等人在硅烷辉光放电分解制备的非晶硅中实现了掺杂效应,使控制电导和制造PN结成为可能,从而为非晶硅材料的应用开辟了广阔的前景。在理论方面,P.W.安德森和莫脱,N.F.建立了非晶态半导体的电子理论,并因而荣获1977年的诺贝尔物理学奖。目前无论在理论方面,还是在应用方面,非晶态半导体的研究正在很快地发展着。
分类 目前主要的非晶态半导体有两大类。
硫系玻璃。含硫族元素的非晶态半导体。例如As-Se、As-S,通常的制备方法是熔体冷却或汽相沉积。
四面体键非晶态半导体。如非晶Si、Ge、GaAs等,此类材料的非晶态不能用熔体冷却的办法来获得,只能用薄膜淀积的办法(如蒸发、溅射、辉光放电或化学汽相淀积等),只要衬底温度足够低,淀积的薄膜就是非晶态结构。四面体键非晶态半导体材料的性质,与制备的工艺方法和工艺条件密切相关。图1 不同方法制备非晶硅的光吸收系数 给出了不同制备工艺的非晶硅光吸收系数谱,其中a、b制备工艺是硅烷辉光放电分解,衬底温度分别为500K和300K,c制备工艺是溅射,d制备工艺为蒸发。非晶硅的导电性质和光电导性质也与制备工艺密切相关。其实,硅烷辉光放电法制备的非晶硅中,含有大量H,有时又称为非晶的硅氢合金;不同工艺条件,氢含量不同,直接影响到材料的性质。与此相反,硫系玻璃的性质与制备方法关系不大。图2 汽相淀积溅射薄膜和熔体急冷成块体AsSeTe的光吸收系数谱 给出了一个典型的实例,用熔体冷却和溅射的办法制备的AsSeTe样品,它们的光吸收系数谱具有相同的曲线。
非晶态半导体的电子结构 非晶态与晶态半导体具有类似的基本能带结构,也有导带、价带和禁带(见固体的能带)。材料的基本能带结构主要取决于原子附近的状况,可以用化学键模型作定性的解释。以四面体键的非晶Ge、Si为例,Ge、Si中四个价电子经sp杂化,近邻原子的价电子之间形成共价键,其成键态对应于价带;反键态对应于导带。无论是Ge、Si的晶态还是非晶态,基本结合方式是相同的,只是在非晶态中键角和键长有一定程度的畸变,因而它们的基本能带结构是相类似的。然而,非晶态半导体中的电子态与晶态比较也有着本质的区别。晶态半导体的结构是周期有序的,或者说具有平移对称性,电子波函数是布洛赫函数,波矢是与平移对称性相联系的量子数,非晶态半导体不存在有周期性, 不再是好的量子数。晶态半导体中电子的运动是比较自由的,电子运动的平均自由程远大于原子间距;非晶态半导体中结构缺陷的畸变使得电子的平均自由程大大减小,当平均自由程接近原子间距的数量级时,在晶态半导体中建立起来的电子漂移运动的概念就变得没有意义了。非晶态半导体能带边态密度的变化不像晶态那样陡,而是拖有不同程度的带尾(如图3 非晶态半导体的态密度与能量的关系 所示)。非晶态半导体能带中的电子态分为两类:一类称为扩展态,另一类为局域态。处在扩展态的每个电子,为整个固体所共有,可以在固体整个尺度内找到;它在外场中运动类似于晶体中的电子;处在局域态的每个电子基本局限在某一区域,它的状态波函数只能在围绕某一点的一个不大尺度内显着不为零,它们需要靠声子的协助,进行跳跃式导电。在一个能带中,带中心部分为扩展态,带尾部分为局域态,它们之间有一分界处,如图4 非晶态半导体的扩展态、局域态和迁移率边 中的和,这个分界处称为迁移率边。1960年莫脱首先提出了迁移率边的概念。如果把迁移率看成是电子态能量的函数,莫脱认为在分界处和存在有迁移率的突变。局域态中的电子是跳跃式导电的,依靠与点阵振动交换能量,从一个局域态跳到另一个局域态,因而当温度趋向0K时,局域态电子迁移率趋于零。扩展态中电子导电类似于晶体中的电子,当趋于0K时,迁移率趋向有限值。莫脱进一步认为迁移率边对应于电子平均自由程接近于原子间距的情况,并定义这种情况下的电导率为最小金属化电导率。然而,目前围绕着迁移率边和最小金属化电导率仍有争论。
缺陷 非晶态半导体与晶态相比较,其中存在大量的缺陷。这些缺陷在禁带之中引入一系列局域能级,它们对非晶态半导体的电学和光学性质有着重要的影响。四面体键非晶态半导体和硫系玻璃,这两类非晶态半导体的缺陷有着显着的差别。
非晶硅中的缺陷主要是空位、微空洞。硅原子外层有四个价电子,正常情况应与近邻的四个硅原子形成四个共价键。存在有空位和微空洞使得有些硅原子周围四个近邻原子不足,而产生一些悬挂键,在中性悬挂键上有一个未成键的电子。悬挂键还有两种可能的带电状态:释放未成键的电子成为正电中心,这是施主态;接受第二个电子成为负电中心,这是受主态。它们对应的能级在禁带之中,分别称为施主和受主能级。因为受主态表示悬挂键上有两个电子占据的情况,两个电子间的库仑排斥作用,使得受主能级位置高于施主能级,称为正相关能。因此在一般情况下,悬挂键保持只有一个电子占据的中性状态,在实验中观察到悬挂键上未配对电子的自旋共振。1975年斯皮尔等人利用硅烷辉光放电的方法,首先实现非晶硅的掺杂效应,就是因为用这种办法制备的非晶硅中含有大量的氢,氢与悬挂键结合大大减少了缺陷态的数目。这些缺陷同时是有效的复合中心。为了提高非平衡载流子的寿命,也必须降低缺陷态密度。因此,控制非晶硅中的缺陷,成为目前材料制备中的关键问题之一。
硫系玻璃中缺陷的形式不是简单的悬挂键,而是“换价对”。最初,人们发现硫系玻璃与非晶硅不同,观察不到缺陷态上电子的自旋共振,针对这表面上的反常现象,莫脱等人根据安德森的负相关能的设想,提出了MDS模型。当缺陷态上占据两个电子时,会引起点阵的畸变,若由于畸变降低的能量超过电子间库仑排斥作用能,则表现出有负的相关能,这就意味着受主能级位于施主能级之下。用 D、D、D 分别代表缺陷上不占有、占有一个、占有两个电子的状态,负相关能意味着:
2D —→ D+D
是放热的。因而缺陷主要以D、D形式存在,不存在未配对电子,所以没有电子的自旋共振。不少人对D、D、D缺陷的结构作了分析。以非晶态硒为例,硒有六个价电子,可以形成两个共价键,通常呈链状结构,另外有两个未成键的 p电子称为孤对电子。在链的端点处相当于有一个中性悬挂键,这个悬挂键很可能发生畸变,与邻近的孤对电子成键并放出一个电子(形成D),放出的电子与另一悬挂键结合成一对孤对电子(形成D),如图 5 硫系玻璃的换价对 所示。因此又称这种D、D为换价对。由于库仑吸引作用,使得D、D通常是成对地紧密靠在一起,形成紧密换价对。硫系玻璃中成键方式只要有很小变化就可以形成一组紧密换价对,如图6 换价对的自增强效应 所示,它只需很小的能量,有自增强效应,因而这种缺陷的浓度通常是很高的。利用换价对模型可以解释硫属非晶态半导体的光致发光光谱、光致电子自旋共振等一系列实验现象。
应用 非晶态半导体在技术领域中的应用存在着很大的潜力,非晶硫早已广泛应用在复印技术中,由S.R.奥夫辛斯基首创的 As-Te-Ge-Si系玻璃半导体制作的电可改写主读存储器已有商品生产,利用光脉冲使碲微晶薄膜玻璃化这种性质制作的光存储器正在研制之中。对于非晶硅的应用目前研究最多的是太阳能电池。非晶硅比晶体硅制备工艺简单,易于做成大面积,非晶硅对于太阳光的吸收效率高,器件只需大约1微米厚的薄膜材料,因此,可望做成一种廉价的太阳能电池,现已受到能源专家的重视。最近已有人试验把非晶硅场效应晶体管用于液晶显示和集成电路。
㈤ 32位色彩 储存格式
32位色彩 储存格式
(1)RGBA 储存方式
A8R8G8B8 -- 这是32位色彩 储存格式
A8 -- Alpha (烟雾透明度) 8 bits
R8 -- Red (红色)8 bits
G8 -- Green (绿色)8 bits
B8 -- Blue (蓝色)8 bits
X8R8G8B8 -- 这是24位色彩 储存格式
X8 -- (不使用) 8 bits
R8 -- Red (红色)8 bits
G8 -- Green (绿色)8 bits
B8 -- Blue (蓝色)8 bits
24位色彩照样 消耗 32 bits,其中有 8 bits 空闲。
RGBA 或ARGB 或BGRA,他们在存储单元里的排列顺序没有统一规定。
(2)颜色指数存储方式
颜色品种不多时可以用。
用 颜色指数 也就是 调色盘的方式。
调色盘个数可以按颜色种类需要决定。例如 200 种颜色。
另外有个颜色表,你可以通过颜色表自由定义 这 200 种 颜色。
pixel的颜色 用 颜色在 序号表里的序号区分(就是所谓的颜色指数),具体显示时去查 32位色彩定义。
颜色定义和存储,是程序问题,软件问题。你的硬件图形卡和图形显示加速器不一定支持。所以一般人还在用 24 位。
㈥ 为什么打印机打印时会丢字
打印机打印时偶尔出现丢字,先应排除是因为电脑问题造成的,可以将这台打印机连接到其它电脑打印试试,如果也出现丢字现象,就说明打印机的确存在问题,如果使用其它电脑打印正常,就是这台电脑有问题,比如打印机驱动安装不正常,电脑在执行打印时出现系统错误等等。如果是打印机本身问题,应检查它与电脑连接的数据线是否正常,可以换一条数据线试试,打印机电源线是否接触良好,电源线如果存在接触不良,会造成打印机内部电源不稳定,电源的瞬间掉电,会造成正在打印的位置丢字(因为没有数据信号,打印头不工作,但是电机是有惯性的,会移动打印位置,造成有空位),在就是与打印机本身内部的存储器(内存)、控制芯片有关了,这是使用者解决不了的问题,这只能请生产厂家检修了。
㈦ 请问行车记录仪可以接到哪个保险上
一、行车记录仪可以接保险盒,而且是安全的。保险盒供电:走线长但隐蔽,可以接保险盒ACC供电,用保险片并接地线,安全性较好,没有隐患。
二、ACC供电:指在汽车还没有发动之前,如果有钥匙ACC档,只要将钥匙拨到这个位置,一些用电不太大的设备,比如:收音机,点烟器等就通电。当汽车熄火后,ACC断电。
选择保险盒供电的好处:
1、保险盒取电走线隐藏、美观实用。
2、不占用点烟器或者USB口。
3、接ACC供电,实现点火启动、熄火关闭。
4、用保险片并接地线,安全性好。
(7)空位存储器扩展阅读:
装配方式
行车记录仪主要分为便携性行车记录仪与后装车机一体式DVD行车记录仪两大类,其中便携性行车记录仪又分为后视镜行车记录仪与数据行车记录仪,这类记录仪具有隐蔽性好、安装方便、可拆卸更换、成本低、使用简单等特点。
而后装车机一体式DVD行车记录仪一般是专车专用,又分为前装和后装两种,安装这种记录仪成本较高,改装难度较大,但是安装之后可以保持车内环境的美观,此外,也有部分豪华车型在出厂时已经安装了行车记录仪。
㈧ 模拟电路与数字电路的目录
上篇模拟部分
第1章半导体器件1
1.1半导体基础知识1
半导体器件(semiconctor device)通常,这些半导体材料是硅、锗或砷化镓,可用作整流器、振荡器、发光器、放大器、测光器等器材。为了与集成电路相区别,有时也称为分立器件。
绝大部分二端器件(即晶体二极管)的基本结构是一个PN结。利用不同的半导体材料、采用不同的工艺和几何结构,已研制出种类繁多、功能用途各异的多种晶体二极,可用来产生、控制、接收、变换、放大信 号和进行能量转换。晶体二极管的频率覆盖范围可从低频、高频、微波、毫米波、红外直至光波。三端器件一 般是有源器件,典型代表是各种晶体管(又称晶体三极管)。晶体管又可以分为双极型晶体管和场效应晶体管两 类。根据用途的不同,晶体管可分为功率晶体管微波晶体管和低噪声晶体管。除了作为放大、振荡、开关用的 一般晶体管外,还有一些特殊用途的晶体管,如光晶体管、磁敏晶体管,场效应传感器等。这些器件既能把一些 环境因素的信息转换为电信号,又有一般晶体管的放大作用得到较大的输出信号。此外,还有一些特殊器件,如单结晶体管可用于产生锯齿波,可控硅可用于各种大电流的控制电路,电荷耦合器件可用作摄橡器件或信息存 储器件等。在通信和雷达等军事装备中,主要靠高灵敏度、低噪声的半导体接收器件接收微弱信号。随着微波 通信技术的迅速发展,微波半导件低噪声器件发展很快,工作频率不断提高,而噪声系数不断下降。微波半导体 器件由于性能优异、体积小、重量轻和功耗低等特性,在防空反导、电子战、C(U3)I等系统中已得到广泛的应用 。
1.1.1本征半导体1
本征半导体(intrinsic semiconctor)
完全不含杂质且无晶格缺陷的纯净半导体称为本征半导体。实际半导体不能绝对地纯净,本征半导体一般是指导电主要由材料的本征激发决定的纯净半导体。更通俗地讲,完全纯净的半导体称为本征半导体或I型半导体。硅和锗都是四价元素,其原子核最外层有四个价电子。它们都是由同一种原子构成的“单晶体”,属于本征半导体。
在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带(forbidden band/band gap)进入能量较高的空带,空带中存在电子后成为导带(conction band),价带中缺少一个电子后形成一个带正电的空位,称为空穴(hole),导带中的电子和价带中的空穴合称为电子-空穴对。上述产生的电子和空穴均能自由移动,成为自由载流子(free carrier),它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,使电子-空穴对消失,称为复合(recombination)。复合时产生的能量以电磁辐射(发射光子photon)或晶格热振动(发射声子phonon)的形式释放。在一定温度下,电子-空穴对的产生和复合同时存在并达到动态平衡,此时本征半导体具有一定的载流子浓度,从而具有一定的电导率。加热或光照会使半导体发生热激发或光激发,从而产生更多的电子-空穴对,这时载流子浓度增加,电导率增加。半导体热敏电阻和光敏电阻等半导体器件就是根据此原理制成的。常温下本征半导体的电导率较小,载流子浓度对温度变化敏感,所以很难对半导体特性进行控制,因此实际应用不多。
本征半导体特点:电子浓度=空穴浓度
缺点:载流子少,导电性差,温度稳定性差!
1.1.2本征激发和两种载流子2
1.1.3杂质半导体2
定义
在本征半导体中掺入某些微量元素作为杂质,可使半导体的导电性发生显着变化。掺入的杂质主要是三价或五价元素。掺入杂质的本征半导体称为杂质半导体。制备杂质半导体时一般按百万分之一数量级的比例在本征半导体中掺杂。
基本原理
半导体中的杂质对电导率的影响非常大,本征半导体经过掺杂就形成杂质半导体,一般可分为N型半导体和P型半导体。
半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产生附加的杂质能级。能提供电子载流子的杂质称为施主(Donor)杂质,相应能级称为施主能级,位于禁带上方靠近导带底附近。例如四价元素锗或硅晶体中掺入五价元素磷、砷、锑等杂质原子时,杂质原子作为晶格的一分子,其五个价电子中有四个与周围的锗(或硅)原子形成共价键,多余的一个电子被束缚于杂质原子附近,产生类氢浅能级—施主能级。施主能级上的电子跃迁到导带所需能量比从价带激发到导带所需能量小得多,很易激发到导带成为电子载流子,因此对于掺入施主杂质的半导体,导电载流子主要是被激发到导带中的电子,属电子导电型,称为N型半导体。由于半导体中总是存在本征激发的电子空穴对,所以在n型半导体中电子是多数载流子,空穴是少数载流子。
相应地,能提供空穴载流子的杂质称为受主(Acceptor)杂质,相应能级称为受主能级,位于禁带下方靠近价带顶附近。例如在锗或硅晶体中掺入微量三价元素硼、铝、镓等杂质原子时,杂质原子与周围四个锗(或硅)原子形成共价结合时尚缺少一个电子,因而存在一个空位,与此空位相应的能量状态就是受主能级。由于受主能级靠近价带顶,价带中的电子很容易激发到受主能级上填补这个空位,使受主杂质原子成为负电中心。同时价带中由于电离出一个电子而留下一个空位,形成自由的空穴载流子,这一过程所需电离能比本征半导体情形下产生电子空穴对要小得多。因此这时空穴是多数载流子,杂质半导体主要靠空穴导电,即空穴导电型,称为p型半导体。在P型半导体中空穴是多数载流子,电子是少数载流子。在半导体器件的各种效应中,少数载流子常扮演重要角色。
1.1.4PN结4
PN结(PN junction)。采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称PN结。PN结具有单向导电性。P是positive的缩写,N是negative的缩写,表明正荷子与负荷子起作用的特点。一块单晶半导体中 ,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时 ,P 型半导体和N型半导体的交界面附近的过渡区称为PN结。PN结有同质结和异质结两种。用同一种半导体材料制成的 PN 结叫同质结 ,由禁带宽度不同的两种半导体材料制成的PN结叫异质结。
1.2二极管7
二极管又称晶体二极管,简称二极管(diode),另外,还有早期的真空电子二极管;它是一种具有单向传导电流的电子器件。在半导体二极管内部有一个PN结两个引线端子,这种电子器件按照外加电压的方向,具备单向电流的转导性。一般来讲,晶体二极管是一个由p型半导体和n型半导体烧结形成的p-n结界面。在其界面的两侧形成空间电荷层,构成自建电场。当外加电压等于零时,由于p-n 结两边载流子的浓度差引起扩散电流和由自建电场引起的漂移电流相等而处于电平衡状态,这也是常态下的二极管特性。
1.2.1二极管的几种常见结构7
1.2.2二极管的伏-安特性7
1.2.3二极管的主要参数8
1.2.4二极管极性的简易判别法8
1.2.5二极管的等效电路9
*1.3二极管的基本应用电路9
1.3.1二极管整流电路9
1.3.2桥式整流电路10
1.3.3倍压整流电路11
1.3.4限幅电路12
1.3.5与门电路12
*1.4稳压管13
稳压二极管(又叫齐纳二极管),此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。
1.4.1稳压管的结构和特性曲线13
1.4.2稳压管的主要参数14
1.5其他类型的二极管15
1.5.1发光二极管15
1.5.2光电二极管16
1.6三极管16
半导体三极管又称“晶体三极管”或“晶体管”。在半导体锗或硅的单晶上制备两个能相互影响的PN结,组成一个PNP(或NPN)结构。中间的N区(或P区)叫基区,两边的区域叫发射区和集电区,这三部分各有一条电极引线,分别叫基极B、发射极E和集电极C,是能起放大、振荡或开关等作用的半导体电子器件。
1.6.1三极管的结构及类型16
1.6.2三极管的电流放大作用17
1.6.3三极管的共射特性曲线19
1.6.4三极管的主要参数21
1.7场效应管23
场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。由多数载流子参与导电,也称为单极型晶体管。它属于电压控制型半导体器件。具有输入电阻高(10^8~10^9Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
1.7.1结型场效应管的类型和构造23
1.7.2绝缘栅型场效应管的类型和构造26
1.7.3场效应管的主要参数30
本章小结31
习题31
第2章基本放大电路34
2.1共发射极放大电路34
2.1.1电路的组成34
2.1.2放大电路的直流通路和交流通路35
2.1.3共发射极电路图解分析法35
2.1.4微变等效电路分析法39
2.2放大电路的分析44
2.2.1稳定工作点的必要性44
2.2.2工作点稳定的典型电路44
2.2.3复合管放大电路47
2.3共集电极电压放大器48
2.4共基极电压放大器50
2.5多级放大器51
2.5.1阻容耦合电压放大器52
*2.5.2共射-共基放大器53
2.5.3直接耦合电压放大器55
2.6差动放大器57
2.6.1电路组成57
2.6.2静态分析59
2.6.3动态分析59
2.6.4差动放大器输入、输出的4种组态61
2.7放大器的频响特性64
2.7.1三极管高频等效模型64
2.7.2三极管电流放大倍数的频率响应66
2.7.3单管共射放大电路的频响特性68
2.8场效应管基本放大电路74
2.8.1电路的组成74
2.8.2场效应管与三极管的比较77
2.9功率放大电路77
2.9.1概述77
2.9.2甲类功率放大电路78
2.9.3乙类推挽功率放大电路79
本章小结81
习题82
第3章集成运算放大器89
3.1概述89
集成运算放大器(Integrated Operational Amplifier)简称集成运放,是由多级直接耦合放大电路组成的高增益模拟集成电路。它的增益高(可达60~180dB),输入电阻大(几十千欧至百万兆欧),输出电阻低(几十欧),共模抑制比高(60~170dB),失调与飘移小,而且还具有输入电压为零时输出电压亦为零的特点,适用于正,负两种极性信号的输入和输出。
模拟集成电路一般是由一块厚约0.2~0.25mm的P型硅片制成,这种硅片是集成电路的基片。基片上可以做出包含有数十个或更多的BJT或FET、电阻和连接导线的电路。
运算放大器除具有+、-输入端和输出端外,还有+、-电源供电端、外接补偿电路端、调零端、相位补偿端、公共接地端及其他附加端等。它的闭环放大倍数取决于外接反馈电阻,这给使用带来很大方便。
3.1.1集成运放电路的特点89
3.1.2集成运放电路的组成框图89
3.2电流源电路90
3.2.1基本电流源电路91
*3.2.2以电流源为有源负载的放大器92
3.3集成运放原理电路和理想运放的参数92
3.3.1集成运放原理电路分析92
3.3.2集成运放的主要参数93
3.4理想集成运放的参数和工作区94
3.4.1理想运放的性能指标95
3.4.2理想运放在不同工作区的特征95
3.5基本运算电路96
3.5.1比例运算电路97
3.5.2加减运算电路100
3.5.3积分和微分运算电路103
3.5.4对数和指数(反对数)运算电路104
本章小结105
习题106
第4章正弦波振荡电路111
4.1概述111
4.2正弦波振荡电路的基本原理111
4.2.1正弦波振荡电路的振荡条件111
4.2.2振荡电路的基本组成、分类及分析方法113
4.3LC振荡电路113
4.3.1互感耦合振荡电路114
4.3.2三点式振荡电路114
4.4RC振荡电路116
4.4.1RC相移振荡电路116
4.4.2文氏桥振荡电路117
4.5石英晶体振荡电路118
本章小结120
习题121
下篇数字部分
第5章数字逻辑基础122
用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。现代的数字电路由半导体工艺制成的若干数字集成器件构造而成。逻辑门是数字逻辑电路的基本单元。存储器是用来存储二值数据的数字电路。从整体上看,数字电路可以分为组合逻辑电路和时序逻辑电路两大类。
5.1数制与BCD码122
5.1.1数制122
5.1.2几种简单的编码125
5.2逻辑代数基础126
逻辑运算又称布尔运算布尔用数学方法研究逻辑问题,成功地建立了逻辑演算。他用等式表示判断,把推理看作等式的变换。这种变换的有效性不依赖人们对符号的解释,只依赖于符号的组合规律 。这一逻辑理论人们常称它为布尔代数。20世纪30年代,逻辑代数在电路系统上获得应用,随后,由于电子技术与计算机的发展,出现各种复杂的大系统,它们的变换规律也遵守布尔所揭示的规律。逻辑运算 (logical operators) 通常用来测试真假值。最常见到的逻辑运算就是循环的处理,用来判断是否该离开循环或继续执行循环内的指令。
5.2.1与运算126
5.2.2或运算127
5.2.3非运算128
5.2.4复合运算129
5.2.5正逻辑和负逻辑130
5.3逻辑代数的基本关系式和常用公式131
5.3.1逻辑代数的基本关系式131
5.3.2基本定律132
5.3.3常用的公式133
5.3.4基本定理134
5.4逻辑函数的表示方法135
5.4.1逻辑函数的表示方法135
5.4.2逻辑函数的真值表表示法135
5.4.3逻辑函数式136
5.4.4逻辑图138
5.4.5工作波形图138
5.5逻辑函数式的化简139
5.5.1公式化简法139
5.5.2逻辑函数的卡诺图化简法140
5.5.3具有无关项的逻辑函数的化简145
5.6研究逻辑函数的两类问题146
5.6.1给定电路分析功能146
5.6.2给定逻辑问题设计电路148
本章小结150
习题151
第6章门电路154
6.1概述154
逻辑门(Logic Gates)是在集成电路(Integrated Circuit)上的基本组件。简单的逻辑门可由晶体管组成。这些晶体管的组合可以使代表两种信号的高低电平在通过它们之后产生高电平或者低电平的信号。高、低电平可以分别代表逻辑上的“真”与“假”或二进制当中的1和0,从而实现逻辑运算。常见的逻辑门包括“与”门,“或”门,“非”门,“异或”门(Exclusive OR gate)(也称:互斥或)等等。逻辑门可以组合使用实现更为复杂的逻辑运算。
6.2分立元件门电路155
6.2.1二极管与门电路155
6.2.2二极管或门电路156
6.2.3三极管非门电路156
6.3TTL集成门电路158
6.3.1TTL非门电路158
6.3.2TTL与非门及或非门电路161
6.3.3集电极开路的门电路163
6.3.4三态门电路165
6.4CMOS门电路168
6.4.1CMOS反相器电路的组成和工作原理168
6.4.2CMOS与非门电路的组成和工作原理169
6.4.3CMOS或非门电路的组成和工作原理169
6.4.4CMOS传输门电路的组成和工作原理171
6.5集成电路使用知识简介172
6.5.1国产集成电路型号的命名法172
6.5.2集成门电路的主要技术指标172
6.5.3多余输入脚的处理173
6.5.4TTL与CMOS的接口电路173
本章小结175
习题175
第7章组合逻辑电路178
7.1概述178
组合逻辑电路是指在任何时刻,输出状态只决定于同一时刻各输入状态的组合,而与电路以前状态无关,而与其他时间的状态无关。其逻辑函数如下:
Li=f(A1,A2,A3……An) (i=1,2,3…m)
其中,A1~An为输入变量,Li为输出变量。
组合逻辑电路的特点归纳如下:
① 输入、输出之间没有返馈延迟通道;
② 电路中无记忆单元。
对于第一个逻辑表达公式或逻辑电路,其真值表可以是惟一的,但其对应的逻辑电路或逻辑表达式可能有多种实现形式,所以,一个特定的逻辑问题,其对应的真值表是惟一的,但实现它的逻辑电路是多种多样的。在实际设计工作中,如果由于某些原因无法获得某些门电路,可以通过变换逻辑表达式变电路,从而能使用其他器件来代替该器件。同时,为了使逻辑电路的设计更简洁,通过各方法对逻辑表达式进行化简是必要的。组合电路可用一组逻辑表达式来描述。设计组合电路直就是实现逻辑表达式。要求在满足逻辑功能和技术要求基础上,力求使电路简单、经济、可靠、实现组合逻辑函数的途径是多种多样的,可采用基本门电路,也可采用中、大规模集成电路。其一般设计步骤为:
① 分析设计要求,列真值表;
② 进行逻辑和必要变换。得出所需要的最简逻辑表达式;
③ 画逻辑图。
7.1.1组合逻辑电路的特点178
7.1.2组合逻辑电路的分析和设计方法178
7.2常用组合逻辑电路179
7.2.1编码器179
编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺。按照读出方式编码器可以分为接触式和非接触式两种;按照工作原理编码器可分为增量式和绝对式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
编码器可按以下方式来分类。
1、按码盘的刻孔方式不同分类
(1)增量型:就是每转过单位的角度就发出一个脉冲信号(也有发正余弦信号,
然后对其进行细分,斩波出频率更高的脉冲),通常为A相、B相、Z相输出,A相、B相为相互延迟1/4周期的脉冲输出,根据延迟关系可以区别正反转,而且通过取A相、B相的上升和下降沿可以进行2或4倍频;Z相为单圈脉冲,即每圈发出一个脉冲。
(2)绝对值型:就是对应一圈,每个基准的角度发出一个唯一与该角度对应二进制的数值,通过外部记圈器件可以进行多个位置的记录和测量。
2、按信号的输出类型分为:电压输出、集电极开路输出、推拉互补输出和长线驱动输出。
3、以编码器机械安装形式分类
(1)有轴型:有轴型又可分为夹紧法兰型、同步法兰型和伺服安装型等。
(2)轴套型:轴套型又可分为半空型、全空型和大口径型等。
4、以编码器工作原理可分为:光电式、磁电式和触点电刷式
7.2.2优先编码器181
7.2.3译码器185
译码器是组合逻辑电路的一个重要的器件,其可以分为:变量译码和显示译码两类。 变量译码一般是一种较少输入变为较多输出的器件,一般分为2n译码和8421BCD码译码两类。 显示译码主要解决二进制数显示成对应的十、或十六进制数的转换功能,一般其可分为驱动LED和驱动LCD两类。
译码是编码的逆过程,在编码时,每一种二进制代码,都赋予了特定的含义,即都表示了一个确定的信号或者对象。把代码状态的特定含义“翻译”出来的过程叫做译码,实现译码操作的电路称为译码器。或者说,译码器是可以将输入二进制代码的状态翻译成输出信号,以表示其原来含义的电路。
根据需要,输出信号可以是脉冲,也可以是高电平或者低电平。
7.2.4显示译码器189
7.2.5数据选择器191
7.2.6加法器195
7.2.7数值比较器198
7.3组合逻辑电路中的竞争-冒险现象199
7.3.1竞争-冒险现象199
7.3.2竞争-冒险现象的判断方法200
本章小结201
习题202
第8章触发器和时序逻辑电路205
8.1概述205
8.2触发器的电路结构与工作原理205
8.2.1基本RS触发器205
8.2.2同步RS触发器的电路结构与工作原理208
8.2.3主从RS触发器的电路结构与工作原理209
8.2.4由CMOS传输门组成的边沿触发器213
8.3触发器逻辑功能的描述方法214
8.3.1RS触发器214
8.3.2JK触发器215
8.3.3D触发器216
8.3.4T触发器216
8.3.5触发器逻辑功能的转换217
8.4时序逻辑电路的分析方法和设计方法219
8.4.1同步时序电路的分析方法219
8.4.2异步时序逻辑电路的分析方法及举例223
8.4.3同步时序电路的设计方法224
8.5常用的时序逻辑电路228
8.5.1寄存器和移位寄存器228
8.5.2同步计数器231
8.5.3移位寄存器型计数器244
8.6时序逻辑电路分析设计综合例题246
本章小结248
习题249
第9章脉冲产生和整形电路253
9.1概述253
9.2555定时器的应用253
9.2.1555定时器的电路结构253
9.2.2用555定时器组成施密特触发器255
9.2.3用555定时器组成单稳态电路256
9.2.4用555定时器组成多谐振荡器258
9.2.5555定时器的应用电路260
9.3石英晶体多谐振荡器262
9.4压控振荡器263
本章小结264
习题264
第10章数/模和模/数转换器266
10.1概述266
10.2数/模转换器266
10.2.1权电阻网络D/A转换器266
10.2.2倒T形电阻网络D/A转换器268
10.3模/数转换器269
10.3.1A/D转换器的基本组成269
10.3.2直接A/D转换器271
10.3.3间接A/D转换器275
10.4A/D和D/A的使用参数276
10.4.1A/D和D/A的转换精度276
10.4.2A/D和D/A的转换速度277
本章小结277
习题277
第11章半导体存储器和可编程逻辑器件279
11.1半导体存储器279
11.1.1只读存储器279
11.1.2ROM的扩展及应用281
11.1.3几种常用的ROM283
11.2可编程逻辑器件284
11.2.1PLD的连接方式及基本门电路的PLD表示法285
11.2.2可编程阵列逻辑286
11.2.3可编程通用阵列逻辑器件的基本结构288
11.2.4在系统可编程逻辑器件290
11.3可编程逻辑器件的编程296
11.3.1PLD的开发系统296
11.3.2PLD编程的一般步骤297
11.4CPLD及FPGA简介297
11.4.1CPLD及FPGA基本结构297
11.4.2FPGA/CPLD设计流程300
本章小结302
习题302
附录A常用数字集成电路型号及引脚306
㈨ 主存和cache之间的映像方式有哪几种
1.直接映像(Direct Mapping)
采用直接映像时,Cache的某一块只能和固定的一些主存块建立映像关系,主存的某一块只能对应一个Cache块。直接映像的优点是硬件简单、成本低;缺点是不够灵活,主存的若干块只能对应惟一的Cache块,即使Cache中还有空位,也不能利用。
2.全相联映像(Associative Mapping)
采用全相联映像时,Cache的某一块可以和任一主存块建立映像关系,而主存中某一块也可以映像到(2ache中任一块位置上。由于Cache的某一块可 以和任一主存块建立映像关系,所以Cache的标记部分必须记录主存块块地址的全部信息。例如,主存分为2n块,块的地址为n位,标记也应为n位。 采用全相联映像方式时,主存地址被理解为由两部分组成:标记(主存块号)和块内地址。CPU 在访问存储器时,为了判断是否命中,主存地址的标记部分需要和Cache的所有块的标记进行比较。为了缩短比较的时间,将主存地址的标记部分和Cache 的所有块的标记同时进行比较。如果命中,则按块内地址访问Cache中的命中块(其标记与主存地址给出的标记相同);如果未命中,则访问主存。
全相联映像的优点是灵活,Cache利用率高。缺点有两个:一是标记位数增加了(需要记录主存块块地址的全部信息),使得Cache的电路规模变 大,成本变高;二是比较器难于设计和实现(通常采用“按内容寻址的”相联存储器)。因此,只有小容量Cache才采用这种映像方式。
3.组相联映像(Set Associative Mapping)
组相联映像方式是介于直接映像和全相联映像之间的一种折中方案。设Cache中共有m个块,在采用组相联映像方式时,将m个Cache块分成u组(set),每组k个块(即m=u
×k),组间直接映像,而组内全相联映像。所谓组间直接映像,是指某组中的Cache块只能与固定的一些主存块建立映像关系。