❶ 地球能储电吗
地球本身就是一个存储各种能量的存储器。同样也可以储电,但是是以化学能储电的。
❷ 自然中的电从哪儿来
自然界的电由物质微观结构产生。物质由分子构成,分子由原子构成,原子由原子核和电子构成,原子核由带正电的质子及不带电的中子构成,且电子围绕原子核高速旋转。通常情况下,原子核所带正荷与核外电子所带负电荷相等,所以物质呈现中性状态。一旦某物质失去电子就会带正电(+),另一物质得到电子即带负电(-)。实验室的起电方式有: 摩擦起电和感应起电。
❸ 电厂是如何存储电力的
发电厂是不存储电力的。交流电是从发电厂发电到输变电到用电同时完成的,中间不存在存储环节。
❹ 电是如何被储存的
想要了解便是如何对储存的,这首先了解一下电,电是一种自然现象,指电荷运动所带来的现象。自然界的闪电就是电的一种现象。电是像电子和质子这样的亚原子粒子之间产生的排斥力和吸引力的一种属性。它是自然界四种基本相互作用之一。电子运动现象有两种:我们把缺少电子的原子说为带正电荷,有多余电子的原子说为带负电荷。
电的超大规模储存,目前在世界各国之间都是一个未解决的难题,所以在类似于三峡葛洲坝这样的大型发电厂,每日发电数量都是有调控的。如此全面提高电能使用率。
❺ 自然界的能量有哪些存在形式它们是怎么转换的
你好,首先要了解的是“质量(或能量)守恒定律”
(先声明,我不是专业人士,只是发表自己的观点)
一、一般来说能量不会凭空产生,也不会减少,而是从一种物质上转移到另外一种物质上,或者转化成不同的能量形式作为能量的转化过程,这是能量守恒定律。
二、物质无论发生物理变化,化学变化……都生成物和反应前的质量相等,这是质量守恒定律。
三、能量和质量并不是一成不变的,守恒也只是相对与一定范围内。当物质达到一定的条件时候,就算是质量也会变成能量,能量也会转换成质量(依我看法:太阳的质量实际一直在减少,转化成能量向四周辐射)质量与能量的转换关系是:
E=mc2 (E=能量,m=质量,c2=光速平方)
关于能量存在的形式:
你可以先大概的认为,微粒的结构由大到小是:
物体、分子、原子、各种核子(原子核内微粒,很多种不举例,如中子,质子)、电子……
基本每一种微粒都有自己一种或多种的能量表现形式:
如:
物体:机械能(包括动能、势能等)
分子:分子势能(内能、机械波……)
原子:化学能、电能(离子间的)
核子:核能,电磁波……
电子:电能,电磁波(辐射之类的)
……
另外有些特殊的如:光能=机械波能 + 电磁波能
这些都是我自己总结的,没有经过太多科学调查……
如果要更标准的只能请教有关专家。
❻ 电是从哪来的,会用完吗
电可以说是用不完的。产生电的方式有火力发电.太阳能发电.风力发电,核能发电等。风是一直有的,所以电量用不完,但是这只是说暂时的,以后科技会更加发达,发电方式会变得更多,所以认为电力是用不完的。电需要通过电线连接,输送到各家各户,就有了日常生活用电,电虽然相当于无尽的,但是还是要不浪费电,因为能量是守恒的,电不会凭空产生,是需要消耗其他的能量的,比如烧煤炭,太阳能转换等。但是也不要太悲观,科技发展会找出一条好的道路,让我们可以保护环境也可以有适合生活的电力资源。
❼ 风力发电是如何储能的
风力发电储能方式主要有飞轮储能、抽水蓄能、液流电池、锂电池、超级电容器、超导、压缩空气储能等几种形式。
飞轮储能
飞轮储能是一种机械储能方式,其基本原理是将电能转化为飞轮转动的动能,并且长期储存起来,需要时再将飞轮转动的动能转换为电能,供给电力用户使用。高强度碳素纤维和玻璃纤维材料、大功率电力电子变流技术、电磁和超导磁悬浮轴承技术促进了储能飞轮的发展。
飞轮储能的功率密度大于5Kw/kg,能量密度大于20kwh/kg,效率大于90%。其优点在于无污染、无噪声、维护简单、可持续工作。飞轮储能主要用于不间断电源、应急电源、电网调峰和频率控制。
目前飞轮储能技术正在向大型机发展,其难点主要集中在转子强度设计、低功耗磁轴承、安全防护等方面。
抽水储能
抽水蓄能是在电力负荷低谷期将水从下池水库抽到上池水库,将电能转化为重力势能储存起来,在电网负荷高峰期释放上池水库的水发电。
抽水蓄能的释放时间可以从几个小时到几天,综合效率在70—85%之间,主要用于电力系统的调峰填谷、调频、调相、紧急事故备用等。抽水蓄能电站的建设受地形制约,当电站距离用电区域较远时输电损耗较大。
液流电池
液流电池或称氧化还原液流蓄电系统,与通常蓄电池的活性物质被包容在固态阳极或阴极之内不同,液流电池的活性物质以液态形式存在,既是电极活性材料又是电解质溶液,它可溶解于分装在两大储液罐的溶液中,由各个泵使溶液流经液流电池,在离子交换膜两侧的电极上分别发生还原和氧化反应。这种电池没有固态反应,不发生电极物质结构形态的改变,与其它常规蓄电池相比,具有明显的优势。
液流电池的储能容量取决于电解液容量和密度,配置上相当灵活只需增大电解液容积和浓度即可增大储能容量,并且可以进行深度充放电。 锂离子蓄电池
锂离子电池与现有的铅酸电池、镍氢电池等电池相比有诸多优点,如无记忆效应、高工作电压、低自放电率、无环境污染性、高能量密度等,在电子消费品领域应用十分普遍。现在国内外都在大力研发新式的储能电池,其中锂离子蓄电池备受关注。
磷酸亚铁锂电池是最有前途的锂电池。磷酸亚铁锂材料的单位价格不高,其成本在几种电池材料 中是最低的,而且对环境无污染。磷酸亚铁锂比其他材料的体积要大,成本低,适合大型储能系统。
由于工艺和环境温度差异等因素的影响系统指标往往达不到单体水平,使用寿命只要单体电池的几分之一甚至十几分之一。大容量集成的技术难度和生产维护成本使这种电池短期内很难在电力系统中规模化使用。
超级电容器
超级电容器又可称为超大容量电容器、双电层电容器、(黄)金电容、储能电容或法拉电容。众所周知,化学电池是通过电化学反应,产生法拉第电荷转移来储存电荷的,而超级电容器的电荷储存发生在电极\电解质的形成的双电层上以及在电极表面进行欠电位沉积、电化学吸附、脱附和氧化还原产生的电荷的迁移。与传统的电容器和二次电池相比,超级电容器的比功率是电池的10倍以上 ,储存电荷的能力比普通电容器高 ,并具有充放电速度快、对环境无污染、循环寿命长、使用的温限范围宽等特点。在风力发电系统直流母线侧并入超级电容器,不仅能想蓄电池一样储存能量,平抑由于风力波动引起的能量波动,还可以起到调节有功无功的作用。
但由于超级电容器较为昂贵,在电力系统中多用于短时间、大功率的负载平滑和电能质量调节,如大功率直流电机的启动支持动态电压恢复等,在电压跌落和瞬态干扰时提高供电水平。
超导储能
超导储能系统是利用超导线圈将电磁能直接储存起来,需要时再将电磁能返回电网或其它负载的一种电力设施,它是一种新型高效的蓄能技术。超导蓄能系统主要由电感很大的超导蓄能线圈、使线圈保持在临界温度以下的氦制冷器和交直流变流装置构成。
当储存电能时,将风力发电机的交流电,经过交-直流变流器整流成直流电,激励超导线圈。发电时,直流电经逆变器装置变为交流电输出,供应电力负荷或直接接入电力系统。由于采用了电力电子装置,这种转换非常简便、响应极快,并且储能密度高,结构紧凑。不仅可用于降低甚至消除电网的低频功率振荡,还可以调节无功功率和有功功率,对于改善供电品质和提高电网的动态稳定性有巨大的作用。它的蓄能效率高达90%以上,远高于其他蓄能技术。小容量超导蓄能装置已经商品化。供电力系统调峰用的大规模超导蓄能装置,在大型线圈产生的电磁力的约束、制冷技术等方面还未成熟,各国正在加紧研究。
压缩空气储能
压缩空气储能是在电力系统峰荷时,利用压缩空气储存的能量发电,向系统供电;在系统低谷时,利用电网中的富余电力,通过空气压缩机储存能量。与抽水储能方式相似,这种储能方式也需要特定的地形条件,即需要特定的洞穴用于储存风能。在风力强,用电负荷小时,将风力发电机发出的多余电能将空气压缩并储存在洞穴中;而在无风或负荷增大时,则将储存在洞穴内的压缩空气释放出来,形成高速气流,推动涡轮机转动,并带动发电机发电,供应负荷。压缩空气蓄能发电系统的关键是气室的密封性、经济性、可靠性等。
除此之外,还有一些风力发电储能技术:
铅酸电池
铅酸蓄电池主要特点是采用稀硫酸做电解液,用二氧化铅和绒状铅分别做为电池的正极和负极的一种酸性蓄电池,具有成本低、技术成熟、储能容量大(已达到MW 级)等优点,主要应用于电力系统的备载容量、频率控制,不断电系统。然而,它的缺点是储存能量密度低、可充放电次数少、制造过程中存在一定污染等。 镍镉电池
镍镉电池正极板上的活性物质由氧化镍粉和石墨粉组成,石墨不参加化学反应,其主要作用是增强导电性。负极板上的活性物质由氧化镉粉和氧化铁粉组成,氧化铁粉的作用是使氧化镉粉有较高的扩散性,防止结块,并增加极板的容量。电解液通常用氢氧化钾溶液。镍镉电池具有大电流放电特性、耐过充放电能力强、维护简单、循环寿命长等优点,最早应用于手机、笔记本电脑等设备。当然,镍镉电池的“记忆效应”会逐渐降低电池的容量。此外由于其存在重金属污染已被欧盟组织限用。
❽ 电力能储存吗
电力能储存。
所谓能源存储,主要是指将电能通过一定的技术转化为化学能、势能、动能、电磁能等形态,使转化后能量具有空间上可转移(不依赖电网的传输)或时间上可转移或质量可控制的特点。
可以在适当的时间、地点以适合用电需求的方式(功率、电压、交流或直流)释放,为电力系统、用电设施及设备长期或临时供电,如电池储能、飞轮储能、抽水蓄能、压缩空气储能等等。
(8)自然界中的电能是如何存储的扩展阅读:
电力传输:
电能的传输和变电、配电、用电一起,构成电力系统的整体功能。通过输电,把相距甚远的(可达数千千米)发电厂和负荷中心联系起来,使电能的开发和利用超越地域的限制。
和其他能源的传输(如输煤、输油等)相比,输电的损耗小、效益高、灵活方便、易于调控、环境污染少;输电还可以将不同地点的发电厂连接起来,实行峰谷调节。输电是电能利用优越性的重要体现,在现代化社会中,它是重要的能源动脉。
输电线路按结构形式可分为架空输电线路和地下输电线路。前者由线路杆塔、导线、绝缘子等构成,架设在地面上;后者主要用电缆,敷设在地下(或水下)。
输电按所送电流性质可分为直流输电和交流输电。19世纪80年代首先成功地实现了直流输电,后因受电压提不高的限制(输电容量大体与输电电压的平方成比例)19世纪末为交流输电所取代。
交流输电的成功,迎来了20世纪电气化时代。20世纪60年代以来,由于电力电子技术的发展,直流输电又有新发展,与交流输电相配合,形成交直流混合的电力系统。
输电电压的高低是输电技术发展水平的主要标志。到20世纪90年代,世界各国常用输电电压有220千伏及以上的高压输电330~765千伏的超高压输电,1000千伏及以上的特高压输电。
❾ 电能在生活中是怎样储存的
电能不能直接储存,只能先通过能量形式转换,以其它的形式储存起来,使用时再转化成电能,或者直接利用。目前电能主要以下列形式贮存。化学能:通过蓄电池,把电能以化学能形式储存起来,使用时化学能释放出电能。蓄电池必须满足寿命长、高密度、无毒无腐蚀、操作方便等要求,因而最有希望的是锂电池,其次是钠—硫磺电池,锌—氯电池,锌—溴电池等。而铅电池因存贮效率低、能量密度低、管理费用高等缺点将日益被淘汰。大型锂电池机组可用于电力负荷调平,即夜间贮电,白天放电。电池驱动汽车即将取代现在的燃油汽车。热能:把夜间的余电通过蓄热器以高温热或者冷热贮存起来。由于将热能转换电能时造成能量质量的降低,因此直接以热的形式再利用情况较多。势能:即所谓的抽水发电。夜间驱动电动水泵,把水抽向高处的水池,把电能以势能形式储存起来;白天用电高峰时,高处的水落下推动水轮发电机再转换成电能。电能的存储方式主要可分为机械储能、电磁储能、电化学储能和相变储能等。机械储能主要有抽水蓄能、压缩空气储能和飞轮储能等;电磁储能包括超导磁储能和超级电容器储能等;电化学储能主要有铅酸蓄电池、钠硫电池、液流电池和锂离子电池储能;相变储能包括冰蓄冷储能、热电相变蓄热储能等。目前,大规模储能技术应用水平与电力系统的巨大需求之间还存在较大差距。适合新能源接入应用的储能技术主要是抽水蓄能、压缩空气储能和电化学储能。抽水蓄能技术相对成熟,而其他储能技术还处于试验示范阶段甚至初期研究阶段,其中钠硫电池、液流电池、锂离子电池等新型电化学储能技术水平进步较快,具有巨大的发展潜力和广泛的应用前景。
❿ 电力无法大量储存,中国电网每天发那么多电,剩下的电去哪了呢
在现代社会中,人们已经无法想象没有电的生活。电能是一种看不见摸不着的奇妙能源,可能有的人会想,从商品角度来看,多发电才能多赚钱,那为什么不把多余的电储存起来,等到发电量不足的时候加以使用呢。这样电厂能多赚钱,还能节约能源。
但有物理常识的人应该知道,电能目前是无法大规模储存的。不管是比较常见的蓄电池组,或者是抽水蓄能型的水电站,它们能储存的电能,相对于整个国家的用电规模来说,是极其渺小的。电能的奇妙之处,就在于用掉多少电能,电力系统就产生多少电能,整个电网系统随时处于一个动态的平衡状态。
其次,由于实际过程中,用户无序的使用以及发电端新能源发电的波动性特征使得电网无法保证真正的实时平衡,通过调节供需可以使得电网能在较小的范围内波动,从而达到相对平衡的状态。而储存电能,正是调节电能供需的必要手段,也是未来的发展方向。
一般的吃瓜大众,可以放心用电,不用太担心电网里多余的电去哪儿了,有没有浪费的问题,有一大波专业人员在研究、维护整个电网系统。我们能做的是长期养成节约用电的好习惯。