当前位置:首页 » 服务存储 » 全自动生物存储系统
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

全自动生物存储系统

发布时间: 2022-06-13 15:49:41

A. 请问一下生物计算机的原理

生物计算机的原理是信息以波的形式传播,当波沿着蛋白质分子链传播时,会引起蛋白质分子链中单键、双键结构顺序的变化,开始计算。

其主要原材料是生物工程技术产生的蛋白质分子,并以此作为生物芯片。生物芯片比硅芯片上的电子元件要小很多,而且生物芯片本身具有天然独特的立体化结构,其密度要比平面型的硅集成电路高五个数量级。

生物计算机能够如同人脑那样进行思维、推理,能认识文字、图形,能理解人的语言,因而可以成为人们生活中最好的伙伴,担任各种工作,如可应用于通讯设备、卫星导航、工业控制领域,发挥它重要的作用。

美国贝尔实验室生物计算机部的物理学家们正在研制由芯片构成的人造耳朵和人造视网膜,这项技术的成功有望使聋盲人康复。

生物电脑的成熟应用还需要一段时间,但是科学家已研制出生物电脑的主要部件———生物芯片。美国明尼苏达州立大学已经研制成世界上第一个“分子电路”,由“分子导线”组成的显微电路只有目前计算机电路的千分之一。

(1)全自动生物存储系统扩展阅读

科学家通过对生物组织体研究,发现组织体是由无数的细胞组成,细胞由水、盐、蛋白质和核酸等有机物组成,而有些有机物中的蛋白质分子像开关一样,具有“开”与“关”的功能。

因此,人类可以利用遗传工程技术,仿制出这种蛋白质分子,用来作为元件制成计算机。科学家把这种计算机叫做生物计算机。

生物计算机主要是以生物电子元件构建的计算机。它利用蛋白质有开关特性,用蛋白质分子作元件从而制成的生物芯片。

其性能是由元件与元件之间电流启闭的开关速度来决定的。用蛋白质制成的计算机芯片,它的一个存储点只有一个分子大小,所以它的存储容量可以达到普通计算机的十亿倍。

由蛋白质构成的集成电路,其大小只相当于硅片集成电路的十万分之一。而且运行速度更快,只有1×10^(-11)秒,大大超过人脑的思维速度。

B. 生物计算机的特点和发展前景

生物计算机的特点:

生物计算机芯片本身还具有并行处理的功能,其运算速度要比当今最新一代的计算机更快。生物芯片一旦出现故障,可以进行自我修复,所以具有自愈能力。

生物计算机具有生物活性,能够和人体的组织有机地结合起来,尤其是能够与大脑和神经系统相连。这样,生物计算机就可直接接受大脑的综合指挥,成为人脑的辅助装置或扩充部分,并能由人体细胞吸收营养补充能量,因而不需要外界能源。它将成为能植入人体内,成为帮助人类学习、思考、创造、发明的最理想的伙伴。

另外,由于生物芯片内流动电子间碰撞的可能极小,几乎不存在电阻,所以生物计算机的能耗极小。

生物计算机的发展前景:

生物计算机是人类期望在21世纪完成的伟大工程。是计算机世界中最年轻的分支。目前的研究方向大致是两个:一是研制分子计算机,即制造有机分子元件去代替目前的半导体逻辑元件和存储元件;另一方面是深入研究人脑的结构、思维规律,再构想生物计算机的结构。

(2)全自动生物存储系统扩展阅读:

生物计算机种类:

1.生物分子或超分子芯片

立足于传统计算机模式,从寻找高效、体微的电子信息载体及信息传递体入手,目前已对生物体内的小分子、大分子、超分子生物芯片的结构与功能做了大量的研究与开发。“生物化学电路” 即属于此。

2.自动机模型

以自动理论为基础,致力与寻找新的计算机模式,特别是特殊用途的非数值计算机模式。目前研究的热点集中在基本生物现象的类比,如神经网络、免疫网络、细胞自动机等。不同自动机的区别主要是网络内部连接的差异,其基本特征是集体计算,又称集体主义,在非数值计算、模拟、识别方面有极大的潜力。

3.仿生算法

以生物智能为基础,用仿生的观念致力于寻找新的算法模式,虽然类似于自动机思想,但立足点在算法上,不追求硬件上的变化。

4.生物化学反应算法

立足于可控的生物化学反应或反应系统,利用小容积内同类分子高拷贝数的优势,追求运算的高度并行化,从而提供运算的效率。DNA计算机属于此类。

5.细胞计算机

采用系统遗传学(system genetics)原理、合成生物技术,人工设计与合成基因、基因链、信号传导网络等,对细胞进行系统生物工程(system bio-engineering)改造与重编程序,可以做复杂的计算与信息处理,细胞计算机又称为湿计算机(wet computer),目前的计算机是干计算机(dry computer)。

C. 干细胞存储最好的是哪家公司存储都需要哪些设备

干细胞算是新型医药产业了,做这个的公司必须得有钱,得有实力。你要去存干细胞,得看看公司的实力

D. 生物计算机的工作原理是什么

生物计算机一般就是指DNA(脱氧核糖核酸)计算机,DNA是生命遗传物质,生物的千姿百态的差别就是因为DNA内大量的碱基排列顺序不同。DNA计算机的基本原理是利用DNA分子作为芯片,存储巨量的数据,在某些酶的作用下瞬间完成生物化学反应,从一种基因代码转变为另一种基因代码。反应前的基因代码可作为输入数据,反应后的基因代码即运算结果。
DNA计算机的特点是:第一,DNA是分子,所以它是分子水平的计算机,因而体积非常小;第二,在相同体积下,它的存储容量、运算量都异乎寻常地大,例如1立方米的DNA计算机,可存储1万亿亿二进制位的数据,超过现在全世界所有计算机的存储容量的总和,它几天的运算量便相当于计算机面世以来全部计算机的总运算量;第三,耗能少,因为它的工作过程是一种生物化学反应,所以耗能量仅为一般计算机的10亿分之一;第四,智能水平高,因为它具有生物体特点,有生物活性,有自我复制和自我组合的能力;第五,能够植于生物体内工作。
DNA计算机目前还处于实验阶段,离实现仍有很长距离,因此还谈不上实用和普及。

E. 列举5种生物技术,并说明其技术内容和应用领域

现代生物技术是以生命科学为基础,利用生物(或生物组织、细胞及其他组成部分)的特性和功能,设计、构建具有预期性能的新物质或新品系,以及与工程原理相结合,加工生产产品或提供服务的综合性技术。这门技术内涵十分丰富它涉及到:对生物的遗传基因进行改造或重组,并使重组基因在细胞内表达,产生人类需要的新物质的基因技术(如“克隆技术”);从简单普通的原料出发,设计最佳路线,选择适当的酶,合成所需功能产品的生物分子工程技术:利用生物细胞大量加工、制造产品的生物生产技术(如发酵);将生物分子与电子、光学或机械系统连接起来,并把生物分子捕获的信息放大、传递。转换成为光。电或机械信息的生物耦合技术;在纳米(即百万分之一毫米)尺度上研究生物大分子精细结构及其与功能的关系。并对其结构进行改造利用它们组装分子设备的纳米生物技术:模拟生物或生物系统。组织、器官功能结构的仿生技术等等。

独特的优点

——生产原料简单。生物在进行合成代谢时,大都以随手可得的物质(如空气、水、植物和矿物质等)为原料,以阳光等为能源,不仅原料成本低,而且取之不尽。

——安全、可靠性高。典型的生物化学反应都是在酶的催化作用下进行的,要求输入的能量少,反应条件缓和,工艺和设备简单,操作安全性好。生物系统在合成物质时,先把脱氧核糖核酸遗传信息转录给核糖核酸,然后以核糖核酸为模板进行合成。该过程虽然很复杂,但出错机率极小,且无副产品。更重要的是,生物系统能自动发现并纠正错误,进行自动化合成生产,生产可靠性高。

——产品具有特殊的活性。生物分子通常具有复杂的精细结构,这种结构往往会赋予生物分子特殊的活性,即所谓“生物特异功能”,例如准确、敏感的识别能力,高效的搜索能力,牢固的粘结性能等等。在用基因技术对其控制基因进行改良后,这些性能还将大大增强。

——系统结构紧凑。生物系统中的信息码、模块、制造组装机构都是在分子水平以完美方式自组装起来的。这就使生物系统(如眼球、大脑等)比类似功能的人造电子、光学或机械系统要紧凑得多。如果能运用生物耦合技术把一些生物系统与设计的装置耦合起来,或者利用纳米生物技术、自组装技术将它们制造出来,那么设备的尺寸就可能减少很多。

——有利于提高或扩展人类的能力。运用生物医学可提高人类对疾病的治疗效果和抗病能力;通过人脑与设备的耦合可扩展人类的能力,减小人机界面的操作难度。

军事应用

80年代以来,美国等一些发达国家开始大力研究和发展军事生物技术,以期满足军事上对许多先进能力的需要。目前正在研究或已预见到的军事应用主要有——

在信息探测方面:利用酶、抗体、细胞等制造具有识别功能的生物传感器,不仅能准确地识别各种生、化战剂,通过与计算机配合及时提出最佳防护和治疗方案、而且还可用于探测炸药、火箭推进剂的挥发降解情况,确定敌方库存地雷。炮弹、炸弹、导弹等的数量和位置。利用仿生技术制造的各种信息收集系统,可以大幅度提高探测、监视和导航能力。仿视觉探测器的电子蛙眼雷达能快速识别不同形状的飞机。舰艇。导弹等运动物体,并能根据飞行特点,识别真假导弹;“蝇眼”相机一次能拍下1000多张照片,分辨率高达每厘米4000线,成为有效的侦察工具;模拟狗、猫头鹰等动物夜视功能的装置,能搜索到微光下地面或空中目标。科学家们根据“蛇眼”红外线定位原理研制了红外制导的空空导弹,现在人们又根据蝙蝠抗干扰能力强的原理研制出新颖的蝙蝠式抗干扰超精密全敏雷达。根据狗鼻子机理制成的仿嗅觉传感器“电子犬”,能测定仅千万分之一的过氧乙烯毒气;根据苍蝇的触角上非常灵敏的嗅觉感觉器,制造出了嗅觉敏感的探测装置。

值得重视的是,上面所例举的一些已制造出来的仿生探测器大都还是被动的仿生装置。随着生物技术的发展,在彻底弄清生物系统的工作原理后,通过基因技术、生物分子工程技术对生物分子的改造,运用生物分子电子技术等主动仿生学方法,一定能制出功能优于生物结构更紧凑,体积更小的各种信息探测装置。美国、日本、欧洲、俄罗斯现正在努力向主动仿生技术发展。

在信息处理方面:研究表明,以蛋白质分子做材料制造的生物计算机,不仅体积小、重量轻。能耗小、环境适应性强。运算速度和储存能力比现有计算机要高出数亿倍,而且具有和人脑一样的分析。判断。联想、记忆等智能。它的研制成功必将使军事情报的获取。处理发生质的变化。美国。日本、欧洲和俄罗斯早就看好这一领域。在过去10年,他们已研究出了蛋白质并行处理器及神经网络等原型器件,有些器件已在军事上得到了应用,例如俄罗斯有的军用雷达就使用了细菌视紫红蛋白质处理器。据估计美国在3—5年内能大批量生产这种计算机,且造价比半导体计算机要低,因为它所需的生物材料可利用通过基因技术改造的细菌大量生产。

在一体化指挥和控制方面:生物计算机的微型化、低成本趋势,不仅使指挥中心、网络节点,而且使每件武器。每个士兵都可能拥有计算机,“整个战场就像一个计算机大平台”,从而实现信息流程最优化,信息流动实时化,信息采集、传递、处理、存储、使用一体化,并形成一个指捍层次减少的扁平的“网”状指挥体系,以利于提高信息传输速度和体系生存能力,并使决策分散化和指挥实时化。

在信息战防御方面:生物技术在伪装与隐身方面表现出非凡才能。例如,通过对“变色脂”表皮颜色变化机理的研究,研制出一种变色蛋白质纤维,可用它做成变色服,或根据这一原理研究出随环境变化的生物涂料,把它涂在设施、装备、武器、平台、头盔上来伪装自己。还可通过生物技术合成一些可吸收红外。紫外等各种波长的吸波生物材料(如视黄酸聚合物、希夫碱盐聚乙烯)来减少或消除信号达到隐身的目的,提供新一代高效能的作战系统。

常规武器装备除可利用生物计算机、生物传感器或仿生探测器来提高武器平台的信息化水平之外,还可利用生物技术为它仰提供轻质高性能的材料:用于装甲防护的高硬度。高韧性生物陶瓷;用于制造防护服。降落伞及复合材料的抗拉强度超过钢丝的改进型蜘蛛丝,用于制造轮胎和密封垫的理化性能优秀的生物弹性体;可代替钢材的高强度生物塑料:可在各种环境中使用的生物粘胶剂;模仿生物智能结构的智能材料;模拟骨质密度梯度变化的功能梯度材料;模拟贝、驯鹿角结构的仿生装甲材料;模拟软体动物表皮的多功能蒙皮等等。在制造工艺上,使用仿生技术,也可以提高平台的性能和生存能力,模仿海豚体形和各部分比例建造的新式核潜艇,航速提高了20%~25%;用人造海豚皮包裹鱼雷,水的阻力可减少一半;美军目前正在模仿鳐鱼和电鳗两种鱼的运动原理,以弹性皮替代潜艇的传统外壳,研制一种新型“皮动”潜艇,旨在使其在潜航时难以分辨出到底是鱼还是潜艇,既能巧妙地隐蔽自己,又可突然袭击敌方。

智能武器利用生物技术研制的制导系统将促使精确制导技术向更高的智能化方向发展。美军正在根据蝇眼视觉原理研制的“蝇眼”制导系统,可根据目标运动参数及位置信息,自动控制导弹飞行状态,跟踪、攻击目标。弹载微型生物计算机可利用声波、无线电波、可见光、红外、激光甚至气味等一切可利用的直接或间接目标信息,帮助导弹自主地搜索、识别、定位和攻击目标,从而大大提高导弹的命中精度。

非致命武器利用生物技术还可以制造出许多非致命武器。例如,可以污染油料。润滑剂或使它们凝聚的生物活性物质;可迅速降解军事设备上的塑料、橡胶和其它合成或天然材料的酶;可降解弹药、推进剂的酶;能对军事通信设备、计算机造成严重干扰的导电性生物聚合物;可吞噬计算机芯片材料的微生物等。

提供机动灵活的后勤保障

用生物酶或微生物生产炸药。弹药或推进剂,可以在温和的条件下进行,操作安全,合成物更稳定。利用红极毛杆菌与淀粉的作用可生产氢气,每消耗1克淀粉可生产5升氢气,氢气和少量燃料混合可代替汽油(或柴油),使用这种燃料的机动装备只需带少量淀粉就可实施长时间、远程、机动作战。利用发酵技术可为机动部队提供易于保存和携带的高能量胶囊状营养食品。在食物短缺的特殊场合,可采用高效植物纤维酶将植物的根、茎、叶转化成易于消化吸收的营养丰富的葡萄糖,供战士食用。部队在执行任务时、水是必不可少的。采用生物技术生产的生物聚合物梯度膜,可快速滤去非饮用水中有害物质(包括放射性污染物)。生物技术也是治理军事环境的理想方法。用生物酶清洗生化战剂,速度快,对人体和设备无损伤。利用微生物处理放射性废物和有毒物质,效率高,二次污染轻,投资少。在军事医学领域,运用生物技术可生产出优质的供野战外科用的人工血。人造骨、人工皮肤和伤口粘合剂等等。

近10多年来,美国、日本、俄罗斯和欧洲的一些国家十分重视生物技术的发展,并积极推进它的军事应用,其中以美国的研究最为活跃。从1989年开始,美国国防部每年都把它列入国防关键技术计划。为了加强军事生物技术的研究,美国国防部还成立了国防生物技术指导委员会。美军对生物技术研究的范围很广,现阶段主要集中在军事生物医学、生物传感器、生物材料、军事环境的生物处理、生物分子电子技术及仿生学等领域。

F. 谁知道生物计算机

生物计算机

人类有一门学科叫仿生学,即通过对自然界生物特性的研究与模仿,来达到为人类社会更好地服务的目的。典型的例子如,通过研究蜻蜒的飞行制造出了直升机;对青蛙眼睛的表面“视而不见”,实际“明察秋毫”的认识,研制出了电子蛙眼;对苍蝇飞行的研究,仿制出一种新型导航仪——振动陀螺仪,它能使飞机和火箭自动停止危险的“跟头”飞行,当飞机强烈倾斜时,能自动得以平衡,使飞机在最复杂的急转弯时也万无一失;对蝙蝠没有视力,靠发出超声波来定向飞行的特性研究,制造出了雷达、超声波定向仪等;对“变色龙”的研究,产生了隐身科学和保护色的应用……

仿生学同样可应用到计算机领域中。

科学家通过对生物组织体研究,发现组织体是由无数的细胞组成,细胞由水、盐、蛋白质和核酸等有机物组成,而有些有机物中的蛋白质分子像开关一样,具有“开”与“关”的功能。因此,人类可以利用遗传工程技术,仿制出这种蛋白质分子,用来作为元件制成计算机。科学家把这种计算机叫做生物计算机。

生物计算机有很多优点,主要表现在以下几个方面:

首先,它体积小,功效高。在一平方毫米的面积上,可容纳几亿个电路,比目前的集成电路小得多,用它制成的计算机,已经不像现在计算机的形状了,可以隐藏在桌角、墙壁或地板等地方。

其次,当我们在运动中,不小心碰伤了身体,有的上点儿药,有的年轻人甚至药都不上,过几天,伤口就愈合了。这是因为人体具有自我修复功能。同样,生物计算机也有这种功能,当它的内部芯片出现故障时,不需要人工修理,能自我修复,所以,生物计算机具有永久性和很高的可靠性。

再者,生物计算机的元件是由有机分子组成的生物化学元件,它们是利用化学反应工作的,所以,只需要很少的能量就可以工作了,因此,不会像电子计算机那样,工作一段时间后,机体会发热,而它的电路间也没有信号干扰。

1983年,美国公布了研制生物计算机的设想之后,立即激起了发达国家的研制热潮。当前,美国、日本、德国和俄罗斯的科学家正在积极开展生物芯片的开发研究。从1984年开始,日本每年用于研制生物计算机的科研投资为86亿日元。

目前,生物芯片仍处于研制阶段,但在生物元件,特别是在生物传感器的研制方面已取得不少实际成果。这将会促使计算机、电子工程和生物工程这三个学科的专家通力合作,加快研究开发生物芯片。

生物计算机一旦研制成功,可能会在计算机领域内引起一场划时代的革命。
http://cache..com/c?word=%C9%FA%CE%EF%3B%BC%C6%CB%E3%BB%FA&url=http%3A//rcs%2Ewuchang%2De%2Ecom/Resource/Book/E/SZJY/TS013055/0027%5Fts013055%2Ehtm&b=0&a=66&user=adv

量子计算机

量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。量子计算机的概念源于对可逆计算机的研究。研究可逆计算机的目的是为了解决计算机中的能耗问题。

20世纪60年代至70年代,人们发现能耗会导致计算机中的芯片发热,极大地影响了芯片的集成度,从而限制了计算机的运行速度。研究发现,能耗来源于计算过程中的不可逆操作。那么,是否计算过程必须要用不可逆操作才能完成呢?问题的答案是:所有经典计算机都可以找到一种对应的可逆计算机,而且不影响运算能力。既然计算机中的每一步操作都可以改造为可逆操作,那么在量子力学中,它就可以用一个幺正变换来表示。早期量子计算机,实际上是用量子力学语言描述的经典计算机,并没有用到量子力学的本质特性,如量子态的叠加性和相干性。在经典计算机中,基本信息单位为比特,运算对象是各种比特序列。与此类似,在量子计算机中,基本信息单位是量子比特,运算对象是量子比特序列。所不同的是,量子比特序列不但可以处于各种正交态的叠加态上,而且还可以处于纠缠态上。这些特殊的量子态,不仅提供了量子并行计算的可能,而且还将带来许多奇妙的性质。与经典计算机不同,量子计算机可以做任意的幺正变换,在得到输出态后,进行测量得出计算结果。因此,量子计算对经典计算作了极大的扩充,在数学形式上,经典计算可看作是一类特殊的量子计算。量子计算机对每一个叠加分量进行变换,所有这些变换同时完成,并按一定的概率幅叠加起来,给出结果,这种计算称作量子并行计算。除了进行并行计算外,量子计算机的另一重要用途是模拟量子系统,这项工作是经典计算机无法胜任的。

无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。遗憾的是,在实际系统中量子相干性很难保持。在量子计算机中,量子比特不是一个孤立的系统,它会与外部环境发生相互作用,导致量子相干性的衰减,即消相干。因此,要使量子计算成为现实,一个核心问题就是克服消相干。而量子编码是迄今发现的克服消相干最有效的方法。主要的几种量子编码方案是:量子纠错码、量子避错码和量子防错码。量子纠错码是经典纠错码的类比,是目前研究的最多的一类编码,其优点为适用范围广,缺点是效率不高。

迄今为止,世界上还没有真正意义上的量子计算机。但是,世界各地的许多实验室正在以巨大的热情追寻着这个梦想。如何实现量子计算,方案并不少,问题是在实验上实现对微观量子态的操纵确实太困难了。目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。现在还很难说哪一种方案更有前景,只是量子点方案和超导约瑟夫森结方案更适合集成化和小型化。将来也许现有的方案都派不上用场,最后脱颖而出的是一种全新的设计,而这种新设计又是以某种新材料为基础,就像半导体材料对于电子计算机一样。研究量子计算机的目的不是要用它来取代现有的计算机。量子计算机使计算的概念焕然一新,这是量子计算机与其他计算机如光计算机和生物计算机等的不同之处。量子计算机的作用远不止是解决一些经典计算机无法解决的问题。
http://www.bjkp.gov.cn/gkjqy/xxkx/k10809-02.htm

G. 大脑里面的“生物硬盘”——记忆

人类的大脑,一直是一个神秘且复杂的地方,是所有神经系统的中枢。一般大脑分为三个区:脑核(Central Core)、脑缘系统(Limbic System)、大脑皮质(Cerebral Cortex)。

人类的大脑可以看成计算机,那么记忆就相当于计算机的硬盘,能够写入、存储和掌控大量信息,但显然,人脑如今的强大的存储功能并不是当前的硬盘所能够相比的,人脑的记忆功能要比计算机强大很多。


更多请关注:meibeiapp

H. 量子计算机和生物计算机各自的优缺点

一、生物计算机。

优点:

1、体积小,功效高。

生物计算机的面积上可容纳数亿个电路,比目前的电子计算机提高了上百倍。同时,生物计算机,已经不再具有计算机的形状,可以隐藏在桌角、墙壁或地板等地方,同时发热和电磁干扰都大大降低。

2、生物计算机的芯片永久性与可靠性。

生物计算机具有永久性和很高的可靠性。若能使生物本身的修复机制得到发挥,则即使芯片出了故障也能自我修复。

(这是生物计算机极其诱人的潜在优势)蛋白质分子可以自我组合,能够新生出微型电路,具有活性,因此生物计算机拥有生物特性。

生物计算机不再像电子计算机那样,芯片损坏后无法自动修复,生物计算机能够发挥生物调节机能,自动修复受损芯片。

3、生物计算机的存储与并行处理。

生物计算机在存储方面与传统电子学计算机相比具有巨大优势。一克DNA存储信息量可与一万亿张CD相当,存储密度是通常使用磁盘存储器的1000亿到10000亿倍。

生物计算机还具有超强的并行处理能力,通过一个狭小区域的生物化学反应可以实现逻辑运算,数百亿个DNA分子构成大批DNA计算机并行操作。

4、发热与信号干扰。

生物计算机的元件是由有机分子组成的生物化学元件,它们是利用化学反应工作的,所以;只需要很少的能量就可以工作了。

因此,不会像电子计算机那样,工作一段时间后,机体会发热,而生物计算机的电路间也没有信号干扰。

5、数据错误率。

DNA链的另一个重要性质是双螺旋结构,A碱基与T碱基、C碱基与G碱基形成碱基对。每个DNA序列有一个互补序列。这种互补性是生物计算机具备独特优势。

如果错误发生在DNA某一双螺旋序列中,修改酶能够参考互补序列对错误进行修复。

缺点:

1、生物计算机从中提取信息困难。一种生物计算机24小时就完成了人类迄今全部的计算量,但从中提取一个信息却花费了1周。这也是目前生物计算机没有普及的最主要原因。

二、量子计算机。

优点:

1、量子计算机拥有强大的量子信息处理能力,对于目前多变的信息,能够从中提取有效的信息进行加工处理使之成为新的有用的信息。

运用这种方式能准确预测天气状况,目前计算机预测的天气状况的准确率达75%,但是运用量子计算机进行预测,准确率能进一步上升,更加方便人们的出行。

2、量子计算机由于具有不可克隆的量子原理这些问题不会存在,在用户使用量子计算机时能够放心地上网,不用害怕个人信息泄露。

3、量子计算机拥有强大的计算能力,能够同时分析大量不同的数据,所以在金融方面能够准确分析金融走势,在避免金融危机方面起到很大的作用;

4、在生物化学的研究方面也能够发挥很大的作用,可以模拟新的药物的成分,更加精确地研制药物和化学用品,这样就能够保证药物的成本和药物的药性。

缺点:

1、量子消相干。

量子计算的相干性是量子并行运算的精髓,但在实际情况下,量子比特会受到外界环境的作用与影响,从而产生量子纠缠。

量子相干性极易受到量子纠缠的干扰,导致量子相干性降低,也就是所谓的消相干现象。

2、量子纠缠。

量子作为最小的颗粒,遵守量子纠缠规律。即使在空间上,量子之间可能是分开的,但是量子间的相互影响是无法避免的。

3、量子并行计算。

量子计算机独特的并行计算是经典计算机无法比拟的重要的一点。同样是一个n位的存储器,经典计算机存储的结果只有一个。

4、量子不可克隆。

量子不可克隆性,是指任何未知的量子态不存在复制的过程,既然要保持量子态不变,则不存在量子的测量,也就无法实现复制。对于量子计算机来说,无法实现经典计算机的纠错应用以及复制功能。

I. 现代技术有哪些

1、辐射技术

在高分子材料领域,辐射技术已用于聚烯烃的辐射交联,不饱和聚酯类树脂的辐射固化,橡胶的辐射硫化,聚合物辐射降解以及辐射接枝改性等,已有产品实现工业化生产。

2、海洋工程技术

海洋工程技术:包括海洋发电技术、海洋钻探技术、海水淡化技术、海洋油矿开采技术、海岸风力发电技术、海层探测技术、海洋物质分离技术、海水提炼技术、海洋建筑设计等。

3、航空航天科学技术

航空航天科学技术是20世纪兴起的现代科学技术,自其形成以来,一直汲取基础科学和其他应用科学领域的最新成就,高度综合了工程技术的最新成果,并引领许多学科专业的发展,甚至促成某些专业的形成。

4、现代生物技术

也称生物工程。在分子生物学基础上建立的创建新的生物类型或新生物机能的实用技术,是现代生物科学和工程技术相结合的产物。

5、光电子技术

光电子技术是先进的技术,对传统 产业的技术改造、新兴产业的发展、产业结 构的调整优化起着巨大的促进作用。

J. 全息存储器的名词解释

噬菌调理素:这种蛋白质存在于一种适盐菌属海洋微生物的微组织薄膜中。这种菌在含盐的潮湿环境里可以承受150℃高温。所以用它作为存储媒体,是因为对它进行光照射循环时,它会按一定顺序发生结构变化。利用结构变化过程中的不同状态,可以分别表示“0”或“1”。现已制成这种存储系统原型,它在透明容器里,填以聚丙烯酰胺凝胶,并把蛋白质放进去构成存放数据的三维阵列。