① 传统密码有些什么摩斯密码是一种
莫尔斯密码,与其说是密码,不如说是电码。
因为辨识两种声音 滴 和 答,很容易。想分辨26种声音,并简单发送就难了。
1950年前的密码都算是传统密码,简单来说,有以下几种
替换加密法:用一个字符替换另一个字符的加密方法。
换位加密法:重新排列明文中的字母位置的加密法。
回转轮加密法:一种多码加密法,它是用多个回转轮,每个回转轮实现单码加密。这些回转轮可以组合在一起,在每个字母加密后产生一种新的替换模式。
多码加密法:
一种加密法,其替换形式是:可以用多个字母来替换明文中的一个字母。
夹带法:通过隐藏消息的存在来隐藏消息的方法。
三分密码
首先随意制造一个3个3×3的Polybius方格替代密码,包括26个英文字母和一个符号。然后写出要加密的讯息的三维坐标。讯息和坐标四个一列排起,再顺序取横行的数字,三个一组分开,将这三个数字当成坐标,找出对应的字母,便得到密文。
仿射密码......
② des是什么密码体制
对称密码体制是从传统的简单换位发展而来的。其主要特点是:加解密双方在加解密过程中要使用完全相同的一个密钥。使用最广泛的是DES(Data Encryption Standard)密码算法。
从1977年美国颁布DES密码算法作为美国数据加密标准以来,对称密钥密码体制得到了广泛的应用。对称密钥密码体制从加密模式上可分为序列密码和分组密码两大类。
1.序列密码
序列密码一直是作为军事和外交场合使用的主要密码技术之一。它的主要原理是:通过有限状态机产生性能优良的伪随机序列,使用该序列加密信息流,得到密文序列。所以,序列密码算法的安全强度完全决定于它所产生的伪随机序列的好坏。产生好的序列密码的主要途径之一是利用移位寄存器产生伪随机序列。目前要求寄存器的阶数大于100阶,才能保证必要的安全。序列密码的优点是错误扩展小、速度快、利于同步、安全程度高。
2.分组密码
分组密码的工作方式是将明文分成固定长度的组,如64比特一组,用同一密钥和算法对每一块加密,输出也是固定长度的密文。
对称密钥密码体制存在的最主要问题是:由于加/解密双方都要使用相同的密钥,因此在发送、接收数据之前,必须完成密钥的分发。所以,密钥的分发便成了该加密体系中的最薄弱,也是风险最大的环节,所使用的手段均很难保障安全地完成此项工作。这样,密钥更新的周期加长,给他人破译密钥提供了机会。在历史上,破获他国情报不外乎两种方式:一种是在敌方更换“密码本”的过程中截获对方密码本;另一种是敌人密钥变动周期太长,被长期跟踪,找出规律从而被破解。在对称算法中,尽管由于密钥强度增强,跟踪找出规律破解密钥的机会大大减小了,但密钥分发的困难问题几乎无法解决。例如,设有n方参与通信,若n方都采用同一个对称密钥,一旦密钥被破解,整个体系就会崩溃;若采用不同的对称密钥则需n(n-1)个密钥,密钥数与参与通信人数的平方数成正比,可见,大系统密钥的管理几乎成为不可能。
然而,由于对称密钥密码系统具有加解密速度快和安全强度高的优点,目前被越来越多地应用在军事、外交以及商业等领域。
非对称密钥密码体制
非对称密钥密码体制,即公开密钥密码体制,是现代密码学最重要的发明和进展。一般理解密码学就是保护信息传递的机密性,但这仅仅是当今密码学的一个方面。对信息发送与接收人的真实身份的验证,对所发出/接收信息在事后的不可抵赖以及保障数据的完整性也是现代密码学研究的另一个重要方面。公开密钥密码体制对这两方面的问题都给出了出色的解答,并正在继续产生许多新的思想和方案。
1976年,Diffie和Hellman为解决密钥的分发与管理问题,在他们奠基性的工作“密码学的新方向”一文中,提出一种密钥交换协议,允许在不安全的媒体上通过通讯双方交换信息,安全地传送秘密密钥。在此新思想的基础上,很快出现了公开密钥密码体制。在该体制中,密钥成对出现,一个为加密密钥(即PK公开密钥),另一个为解密密钥(SK秘密密钥),且不可能从其中一个推导出另一个。加密密钥和解密密钥不同,可将加密密钥公之于众,谁都可以使用;而解密密钥只有解密人自己知道,用公共密钥加密的信息只能用专用密钥解密。由于公开密钥算法不需要联机密钥服务器,密钥分配协议简单,所以极大地简化了密钥管理。除加密功能外,公钥系统还可以提供数字签名。目前,公开密钥加密算法主要有RSA、Fertezza、EIGama等。
迄今为止的所有公钥密码体系中,RSA系统是最着名、使用最广泛的一种。RSA公开密钥密码系统是由R.Rivest、A.Shamir和L.Adleman三位教授于1977年提出的,RSA的取名就是来自于这三位发明者姓氏的第一个字母。
RSA算法研制的最初目标是解决利用公开信道传输分发 DES 算法的秘密密钥的难题。而实际结果不但很好地解决了这个难题,还可利用 RSA 来完成对电文的数字签名,以防止对电文的否认与抵赖,同时还可以利用数字签名较容易地发现攻击者对电文的非法篡改,从而保护数据信息的完整性。
公用密钥的优点就在于:也许使用者并不认识某一实体,但只要其服务器认为该实体的CA(即认证中心Certification Authority的缩写)是可靠的,就可以进行安全通信,而这正是Web商务这样的业务所要求的。例如使用信用卡购物,服务方对自己的资源可根据客户 CA的发行机构的可靠程度来授权。目前国内外尚没有可以被广泛信赖的CA,而由外国公司充当CA在我国是非常危险的。
公开密钥密码体制较秘密密钥密码体制处理速度慢,因此,通常把这两种技术
③ 古典密码安全算法有哪些
世界上最早的一种密码产生于公元前两世纪。是由一位希腊人提出的,人们称之为
棋盘密码,原因为该密码将26个字母放在5×5的方格里,i,j放在一个格子里,具体情
况如下表所示
1 2 3 4 5
1 a b c d e
2 f g h i,j k
3 l m n o p
4 q r s t u
5 v w x y z
这样,每个字母就对应了由两个数构成的字符αβ,α是该字母所在行的标号,β是列
标号。如c对应13,s对应43等。如果接收到密文为
43 15 13 45 42 15 32 15 43 43 11 22 15
则对应的明文即为secure message。
另一种具有代表性的密码是凯撒密码。它是将英文字母向前推移k位。如k=5,则密
文字母与明文与如下对应关系
a b c d e f g h i j k l m n o p q r s t u v w x y z
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
于是对应于明文secure message,可得密文为XJHZWJRJXXFLJ。此时,k就是密钥。为了
传送方便,可以将26个字母一一对应于从0到25的26个整数。如a对1,b对2,……,y对
25,z对0。这样凯撒加密变换实际就是一个同余式
c≡m+k mod 26
其中m是明文字母对应的数,c是与明文对应的密文的数。
随后,为了提高凯撒密码的安全性,人们对凯撒密码进行了改进。选取k,b作为两
个参数,其中要求k与26互素,明文与密文的对应规则为
c≡km+b mod 26
可以看出,k=1就是前面提到的凯撒密码。于是这种加密变换是凯撒野加密变换的
推广,并且其保密程度也比凯撒密码高。
以上介绍的密码体制都属于单表置换。意思是一个明文字母对应的密文字母是确定
的。根据这个特点,利用频率分析可以对这样的密码体制进行有效的攻击。方法是在大
量的书籍、报刊和文章中,统计各个字母出现的频率。例如,e出现的次数最多,其次
是t,a,o,I等等。破译者通过对密文中各字母出现频率的分析,结合自然语言的字母频
率特征,就可以将该密码体制破译。
鉴于单表置换密码体制具有这样的攻击弱点,人们自然就会想办法对其进行改进,
来弥补这个弱点,增加抗攻击能力。法国密码学家维吉尼亚于1586年提出一个种多表式
密码,即一个明文字母可以表示成多个密文字母。其原理是这样的:给出密钥
K=k[1]k[2]…k[n],若明文为M=m[1]m[2]…m[n],则对应的密文为C=c[1]c[2]…c[n]。
其中C[i]=(m[i]+k[i]) mod 26。例如,若明文M为data security,密钥k=best,将明
文分解为长为4的序列data security,对每4个字母,用k=best加密后得密文为
C=EELT TIUN SMLR
从中可以看出,当K为一个字母时,就是凯撒密码。而且容易看出,K越长,保密程
度就越高。显然这样的密码体制比单表置换密码体制具有更强的抗攻击能力,而且其加
密、解密均可用所谓的维吉尼亚方阵来进行,从而在操作上简单易行。该密码可用所谓
的维吉尼亚方阵来进行,从而在操作上简单易行。该密码曾被认为是三百年内破译不了
的密码,因而这种密码在今天仍被使用着。
古典密码的发展已有悠久的历史了。尽管这些密码大都比较简单,但它在今天仍有
其参考价值。
④ 换位加密法的详细简介
重新排列明文中的字母位置的加密法。
密钥排列顺序:
比如,我要对“COMMAND1”加密,密钥是“ABCD”,可以列出一个表格:
COMMAND1
ABCDABCD
就是用ABCD分别对上这个词语,不够就循环对上,就像这样,然后看到他们对应的字母:A对应C和 A,B对应O和N,C对应M和D,D对应M和1。
然后对他们进行换位加密,也就是将表格的第二行依据密钥排列顺序进行排序:
AABBCCDD
这样,加密后的密文就出来了:CAONMDM1
如果最后一行多出来几个密钥字母,就用A,B,C......代替,之后再进行加密。
比较经典的是柱形的换位加密
比如说明文是: WE ARE DISCOVERED. FLEE AT ONCE.
在加密的时候,首先确定长度和顺序,比如确定长度是6个一排,加密后顺序是6 3 2 4 1 5,于是开始加密:
6 3 2 4 1 5
W E A R E D
I S C O V E
R E D F L E
E A T O N C
E
得到像这样的
于是得到密文:EVLNA CDTES EAROF ODEEC WIREE
⑤ 锁眼是圆形钥匙是一个圆柱形的锁叫什么锁
智能锁的钥匙是圆形的,锁是圆柱型的。
⑥ 古典加密技术中最基本的两种算法是什么
替代算法和置换移位法。
1.替代算法
替代算法指的是明文的字母由其他字母或数字或符号所代替。最着名的替代算法是恺撒密码。凯撒密码的原理很简单,其实就是单字母替换。我们看一个简单的例子:
明文:abcdefghijklmnopq
密文:defghijklmnopqrst
若明文为student,对应的密文则为vwxghqw 。在这个一一对应的算法中,恺撒密码将字母表用了一种顺序替代的方法来进行加密,此时密钥为3,即每个字母顺序推后3个。由于英文字母为26个,因此恺撒密码仅有26个可能的密钥,非常不安全。
为了加强安全性,人们想出了更进一步的方法:替代时不是有规律的,而是随机生成一个对照表。
明文:abcdefghijklmnopqrstuvwxyz
密文:xnyahpogzqwbtsflrcvmuekjdI
此时,若明文为student,对应的密文则为 vmuahsm 。这种情况下,解密函数是上面这个替代对照表的一个逆置换。
不过,有更好的加密手段,就会有更好的解密手段。而且无论怎样的改变字母表中的字母顺序,密码都有可能被人破解。由于英文单词中各字母出现的频度是不一样的,通过对字母频度的统计就可以很容易的对替换密码进行破译。为了抗击字母频度分析,随后产生了以置换移位法为主要加密手段的加密方法。
2.置换移位法
使用置换移位法的最着名的一种密码称为维吉尼亚密码。它以置换移位为基础的周期替换密码。
前面介绍的替代算法中,针对所有的明文字母,密钥要么是一个唯一的数,要么则是完全无规律可寻的。在维吉尼亚密码中,加密密钥是一个可被任意指定的字符串。加密密钥字符依次逐个作用于明文信息字符。明文信息长度往往会大于密钥字符串长度,而明文的每一个字符都需要有一个对应的密钥字符,因此密钥就需要不断循环,直至明文每一个字符都对应一个密钥字符。对密钥字符,我们规定密钥字母a,b,c,d……y,z对应的数字n为:0,1,2,3……24,25。每个明文字符首先找到对应的密钥字符,然后根据英文字母表按照密钥字符对应的数字n向后顺序推后n个字母,即可得到明文字符对应的密文字符。
如果密钥字为deceptive , 明文为 wearediscoveredsaveyourself,则加密的过程为:
明文: wearediscoveredsaveyourself
密钥: deceptivedeceptivedeceptive
密文: zicvtwqngrzgvtwavzhcqyglmgj
对明文中的第一个字符w,对应的密钥字符为d,它对应需要向后推3个字母,w,x,y,z,因此其对应的密文字符为z。上面的加密过程中,可以清晰的看到,密钥deceptive被重复使用。
古典密码体制将数学的方法引入到密码分析和研究中。这为现代加密技术的形成和发展奠定了坚实的基础。
⑦ 换位密码的加密方法
加密换位密码通过密钥只需要对明文进行加密,并且重新排列里面的字母位置即可。具体方法如下
1、基于二维数组移位的加密算法
给定一个二维数组的列数,即该二维数组每行可以保存的字符个数。再将明文字符串按行依次排列到该二维数组中。最后按列读出该二维数组中的字符,这样便可得到密文。
2、换位解密算法(基于二维数组移位的解密算法)
先给定一个二维数组的列数,即该二维数组每行可以保存的字符个数,并且这个数应该和加密算法中的一致。接下来将密文字符串按列一次性排列到该二维数组中。最后按行读出该二维数组中的字符即可。
3、换位加密算法
首先按照密钥排列顺序:将想要加密的明文加密,然后列出表格,找出对应的字母,就是密钥。然后对他们进行换位加密,就是将表格的第二行依据密钥排列顺序进行排序以便得到加密后的密文。
(7)柱形换位密码又叫什么扩展阅读
数据加密技术的分类
1、专用密钥
又称为对称密钥或单密钥,加密和解密时使用同一个密钥,即同一个算法。单密钥是最简单方式,通信双方必须交换彼此密钥,当需给对方发信息时,用自己的加密密钥进行加密,而在接收方收到数据后,用对方所给的密钥进行解密。当一个文本要加密传送时,该文本用密钥加密构成密文,密文在信道上传送,收到密文后用同一个密钥将密文解出来,形成普通文体供阅读。
2、对称密钥
对称密钥是最古老的,一般说“密电码”采用的就是对称密钥。由于对称密钥运算量小、速度快、安全强度高,因而如今仍广泛被采用。它将数据分成长度为64位的数据块,其中8位用作奇偶校验,剩余的56位作为密码的长度。首先将原文进行置换,得到64位的杂乱无章的数据组,然后将其分成均等两段;第三步用加密函数进行变换,并在给定的密钥参数条件下,进行多次迭代而得到加密密文。
3、公开密钥
又称非对称密钥,加密和解密时使用不同的密钥,即不同的算法,虽然两者之间存在一定的关系,但不可能轻易地从一个推导出另一个。非对称密钥由于两个密钥(加密密钥和解密密钥)各不相同,因而可以将一个密钥公开,而将另一个密钥保密,同样可以起到加密的作用。公开密钥的加密机制虽提供了良好的保密性,但难以鉴别发送者,即任何得到公开密钥的人都可以生成和发送报文。
4、非对称加密技术
数字签名一般采用非对称加密技术(如RSA),通过对整个明文进行某种变换,得到一个值,作为核实签名。接收者使用发送者的公开密钥对签名进行解密运算,如其结果为明文,则签名有效,证明对方的身份是真实的。数字签名不同于手写签字,数字签名随文本的变化而变化,手写签字反映某个人个性特征,是不变的;数字签名与文本信息是不可分割的,而手写签字是附加在文本之后的,与文本信息是分离的。
⑧ 密码学当中有什么类型的密码
我知道的有一种叫做双重密码,即a君加密后给b君,之后b 君在加密后还给a君,之后a君解开自己的密后,还给b君,b君解开自己的密后即可知道a君的情报。这样可以避免密钥的传递,有效提高安全性,现在的加密方法多用多重加密即此方法的变种,计算机中也有所运用。
⑨ 换位密码的举例
举例:周期为e的换位将明文字母划分。
换位密码就是一种早期的加密方法,与明文的字母保持相同,区别是顺序被打乱了。
古典密码:
从远古到1949年香农发表《保密系统的通信理论》,这期间人类所使用的密码均称为古典密码,本文主要介绍三种古典密码,分别为置换密码,代换密码和轮换密码。
置换密码(又称为换位密码):
是指明文中各字符的位置次序重新排列得到密文的一种密码体制。
特点:保持明=文中所有的字符不变,只是利用置换打乱明文字符的位置和次序。
置换定义:有限集X上的运算σ:X→X,σ是一个双射函数,那么称σ为一个置换。
即任意x∈X,存在唯一的x’∈X,使得σ(x)=x’。
解密的时候会用到逆置换σ’,即任意x’∈X,存在唯一的x∈X,使得σ’(x’)=x且满足σσ’=I。
对置换有了一个基本的认识之后我们来谈一下置换密码,置换密码有两种,一种为列置换密码,一种为周期置换密码。
列置换密码:
列置换密码,顾名思义,按列换位并且按列读出明文序列得到密文,具体加密步骤如下:
将明文p以固定分组长度m按行写出nxm阶矩阵(若不m倍数,空余部分空格补充)。
按(1,2,3…m)的置换σ交换列的位置,σ为密钥。
把新得到的矩阵按列的顺序依次读出得到密文c。
解密过程如下:
将密文c以固定的长度n按列写成nxm阶矩阵。
按逆矩阵σ’交换列的位置。
把矩阵按着行依次读出为明文。
周期置换:
周期变换密码是将明文P按固定长度m分组,然后对每组的字符串按置换σ重新排列位置从而得到密文。
周期排列与列排列思想是一致的,只不过列排列是以矩阵的形式整列换位置,而周期是在分组以后对每组分别变换。懂得列排列就可以很容易地理解周期排列。
代换密码(又称为替代密码):
就是讲明文中的每个字符替代成密文中的另一个字符,替代后的各个字母保持原来的位置,在对密文进行逆替换就可以恢复出明文。
代换密码有分为单表代换密码和多表代换密码。
单表代换密码我们分别介绍凯撒密码和仿射密码。
凯撒密码:
凯撒密码依据凯撒密码代换表对26个英文字母进行替换。
⑩ 密码子表是否与第三个字母无关
(1)密码学的发展历程
密码学是一门古老而深奥的学科,是结合数学、计算机科学、电子与通信等诸多学科于一体的交叉学科,是研究信息系统安全保密的一门科学。密码学主要包括密码编码学和密码分析学两个分支,其中密码编码学的主要目的是寻求保证信息保密性或仁整形的方法,密码分析学的主要目的是研究加密消息的破译或消息的伪造。密码学经历了从古代密码学到现代密码学的演变。
最早将现代密码学概念运用于实际的是Caesar大帝,他是古罗马帝国末期着名的统帅和政治家。Caesar发明了一种简单的加密算法把他的信息加密用于军队传递,后来被称为Caesar密码。它是将字母按字母表的顺序排列,并且最后一个字母与第一个字母相连。加密方法是将明文中的每个字母用其后边的第三个字母代替,就变成了密文。
替代密码的基本思想,是将明文中的每个字母用此字符在字母表中后面第 k个字母替代,加密过程可以表示为函数E(m)=(m+k) mod n。其中:m 为明文字母在字母表中的位置数,n 为字母表中的字母个数,k 为密钥,E(m)为密文字母在字母表中对应的位置数。其解密过程可以表示为函数E(m)=(m-k) mod n。
置换密码的基本思想,不改变明文字符,只是将字符在明文中的排列顺序改变,从而实现明文信息的加密,又称为换位密码。矩阵换位法是实现置换密码的一种常用方法,它将明文中的字母按照给的顺序安排在一个矩阵中,然后根据密钥提供的顺序重新组合矩阵中字母,从而形成密文。
第一阶段:古代―1949年
这阶段的密码技术可以说是一种艺术,而不是一种科学,密码学专家常常是凭知觉和信念来进行密码设计和分析,而不是推理和证明,没有形成密码学的系统理论。这一阶段设计的密码称为经典密码或古典密码,并且密码算法在现代计算机技术条件下都是不安全的。
第二阶段:1949―1975年
1949年C.E.Shannon(香农)发表在《贝尔实验室技术杂志》上的《保密系统的信息理论(Communication Theory of Secrecy System)》为私钥密码体系(对称加密)建立了理论基础,从此密码学成为一门科学。图3-3为Shannon提出的保密通信模型。密码学直到今天仍具有艺术性,是具有艺术性的一门科学。这段时期密码学理论的研究工作进展不大。1967年David Kahn发表了《The Code Breakers(破译者)》一书,详尽地阐述了密码学的发展和历史,使人们开始了解和接触密码。1976年,Pfister(菲斯特)和美国国家安全局NSA(National Security Agency)一起制定了数据加密标准(Data Encryption Standard,DES),这是一个具有深远影响的分组密码算法。
第三阶段:1976年到~
1976年Diffie和Hellman发表的文章“密码学发展的新方向”导致了密码学上的一场革命,他们首先证明了在发送端和接收端无密钥传输的保密通信是可能的,从而开创了公钥密码学的新纪元。从此,密码开始充分发挥它的商用价值和社会价值。1978年,在ACM通信中,Rivest、Shamir和Adleman公布了RSA密码体系,这是第一个真正实用的公钥密码体系,可以用于公钥加密和数字签名。由于RSA算法对计算机安全和通信的巨大贡献,该算法的3个发明人因此获得计算机界的诺贝尔奖—图灵奖(A.M.Turing Award)。在EuroCrypt’91年会上,中国旅居瑞士学者来学嘉(X.J.Lai)和James L. Massey提出了IDEA,成为分组密码发展史上的又一个里程碑。
3.1.2 密码学的基本知识
密码学的基本目的是使得两个在不安全信道中通信的人,通常称为Alice和Bob,以一种使他们的敌手Oscar不能明白和理解通信内容的方式进行通信。不安全信道在实际中是普遍存在的,例如电话线或计算机网络。Alice发送给Bob的信息,通常称为明文(plaintext),例如英文单词、数据或符号。Alice使用预先商量好的密钥(key)对明文进行加密,加密过的明文称为密文(ciphertext),Alice将密文通过信道发送给Bob。对于敌手Oscar来说,他可以窃听到信道中Alice发送的密文,但是却无法知道其所对应的明文;而对于接收者Bob,由于知道密钥,可以对密文进行解密,从而获得明文。图3-4给出加密通信的基本过程,加密算法E,解密算法D,明文M,密文C;要传输明文M,首先要加密得到密文C,即C=E(M),接受者收到C后,要对其进行解密,即D(C)=M,为了保证将明文恢复,要求D(E(M))=M。
(2) 基本概念
明文消息(Plaintext):未加密的原消息,简称明文。
密文消息(Ciphertext):加密后的消息,简称密文。
加密(Encryption):明文到密文的变换过程。
解密(Decryption):密文到明文的恢复过程。
加密算法(Encryption Algorithm):对明文进行加密时所采用的一组规则或变换。
解密算法(Decryption Algorithm):对密文进行解密时所采用的一组规则或变换。
密码算法强度(Algorithm Strength):对给定密码算法的攻击难度。
密钥(Key):加解密过程中只有发送者和接收者知道的关键信息,分为加密密钥(Encryption Key)和解密密钥(Decryption Key)。
密码分析(Cryptanalysis):虽然不知道系统所用的密钥,但通过分析可能从截获的密文中推断出原来的明文,这一过程称为密码分析。
一个密码系统(或称为密码体制,Cryptosystem)由加密算法、解密算法、明文空间(全体明文的集合)、密文空间(全体密文的集合)和密钥空间(全体密钥的集合)组成。
什么是密码学?密码学(Cryptology)是研究如何实现秘密通信的科学,包含密码编码学和密码分析学。密码编码学(Cryptography)是研究对信息进行编码以实现信息隐蔽;密码分析学(Cryptanalytics)是研究通过密文获取对应的明文信息。
(3) 密码技术的基本应用
①用加密来保护信息。利用密码变换将明文变换成只有合法者才能恢复的密文,这是密码的最基本的功能。利用密码技术对信息进行加密是最常用的安全交易手段。
②采用密码技术对发送信息进行验证。为防止传输和存储的消息被有意或无意地篡改,采用密码技术对消息进行运算生成消息验证码(MAC),附在消息之后发出或与信息一起存储,对信息进行认证。它在票据防伪中具有重要应用(如税务的金税系统和银行的支付密码器)。
③数字签名。在信息时代,电子信息的收发使我们过去所依赖的个人特征都被数字代替,数字签名的作用有两点:一是接收方可以发送方的真实身份,且发送方事后不能否认发送国该报文这一事实;二是发送方或非法者不能伪造、篡改报文。数字签名并非是用手书签名的图形标志,二是采用双重加密的方法来防伪、防赖。根据采用的加密技术不同,数字签名有不同的种类,如私用密钥的数字签名、公开密钥的数字签名、只需签名的数字签名、数字摘要的数字签名等。
④身份识别。当用户登录计算机系统或者建立最初的传输连接时,用户需要证明他的身份,典型的方法是采用口令机制来确认用户的真实身份。此外,采用数字签名也能够进行身份鉴别,数字证书用电子手段来证实一个用户的身份和对网络资源的访问权限,是网络正常运行锁屏必须的。在电子商务系统中,所有参与活动的实体都需要用数字证书来表明自己的身份。
3. 密码学的体制
按密钥使用的数量不同,将密码体制分为对称密码体系 (symmetric)(又称为单钥密码)和非对称密码(asymmetric)(又称为公钥密码)。
在对称密码体系中,加密密钥和解密密钥相同,彼此之间很容易相互确定。对于对称密码而言,按照明文加密方式的不同,又可分为分组密码(block cipher)和流密码(stream cipher)。流密码是指将明文消息按字符逐位地进行加密。分组密码是指将明文消息分组(每组含有多个字符)逐组地进行加密。在公钥密码体系中,加密密钥(又称为公钥,Public Key)和解密密钥(又称为私钥,Private Key)不同,从一个密钥很难推出另一个密钥,可将加密能力和解密能力分开,不需要通过专门的安全通道来传送密钥。大多数公钥密码属于分组密码。
(4) 对密码的攻击
密文分析者在不知道密钥的情况下,从密文恢复出明文。成功的密码分析不仅能够恢复出消息明文和密钥,而且能够发现密码体制的弱点,从而控制通信。常见的密码分析方法有以下四类。
①唯密文攻击(Ciphertext only)。密码破译者除了拥有截获的密文,以及对密码体制和密文信息的一般了解外,没有什么其它可以利用的信息用于破译密码。在这种情况下进行密码破译是最困难的,经不起这种攻击的密码体制被认为是完全不保密的。
②已知明文攻击(Known plaintext)。密码破译者不仅掌握了相当数量的密文,还有一些已知的明---密文对(通过各种手段得到的)可供利用。现代的密码体制(基本要求)不仅要经受得住唯密文攻击,而且要经受得住已知明文攻击。
③选择明文攻击(Chosen plaintext)。密码破译者不仅能够获得一定数量的明---密文对,还可以用它选择的任何明文,在同一未知密钥的情况下能加密相应的密文。密码破译者暂时控制加密机。
④选择密文攻击(Chosen ciphertext) 。密码破译者能选择不同的被加密的密文,并还可得到对应的解密的明文,据此破译密钥及其它密文。密码破译者暂时控制解密机。
一个好的密码系统应该满足下列要求:①系统即使理论上达不到不可破,实际上也要做到不可破。也就是说,从截获的密文或已知的明文—密文对,要确定密钥或任何明文在计算上是不可行的。②系统的保密性是依赖于密钥的,而不是依赖于对加密体制或算法的保密。③加密和解密算法适用于密钥空间的所有元素。④系统既易于实现又便于使用。