当前位置:首页 » 密码管理 » 公钥密码是什么技术有几个密钥
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

公钥密码是什么技术有几个密钥

发布时间: 2022-09-19 18:49:28

⑴ 公钥加密解密体系包括哪些

公钥加密解密体系包括:

(1)明文空间M,它是全体明文的集合。

(2)密文空间C,它是全体密文的集合。

(3)密钥空间K,它是全体密钥的集合。其中每一个密钥K均由加密密钥和解密密钥组成,即。

(4)加密算法E,它是一族由M到C的加密变换,对于每一个具体的,则E就确定出一个具体的加密函数,把M加密成密文C。

(5)解密算法D,它是一族由C到M的解密变换,对于每一个确定的,则D就确定出一个具体的解密函数。

公钥加密体制是不对称密钥,优点是运算速度快,密钥产生容易。

⑵ 什么是公钥加密

什么是公钥加密

公钥加密,也叫非对称(密钥)加密(public key encryption),属于通信科技下的网络安全二级学科,指的是由对应的一对唯一性密钥(即公开密钥和私有密钥)组成的加密方法。它解决了密钥的发布和管理问题,是目前商业密码的核心。在公钥加密体制中,没有公开的是明文,公开的是密文,公钥,算法。
常见算法
RSA、ElGamal、背包算法、Rabin(Rabin的加密法可以说是RSA方法的特例)、Diffie-Hellman (D-H) 密钥交换协议中的公钥加密算法、Elliptic Curve Cryptography(ECC,椭圆曲线加密算法)。使用最广泛的是RSA算法(由发明者Rivest、Shmir和Adleman姓氏首字母缩写而来)是着名的公开金钥加密算法,ElGamal是另一种常用的非对称加密算法。

缘起
该思想最早由雷夫·莫寇(Ralph C. Merkle)在1974年提出,之后在1976年。狄菲(Whitfield Diffie)与赫尔曼(Martin Hellman)两位学者以单向函数与单向暗门函数为基础,为发讯与收讯的两方创建金钥。

非对称
是指一对加密密钥与解密密钥,这两个密钥是数学相关,用某用户密钥加密后所得的信息,只能用该用户的解密密钥才能解密。如果知道了其中一个,并不能计算出另外一个。因此如果公开了一对密钥中的一个,并不会危害到另外一个的秘密性质。称公开的密钥为公钥;不公开的密钥为私钥。

如果加密密钥是公开的,这用于客户给私钥所有者上传加密的数据,这被称作为公开密钥加密(狭义)。例如,网络银行的客户发给银行网站的账户操作的加密数据。

如果解密密钥是公开的,用私钥加密的信息,可以用公钥对其解密,用于客户验证持有私钥一方发布的数据或文件是完整准确的,接收者由此可知这条信息确实来自于拥有私钥的某人,这被称作数字签名,公钥的形式就是数字证书。例如,从网上下载的安装程序,一般都带有程序制作者的数字签名,可以证明该程序的确是该作者(公司)发布的而不是第三方伪造的且未被篡改过(身份认证/验证)。

⑶ 加密技术06-加密总结

对称密码是一种用相同的密钥进行加密和解密的技术,用于确保消息的机密性。在对称密码的算法方面,目前主要使用的是 AES。尽管对称密码能够确保消息的机密性,但需要解决将解密密钥配送给接受者的密钥配送问题。

主要算法

DES

数据加密标准(英语:Data Encryption Standard,缩写为 DES)是一种对称密钥加密块密码算法,1976年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),随后在国际上广泛流传开来。它基于使用56位密钥的对称算法。

DES现在已经不是一种安全的加密方法,主要因为它使用的56位密钥过短。

原理请参考: 加密技术01-对称加密-DES原理

3DES

三重数据加密算法(英语:Triple Data Encryption Algorithm,缩写为TDEA,Triple DEA),或称3DES(Triple DES),是一种对称密钥加密块密码,相当于是对每个数据块应用三次DES算法。由于计算机运算能力的增强,原版DES由于密钥长度过低容易被暴力破解;3DES即是设计用来提供一种相对简单的方法,即通过增加DES的密钥长度来避免类似的攻击,而不是设计一种全新的块密码算法。

注意:有3个独立密钥的3DES的密钥安全性为168位,但由于中途相遇攻击(知道明文和密文),它的有效安全性仅为112位。

3DES使用“密钥包”,其包含3个DES密钥,K1,K2和K3,均为56位(除去奇偶校验位)。

密文 = E k3 (D k2 (E k1 (明文)))

而解密则为其反过程:

明文 = D k3 (E k2 (D k1 (密文)))

AES

AES 全称 Advanced Encryption Standard(高级加密标准)。它的出现主要是为了取代 DES 加密算法的,因为 DES 算法的密钥长度是 56 位,因此算法的理论安全强度是 56 位。于是 1997 年 1 月 2 号,美国国家标准技术研究所宣布什望征集高级加密标准,用以取代 DES。AES 也得到了全世界很多密码工作者的响应,先后有很多人提交了自己设计的算法。最终有5个候选算法进入最后一轮:Rijndael,Serpent,Twofish,RC6 和 MARS。最终经过安全性分析、软硬件性能评估等严格的步骤,Rijndael 算法获胜。

AES 密码与分组密码 Rijndael 基本上完全一致,Rijndael 分组大小和密钥大小都可以为 128 位、192 位和 256 位。然而 AES 只要求分组大小为 128 位,因此只有分组长度为 128 位的 Rijndael 才称为 AES 算法。

本文 AES 默认是分组长度为 128 位的 Rijndael 算法

原理请参考: 加密技术02-对称加密-AES原理

算法对比

公钥密码是一种用不同的密钥进行加密和解密的技术,和对称密码一样用于确保消息的机密性。使用最广泛的一种公钥密码算法是 RAS。和对称密码相比,公钥密码的速度非常慢,因此一般都会和对称密码一起组成混合密码系统来使用。公钥密码能够解决对称密码中的密钥交换问题,但存在通过中间人攻击被伪装的风险,因此需要对带有数字签名的公钥进行认证。

公钥密码学的概念是为了解决对称密码学中最困难的两个问题而提出

应用场景

几个误解

主要算法

Diffie–Hellman 密钥交换

迪菲-赫尔曼密钥交换(英语:Diffie–Hellman key exchange,缩写为D-H) 是一种安全协议。它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道创建起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。公钥交换的概念最早由瑞夫·墨克(Ralph C. Merkle)提出,而这个密钥交换方法,由惠特菲尔德·迪菲(Bailey Whitfield Diffie)和马丁·赫尔曼(Martin Edward Hellman)在1976年发表,也是在公开文献中发布的第一个非对称方案。

Diffie–Hellman 算法的有效性是建立在计算离散对数很困难的基础上。简单地说,我们可如下定义离散对数。首先定义素数 p 的本原跟。素数 p 的本原根是一个整数,且其幂可以产生 1 到 p-1 之间所有整数,也就是说若 a 是素数 p 的本原根,则

a mod p, a 2 mod p,..., a p-1 mod p 各不相同,它是整数 1 到 p-1 的一个置换。

对任意整数 b 和素数 p 的本原跟 a,我们可以找到唯一的指数 i 使得

b ≡ a i (mod p) 其中 0 <= i <= p-1

其中 a, b, p 这些是公开的,i 是私有的,破解难度就是计算 i 的难度。

Elgamal

1985年,T.Elgamal 提出了一种基于离散对数的公开密钥体制,一种与 Diffie-Hellman 密钥分配体制密切相关。Elgamal 密码体系应用于一些技术标准中,如数字签名标准(DSS) 和 S/MIME 电子邮件标准。

基本原理就是利用 Diffie–Hellman 进行密钥交换,假设交换的密钥为 K,然后用 K 对要发送的消息 M,进行加密处理。

所以 Elgamal 的安全系数取决于 Diffie–Hellman 密钥交换。

另外 Elgamal 加密后消息发送的长度会增加一倍。

RSA

MIT 的罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)在 1977 年提出并于 1978 年首次发表的算法。RSA 是最早满足要求的公钥算法之一,自诞生日起就成为被广泛接受且被实现的通用的公钥加密方法。

RSA 算法的有效性主要依据是大数因式分解是很困难的。

原理请参考: 加密技术03-非对称加密-RSA原理

ECC

大多数使用公钥密码学进行加密和数字签名的产品和标准都使用 RSA 算法。我们知道,为了保证 RSA 使用的安全性,最近这些年来密钥的位数一直在增加,这对使用 RSA 的应用是很重的负担,对进行大量安全交易的电子商务更是如此。近来,出现的一种具有强大竞争力的椭圆曲线密码学(ECC)对 RSA 提出了挑战。在标准化过程中,如关于公钥密码学的 IEEE P1363 标准中,人们也已考虑了 ECC。

与 RSA 相比,ECC 的主要诱人之处在于,它可以使用比 RSA 短得多的密钥得到相同安全性,因此可以减少处理负荷。

ECC 比 RSA 或 Diffie-Hellman 原理复杂很多,本文就不多阐述了。

算法对比

公钥密码体制的应用

密码分析所需计算量( NIST SP-800-57 )

注:L=公钥的大小,N=私钥的大小

散列函数是一种将长消息转换为短散列值的技术,用于确保消息的完整性。在散列算法方面,SHA-1 曾被广泛使用,但由于人们已经发现了一些针对该算法理论上可行的攻击方式,因此该算法不应再被用于新的用途。今后我们应该主要使用的算法包括目前已经在广泛使用的 SHA-2,以及具有全新结构的 SHA-3 算法。散列函数可以单独使用,也可以作为消息认证、数字签名以及伪随机数生成器等技术的组成元素来使用。

主要应用

主要算法

MD5

MD5消息摘要算法(英语:MD5 Message-Digest Algorithm),一种被广泛使用的密码散列函数,可以产生出一个 128 位( 16 字节,被表示为 32 位十六进制数字)的散列值(hash value),用于确保信息传输完整一致。MD5 由美国密码学家罗纳德·李维斯特(Ronald Linn Rivest)设计,于 1992 年公开,用以取代 MD4 算法。这套算法的程序在 RFC 1321 中被加以规范。

2009年,中国科学院的谢涛和冯登国仅用了 2 20.96 的碰撞算法复杂度,破解了MD5的碰撞抵抗,该攻击在普通计算机上运行只需要数秒钟。2011年,RFC 6151 禁止MD5用作密钥散列消息认证码。

原理请参考: 加密技术04-哈希算法-MD5原理

SHA-1

SHA-1(英语:Secure Hash Algorithm 1,中文名:安全散列算法1)是一种密码散列函数,美国国家安全局设计,并由美国国家标准技术研究所(NIST)发布为联邦资料处理标准(FIPS)。SHA-1可以生成一个被称为消息摘要的160位(20字节)散列值,散列值通常的呈现形式为40个十六进制数。

2005年,密码分析人员发现了对SHA-1的有效攻击方法,这表明该算法可能不够安全,不能继续使用,自2010年以来,许多组织建议用SHA-2或SHA-3来替换SHA-1。Microsoft、Google以及Mozilla都宣布,它们旗下的浏览器将在2017年停止接受使用SHA-1算法签名的SSL证书。

2017年2月23日,CWI Amsterdam与Google宣布了一个成功的SHA-1碰撞攻击,发布了两份内容不同但SHA-1散列值相同的PDF文件作为概念证明。

2020年,针对SHA-1的选择前缀冲突攻击已经实际可行。建议尽可能用SHA-2或SHA-3取代SHA-1。

原理请参考: 加密技术05-哈希算法-SHA系列原理

SHA-2

SHA-2,名称来自于安全散列算法2(英语:Secure Hash Algorithm 2)的缩写,一种密码散列函数算法标准,由美国国家安全局研发,由美国国家标准与技术研究院(NIST)在2001年发布。属于SHA算法之一,是SHA-1的后继者。其下又可再分为六个不同的算法标准,包括了:SHA-224、SHA-256、SHA-384、SHA-512、SHA-512/224、SHA-512/256。

SHA-2 系列的算法主要思路和 SHA-1 基本一致

原理请参考: 加密技术05-哈希算法-SHA系列原理

SHA-3

SHA-3 第三代安全散列算法(Secure Hash Algorithm 3),之前名为 Keccak 算法。

Keccak 是一个加密散列算法,由 Guido Bertoni,Joan Daemen,Michaël Peeters,以及 Gilles Van Assche 在 RadioGatún 上设计。

2012年10月2日,Keccak 被选为 NIST 散列函数竞赛的胜利者。SHA-2 目前没有出现明显的弱点。由于对 MD5、SHA-0 和 SHA-1 出现成功的破解,NIST 感觉需要一个与之前算法不同的,可替换的加密散列算法,也就是现在的 SHA-3。

SHA-3 在2015年8月5日由 NIST 通过 FIPS 202 正式发表。

原理请参考: 加密技术05-哈希算法-SHA系列原理

算法对比

⑷ 什么是公钥加密解释加密技术如何保护信息

公钥加密,也叫非对称(密钥)加密(public key encryption),属于通信科技下的网络安全二级学科,指的是由对应的一对唯一性密钥(即公开密钥和私有密钥)组成的加密方法。它解决了密钥的发布和管理问题,是商业密码的核心。在公钥加密体制中,没有公开的是私钥,公开的是公钥。

⑸ 公钥密码→RSA详解

在对称密码中,由于加密和解密的密钥是相同的,因此必须向接收者配送密钥。用于解密的密钥必须被配送给接收者,这一问题称为 密钥配送问题 ,如果使用公钥密码,则无需向接收者配送用于解密的密钥,这样就解决了密钥配送问题。可以说公钥密码是密码学历史上最伟大的发明。

解决密钥配送问题的方法

在人数很多的情况下,通信所需要的密钥数量会增大,例如:1000名员工中每一个人都可以和另外999个进行通信,则每个人需要999个通信密钥,整个密钥数量:
1000 x 999 ÷ 2 = 499500
很不现实,因此此方法有一定的局限性

在Diffic-Hellman密钥交换中,进行加密通信的双方需要交换一些信息,而这些信息即便被窃听者窃听到也没有问题(后续文章会进行详解)。

在对称密码中,加密密钥和解密密钥是相同的,但公钥密码中,加密密钥和解密密钥却是不同的。只要拥有加密密钥,任何人都可以加密,但没有解密密钥是无法解密的。

公钥密码中,密钥分为加密密钥(公钥)和解密密钥(私钥)两种。

公钥和私钥是一一对应的,一对公钥和私钥统称为密钥对,由公钥进行加密的密文,必须使用与该公钥配对的私钥才能够解密。密钥对中的两个密钥之间具有非常密切的关系——数学上的关系——因此公钥和私钥是不能分别单独生成的。

发送者:Alice      接收者:Bob      窃听者:Eve
通信过程是由接收者Bob来启动的

公钥密码解决了密钥配送的问题,但依然面临着下面的问题

RSA是目前使用最广泛的公钥密码算法,名字是由它的三位开发者,即Ron Rivest、Adi Shamir和Leonard Adleman的姓氏的首字母组成的(Rivest-Shamir-Adleman)。RSA可以被使用公钥密码和数字签名(此文只针对公钥密码进行探讨,数字签名后续文章敬请期待)1983年在美国取得了专利,但现在该专利已经过期。

在RSA中,明文、密钥和密文都是数字,RSA加密过程可以用下列公式来表达

密文 = 明文 E mod N

简单的来说,RSA的密文是对代表明文的数字的 E 次方求mod N 的结果,换句话说:将明文和自己做 E 次乘法,然后将结果除以 N 求余数,这个余数就是密文。

RSA解密过程可以用下列公式来表达

明文 = 密文 D mod N
对表示密文的数字的 D 次方求mod N 就可以得到明文,换句话说:将密文和自己做 D 次乘法,在对其结果除以 N 求余数,就可以得到明文
此时使用的数字 N 和加密时使用的数字 N 是相同的,数 D 和数 N 组合起来就是RSA的解密密钥,因此 D N 的组合就是私钥 。只要知道 D N 两个数的人才能够完成解密的运算

根据加密和解密的公式可以看出,需要用到三个数—— E D N 求这三个数就是 生成密钥对 ,RSA密钥对的生成步骤如下:

准备两个很大的质数 p q ,将这两个数相乘,结果就是 N
N = p x q

L p-1 q-1 的最小公倍数,如果用lcm( X , Y )来表示 “ X Y 的最小公倍数” 则L可以写成下列形式
L = lcm ( p - 1, q - 1)

E 是一个比1大、比 L 小的数。 E L 的最大公约数必须为1,如果用gcd( X , Y )来表示 X Y 的最大公约数,则 E L 之间存在下列关系:
1 < E < L
gcd( E , L ) = 1 (是为了保证一定存在解密时需要使用的数 D

1 < D < L
E x D mod L = 1

p = 17
q = 19
N = p x q = 17 x 19 = 323

L = lcm ( p - 1, q - 1) = lcm (16,18) = 144

gcd( E , L ) = 1
满足条件的 E 有很多:5,7,11,13,17,19,23,25,29,31...
这里选择5来作为 E ,到这里我们已经知道 E = 5    N = 323 这就是公钥

E x D mod L = 1
D = 29 可以满足上面的条件,因此:
公钥: E = 5     N = 323
私钥: D = 29    N = 323

要加密的明文必须是小于 N 的数,这是因为在加密运算中需要求 mod N 假设加密的明文是123
明文 E mod N = 123 5 mod 323 = 225(密文)

对密文225进行解密
密文 D mod N = 225 29 mod 323 = 225 10 x 225 10 x 225 9 mod 323 = (225 10 mod 323) x (225 10 mod 323) x (225 9 mod 323) = 16 x 16 x 191 mod 323 = 48896 mod 323 = 123(明文)

如果没有mod N 的话,即:

明文 = 密文 D mod N

通过密文求明文的难度不大,因为这可以看作是一个求对数的问题。
但是,加上mod N 之后,求明文就变成了求离散对数的问题,这是非常困难的,因为人类还没有发现求离散对数的高效算法。

只要知道 D ,就能够对密文进行解密,逐一尝试 D 来暴力破译RSA,暴力破解的难度会随着D的长度增加而加大,当 D 足够长时,就不能再现实的时间内通过暴力破解找出数 D

目前,RSA中所使用的 p q 的长度都是1024比特以上, N 的长度为2048比特以上,由于 E D 的长度可以和N差不多,因此要找出 D ,就需要进行2048比特以上的暴力破解。这样的长度下暴力破解找出 D 是极其困难的

E x D mod L = 1           L = lcm ( p - 1, q - 1)
E 计算 D 需要使用 p q ,但是密码破译者并不知道 p q

对于RSA来说,有一点非常重要,那就是 质数 p q 不能被密码破译这知道 。把 p q 交给密码破译者与把私钥交给密码破译者是等价的。

p q 不能被密码破译者知道,但是 N = p x q 而且 N 是公开的, p q 都是质数,因此由 N p q 只能通过 N 进行质因数分解 ,所以说:
一旦发现了对大整数进行质因数分解的高效算法,RSA就能够被破译

这种方法虽然不能破译RSA,但却是一种针对机密性的有效攻击。

所谓中间人攻击,就是主动攻击者Mallory混入发送者和接收者的中间,对发送者伪装成接收者,对接收者伪装成发送者的攻击,在这里,Mallory就是“中间人”

这种攻击不仅针对RSA,而是可以针对任何公钥密码。在这个过程中,公钥密码并没有被破译,所有的密码算法也都正常工作并确保了机密性。然而,所谓的机密性并非在Alice和Bob之间,而是在Alice和Mallory之间,以及Mallory和Bob之间成立的。 仅靠公钥密码本身,是无法防御中间人攻击的。

要防御中间人攻击,还需要一种手段来确认所收到的公钥是否真的属于Bob,这种手段称为认证。在这种情况下,我们可以使用公钥的 证书 (后面会陆续更新文章来进行探讨)

网络上很多服务器在收到格式不正确的数据时都会向通信对象返回错误消息,并提示“这里的数据有问题”,然而,这种看似很贴心的设计却会让攻击者有机可乘。 攻击者可以向服务器反复发送自己生成的伪造密文,然后分析返回的错误消息和响应时间获得一些关于密钥和明文的信息。

为了抵御这种攻击,可以对密文进行“认证”,RSA-OAEP(最优非对称加密填充)正是基于这种思路设计的一种RSA改良算法。

RSA-OAEP在加密时会在明文前面填充一些认证信息,包括明文的散列值以及一定数量的0,然后用RSA进行加密,在解密的过程中,如果解密后的数据的开头没有找到正确的认证信息,则可以判定有问题,并返回固定的错误消息(重点是,不能将具体的错误内容告知开发者)
RSA-OAEP在实际应用中,还会通过随机数使得每次生成的密文呈现不同的排列方式,从而进一步提高安全性。

随着计算机技术的进步等,以前被认为是安全的密码会被破译,这一现象称为 密码劣化 ,针对这一点:

⑹ 什么技术需要两个密钥

非对称密码算法需要两个密钥:()和私有密钥。A、对称密钥 B、公开密钥 C、传统密钥 D、密钥

⑺ 公钥密码系统及RSA公钥算法

公钥密码系统及RSA公钥算法

本文简单介绍了公开密钥密码系统的思想和特点,并具体介绍了RSA算法的理论基础,工作原理和具体实现过程,并通过一个简单例子说明了该算法是如何实现。在本文的最后,概括说明了RSA算法目前存在的一些缺点和解决方法。

关键词:公钥密码体制 , 公钥 ,私钥 ,RSA

§1引言

随着计算机联网的逐步实现,Internet前景越来越美好,全球经济发展正在进入信息经济时代,知识经济初见端倪。计算机信息的保密问题显得越来越重要,无论是个人信息通信还是电子商务发展,都迫切需要保证Internet网上信息传输的安全,需要保证信息安全。信息安全技术是一门综合学科,它涉及信息论、计算机科学和密码学等多方面知识,它的主要任务是研究计算机系统和通信网络内信息的保护方法以实现系统内信息的安全、保密、真实和完整。其中,信息安全的核心是密码技术。密码技术是集数学、计算机科学、电子与通信等诸多学科于一身的交叉学科。它不仅能够保证机密性信息的加密,而且能够实现数字签名、身份验证、系统安全等功能。是现代化发展的重要科学之一。本文将对公钥密码系统及该系统中目前最广泛流行的RSA算法做一些简单介绍。

§2公钥密码系统

要说明公钥密码系统,首先来了解一下不同的加密算法:目前的加密算法按密钥方式可分为单钥密码算法和公钥密码算法。

2.1.单钥密码

又称对称式密码,是一种比较传统的加密方式,其加密运算、解密运算使用的是同样的密钥,信息的发送者和信息的接收者在进行信息的传输与处理时,必须共同持有该密码(称为对称密码)。因此,通信双方都必须获得这把钥匙,并保持钥匙的秘密。

单钥密码系统的安全性依赖于以下两个因素:第一,加密算法必须是足够强的,仅仅基于密文本身去解密信息在实践上是不可能的;第二,加密方法的安全性依赖于密钥的秘密性,而不是算法的秘密性,因此,我们没有必要确保算法的秘密性(事实上,现实中使用的很多单钥密码系统的算法都是公开的),但是我们一定要保证密钥的秘密性。

从单钥密码的这些特点我们容易看出它的主要问题有两点:第一,密钥量问题。在单钥密码系统中,每一对通信者就需要一对密钥,当用户增加时,必然会带来密钥量的成倍增长,因此在网络通信中,大量密钥的产生﹑存放和分配将是一个难以解决的问题。第二,密钥分发问题。单钥密码系统中,加密的安全性完全依赖于对密钥的保护,但是由于通信双方使用的是相同的密钥,人们又不得不相互交流密钥,所以为了保证安全,人们必须使用一些另外的安全信道来分发密钥,例如用专门的信使来传送密钥,这种做法的代价是相当大的,甚至可以说是非常不现实的,尤其在计算机网络环境下,人们使用网络传送加密的文件,却需要另外的安全信道来分发密钥,显而易见,这是非常不智是甚至是荒谬可笑的。

2.2公钥密码

正因为单钥密码系统存在如此难以解决的缺点,发展一种新的﹑更有效﹑更先进的密码体制显得更为迫切和必要。在这种情况下,出现了一种新的公钥密码体制,它突破性地解决了困扰着无数科学家的密钥分发问题,事实上,在这种体制中,人们甚至不用分发需要严格保密的密钥,这次突破同时也被认为是密码史上两千年来自单码替代密码发明以后最伟大的成就。

这一全新的思想是本世纪70年代,美国斯坦福大学的两名学者Diffie和Hellman提出的,该体制与单钥密码最大的不同是:

在公钥密码系统中,加密和解密使用的是不同的密钥(相对于对称密钥,人们把它叫做非对称密钥),这两个密钥之间存在着相互依存关系:即用其中任一个密钥加密的信息只能用另一个密钥进行解密。这使得通信双方无需事先交换密钥就可进行保密通信。其中加密密钥和算法是对外公开的,人人都可以通过这个密钥加密文件然后发给收信者,这个加密密钥又称为公钥;而收信者收到加密文件后,它可以使用他的解密密钥解密,这个密钥是由他自己私人掌管的,并不需要分发,因此又成称为私钥,这就解决了密钥分发的问题。

为了说明这一思想,我们可以考虑如下的类比:

两个在不安全信道中通信的人,假设为Alice(收信者)和Bob(发信者),他们希望能够安全的通信而不被他们的敌手Oscar破坏。Alice想到了一种办法,她使用了一种锁(相当于公钥),这种锁任何人只要轻轻一按就可以锁上,但是只有Alice的钥匙(相当于私钥)才能够打开。然后Alice对外发送无数把这样的锁,任何人比如Bob想给她寄信时,只需找到一个箱子,然后用一把Alice的锁将其锁上再寄给Alice,这时候任何人(包括Bob自己)除了拥有钥匙的Alice,都不能再打开箱子,这样即使Oscar能找到Alice的锁,即使Oscar能在通信过程中截获这个箱子,没有Alice的钥匙他也不可能打开箱子,而Alice的钥匙并不需要分发,这样Oscar也就无法得到这把“私人密钥”。

从以上的介绍可以看出,公钥密码体制的思想并不复杂,而实现它的关键问题是如何确定公钥和私钥及加/解密的算法,也就是说如何找到“Alice的锁和钥匙”的问题。我们假设在这种体制中, PK是公开信息,用作加密密钥,而SK需要由用户自己保密,用作解密密钥。加密算法E和解密算法D也都是公开的。虽然SK与PK是成对出现,但却不能根据PK计算出SK。它们须满足条件:

①加密密钥PK对明文X加密后,再用解密密钥SK解密,即可恢复出明文,或写为:DSK(EPK(X))=X

②加密密钥不能用来解密,即DPK(EPK(X))≠X

③在计算机上可以容易地产生成对的PK和SK。

④从已知的PK实际上不可能推导出SK。

⑤加密和解密的运算可以对调,即:EPK(DSK(X))=X

从上述条件可看出,公开密钥密码体制下,加密密钥不等于解密密钥。加密密钥可对外公开,使任何用户都可将传送给此用户的信息用公开密钥加密发送,而该用户唯一保存的私人密钥是保密的,也只有它能将密文复原、解密。虽然解密密钥理论上可由加密密钥推算出来,但这种算法设计在实际上是不可能的,或者虽然能够推算出,但要花费很长的时间而成为不可行的。所以将加密密钥公开也不会危害密钥的安全。

这种体制思想是简单的,但是,如何找到一个适合的算法来实现这个系统却是一个真正困扰密码学家们的难题,因为既然Pk和SK是一对存在着相互关系的密钥,那么从其中一个推导出另一个就是很有可能的,如果敌手Oscar能够从PK推导出SK,那么这个系统就不再安全了。因此如何找到一个合适的算法生成合适的Pk和SK,并且使得从PK不可能推导出SK,正是迫切需要密码学家们解决的一道难题。这个难题甚至使得公钥密码系统的发展停滞了很长一段时间。

为了解决这个问题,密码学家们考虑了数学上的陷门单向函数,下面,我们可以给出它的非正式定义:

Alice的公开加密函数应该是容易计算的,而计算其逆函数(即解密函数)应该是困难的(对于除Alice以外的人)。许多形式为Y=f(x)的函数,对于给定的自变量x值,很容易计算出函数Y的值;而由给定的Y值,在很多情况下依照函数关系f (x)计算x值十分困难。这样容易计算但难于求逆的函数,通常称为单向函数。在加密过程中,我们希望加密函数E为一个单项的单射函数,以便可以解密。虽然目前还没有一个函数能被证明是单向的,但是有很多单射函数被认为是单向的。

例如,有如下一个函数被认为是单向的,假定n为两个大素数p和q的乘积,b为一个正整数,那么定义f:

f (x )= x b mod n

(如果gcd(b,φ(n))=1,那么事实上这就是我们以下要说的RSA加密函数)

如果我们要构造一个公钥密码体制,仅给出一个单向的单射函数是不够的。从Alice的观点来看,并不需要E是单向的,因为它需要用有效的方式解密所收到的信息。因此,Alice应该拥有一个陷门,其中包含容易求出E的你函数的秘密信息。也就是说,Alice可以有效解密,因为它有额外的秘密知识,即SK,能够提供给你解密函数D。因此,我们称一个函数为一个陷门单向函数,如果它是一个单向函数,并在具有特定陷门的知识后容易求出其逆。

考虑上面的函数f (x) = xb mod n。我们能够知道其逆函数f -1有类似的形式f (x ) = xa mod n,对于合适的取值a。陷门就是利用n的因子分解,有效的算出正确的指数a(对于给定的b)。

为方便起见,我们把特定的某类陷门单向函数计为?。那么随机选取一个函数f属于?,作为公开加密函数;其逆函数f-1是秘密解密函数。那么公钥密码体制就能够实现了。

根据以上关于陷门单向函数的思想,学者们提出了许多种公钥加密的方法,它们的安全性都是基于复杂的数学难题。根据所基于的数学难题,至少有以下三类系统目前被认为是安全和有效的:大整数因子分解系统(代表性的有RSA)、椭园曲线离散对数系统(ECC)和离散对数系统(代表性的有DSA)。

§3 RSA算法

3.1简介

当前最着名、应用最广泛的公钥系统RSA是在1978年,由美国麻省理工学院(MIT)的Rivest、Shamir和Adleman在题为《获得数字签名和公开钥密码系统的方法》的论文中提出的。它是一个基于数论的非对称(公开钥)密码体制,是一种分组密码体制。其名称来自于三个发明者的姓名首字母。它的安全性是基于大整数素因子分解的困难性,而大整数因子分解问题是数学上的着名难题,至今没有有效的方法予以解决,因此可以确保RSA算法的安全性。RSA系统是公钥系统的最具有典型意义的方法,大多数使用公钥密码进行加密和数字签名的产品和标准使用的都是RSA算法。

RSA算法是第一个既能用于数据加密也能用于数字签名的算法,因此它为公用网络上信息的加密和鉴别提供了一种基本的方法。它通常是先生成一对RSA密钥,其中之一是保密密钥,由用户保存;另一个为公开密钥,可对外公开,甚至可在网络服务器中注册,人们用公钥加密文件发送给个人,个人就可以用私钥解密接受。为提高保密强度,RSA密钥至少为500位长,一般推荐使用1024位。

该算法基于下面的两个事实,这些事实保证了RSA算法的安全有效性:

1)已有确定一个数是不是质数的快速算法;

2)尚未找到确定一个合数的质因子的快速算法。

3.2工作原理

1)任意选取两个不同的大质数p和q,计算乘积r=p*q;

2)任意选取一个大整数e,e与(p-1)*(q-1)互质,整数e用做加密密钥。注意:e的选取是很容易的,例如,所有大于p和q的质数都可用。

3)确定解密密钥d:d * e = 1 molo(p - 1)*(q - 1) 根据e、p和q可以容易地计算出d。

4)公开整数r和e,但是不公开d;

5)将明文P (假设P是一个小于r的整数)加密为密文C,计算方法为:

C = Pe molo r

6)将密文C解密为明文P,计算方法为:

P = Cd molo r

然而只根据r和e(不是p和q)要计算出d是不可能的。因此,任何人都可对明文进行加密,但只有授权用户(知道d)才可对密文解密。

3.3简单实例

为了说明该算法的工作过程,我们下面给出一个简单例子,显然我们在这只能取很小的数字,但是如上所述,为了保证安全,在实际应用上我们所用的数字要大的多得多。

例:选取p=3, q=5,则r=15,(p-1)*(q-1)=8。选取e=11(大于p和q的质数),通过d * 11 = 1 molo 8,计算出d =3。

假定明文为整数13。则密文C为

C = Pe molo r

= 1311 molo 15

= 1,792,160,394,037 molo 15

= 7

复原明文P为:

P = Cd molo r

= 73 molo 15

= 343 molo 15

= 13

因为e和d互逆,公开密钥加密方法也允许采用这样的方式对加密信息进行"签名",以便接收方能确定签名不是伪造的。

假设A和B希望通过公开密钥加密方法进行数据传输,A和B分别公开加密算法和相应的密钥,但不公开解密算法和相应的密钥。A和B的加密算法分别是ECA和ECB,解密算法分别是DCA和DCB,ECA和DCA互逆,ECB和DCB互逆。 若A要向B发送明文P,不是简单地发送ECB(P),而是先对P施以其解密算法DCA,再用加密算法ECB对结果加密后发送出去。

密文C为:

C = ECB(DCA(P))

B收到C后,先后施以其解密算法DCB和加密算法ECA,得到明文P:

ECA(DCB(C))

= ECA(DCB(ECB(DCA(P))))

= ECA(DCA(P))/*DCB和ECB相互抵消*/

=

P          /*DCB和ECB相互抵消*/

这样B就确定报文确实是从A发出的,因为只有当加密过程利用了DCA算法,用ECA才能获得P,只有A才知道DCA算法,没 有人,即使是B也不能伪造A的签名。

3.4优缺点

3.4.1优点

RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。该算法的加密密钥和加密算法分开,使得密钥分配更为方便。它特别符合计算机网络环境。对于网上的大量用户,可以将加密密钥用电话簿的方式印出。如果某用户想与另一用户进行保密通信,只需从公钥簿上查出对方的加密密钥,用它对所传送的信息加密发出即可。对方收到信息后,用仅为自己所知的解密密钥将信息脱密,了解报文的内容。由此可看出,RSA算法解决了大量网络用户密钥管理的难题,这是公钥密码系统相对于对称密码系统最突出的优点。

3.4.2缺点

1)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。

2)安全性, RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价,而且密码学界多数人士倾向于因子分解不是NPC问题。目前,人们已能分解140多个十进制位的大素数,这就要求使用更长的密钥,速度更慢;另外,目前人们正在积极寻找攻击RSA的方法,如选择密文攻击,一般攻击者是将某一信息作一下伪装(Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:

( XM )d = Xd *Md mod n

前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way Hash Function对文档作HASH处理,或同时使用不同的签名算法。除了利用公共模数,人们还尝试一些利用解密指数或φ(n)等等攻击.

3)速度太慢,由于RSA的分组长度太大,为保证安全性,n至少也要600 bitx以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET(Secure Electronic Transaction)协议中要求CA采用2048比特长的密钥,其他实体使用1024比特的密钥。为了速度问题,目前人们广泛使用单,公钥密码结合使用的方法,优缺点互补:单钥密码加密速度快,人们用它来加密较长的文件,然后用RSA来给文件密钥加密,极好的解决了单钥密码的密钥分发问题。

§4结束语

目前,日益激增的电子商务和其它因特网应用需求使公钥体系得以普及,这些需求量主要包括对服务器资源的访问控制和对电子商务交易的保护,以及权利保护、个人隐私、无线交易和内容完整性(如保证新闻报道或股票行情的真实性)等方面。公钥技术发展到今天,在市场上明显的发展趋势就是PKI与操作系统的集成,PKI是“Public

Key Infrastructure”的缩写,意为“公钥基础设施”。公钥体制广泛地用于CA认证、数字签名和密钥交换等领域。

公钥加密算法中使用最广的是RSA。RSA算法研制的最初理念与目标是努力使互联网安全可靠,旨在解决DES算法秘密密钥的利用公开信道传输分发的难题。而实际结果不但很好地解决了这个难题;还可利用RSA来完成对电文的数字签名以抗对电文的否认与抵赖;同时还可以利用数字签名较容易地发现攻击者对电文的非法篡改,以保护数据信息的完整性。目前为止,很多种加密技术采用了RSA算法,该算法也已经在互联网的许多方面得以广泛应用,包括在安全接口层(SSL)标准(该标准是网络浏览器建立安全的互联网连接时必须用到的)方面的应用。此外,RSA加密系统还可应用于智能IC卡和网络安全产品。

但目前RSA算法的专利期限即将结束,取而代之的是基于椭圆曲线的密码方案(ECC算法)。较之于RSA算法,ECC有其相对优点,这使得ECC的特性更适合当今电子商务需要快速反应的发展潮流。此外,一种全新的量子密码也正在发展中。

至于在实际应用中应该采用何种加密算法则要结合具体应用环境和系统,不能简单地根据其加密强度来做出判断。因为除了加密算法本身之外,密钥合理分配、加密效率与现有系统的结合性以及投入产出分析都应在实际环境中具体考虑。加密技术随着网络的发展更新,将有更安全更易于实现的算法不断产生,为信息安全提供更有力的保障。今后,加密技术会何去何从,我们将拭目以待。

参考文献:

[1] Douglas R.Stinson.《密码学原理与实践》.北京:电子工业出版社,2003,2:131-132

[2]西蒙.辛格.《密码故事》.海口:海南出版社,2001,1:271-272

[3]嬴政天下.加密算法之RSA算法.http://soft.winzheng.com/infoView/Article_296.htm,2003

[4]加密与数字签名.http://www.njt.cn/yumdq/dzsw/a2.htm

[5]黑客中级教程系列之十.http://www.qqorg.i-p.com/jiaocheng/10.html

⑻ 公钥加密解密体系包括什么

非对称密钥体系又称公开密钥体系(Public Key Infrastructure (PKI)),其核心是非对称密钥加密(Asymmetric Encryption)又称公开密钥加密(Public-key Encryption)。公开密钥加密包含两个密钥:公开密钥(public key)和私有密钥(private key)。公钥通常公开发布,而私钥则由用户私密保存。由公钥加密的信息,只能通过私钥解密;由私钥加密的信息,只能通过公钥解密。常用算法有RSA、Elgamal等,可以进行数字签名(私钥加密)和信息加密(公钥加密)。通俗来讲数字签名是来公开确认明文的来源和完整性,信息加密是对明文的保密。
信息加密/解密过程:
发送者使用接收者的公钥对明文进行加密,并发送
接受者使用密钥对明文进行解密

⑼ Hello,密码学:第三部分,公钥密码(非对称密码)算法

在 《Hello,密码学:第二部分,对称密码算法》 中讲述了对称密码的概念,以及DES和AES两种经典的对称密码算法原理。既然有对称密码的说法,自然也就有非对称密码,也叫做公钥密码算法。 对称密码和非对称密码两种算法的本质区别在于,加密密钥和解密密钥是否相同

公钥密码产生的初衷就是为了解决 密钥配送 的问题。

Alice 给远方的 Bob 写了一封情意慢慢的信,并使用强悍的 AES-256 进行了加密,但她很快就意识到,光加密内容不行,必须要想一个安全的方法将加密密钥告诉 Bob,如果将密钥也通过网络发送,很可能被技术高手+偷窥癖的 Eve 窃听到。

既要发送密钥,又不能发送密钥,这就是对称密码算法下的“密钥配送问题”

解决密钥配送问题可能有这样几种方法:

这种方法比较高效,但有局限性:

与方法一不同,密钥不再由通信个体来保存,而由密钥分配中心(KDC)负责统一的管理和分配。 双方需要加密通信时,由 KDC 生成一个用于本次通信的通信密钥交由双方,通信双方只要与 KDC 事先共享密钥即可 。这样就大大减少密钥的存储和管理问题。

因此,KDC 涉及两类密钥:

领略下 KDC 的过程:

KDC 通过中心化的手段,确实能够有效的解决方法一的密钥管理和分配问题,安全性也还不错。但也存在两个显着的问题:

使用公钥密码,加密密钥和解密密钥不同,只要拥有加密密钥,所有人都能进行加密,但只有拥有解密密钥的人才能进行解密。于是就出现了这个过程:

密钥配送的问题天然被解决了。当然,解密密钥丢失而导致信息泄密,这不属于密钥配送的问题。

下面,再详细看下这个过程。

公钥密码流程的核心,可以用如下四句话来概述:

既然加密密钥是公开的,因此也叫做 “公钥(Public Key)”
既然解密密钥是私有的,因此也叫做 “私钥(Private Key)

公钥和私钥是一一对应的,称为 “密钥对” ,他们好比相互纠缠的量子对, 彼此之间通过严密的数学计算关系进行关联 ,不能分别单独生成。

在公钥密码体系下,再看看 Alice 如何同 Bob 进行通信。

在公钥密码体系下,通信过程是由 Bob 开始启动的:

过程看起来非常简单,但为什么即使公钥被窃取也没有关系?这就涉及了上文提到的严密的数学计算关系了。如果上一篇文章对称密钥的 DES 和 AES 算法进行概述,下面一节也会对公钥体系的数学原理进行简要说明。

自从 Diffie 和 Hellman 在1976年提出公钥密码的设计思想后,1978年,Ron Rivest、Adi Shamir 和 Reonard Adleman 共同发表了一种公钥密码算法,就是大名鼎鼎的 RSA,这也是当今公钥密码算法事实上的标准。其实,公钥密码算法还包括ElGamal、Rabin、椭圆曲线等多种算法,这一节主要讲述 RSA 算法的基本数学原理。

一堆符号,解释下,E 代表 Encryption,D 代表 Decryption,N 代表 Number。

从公式种能够看出来,RSA的加解密数学公式非常简单(即非常美妙)。 RSA 最复杂的并非加解密运算,而是如何生成密钥对 ,这和对称密钥算法是不太一样的。 而所谓的严密的数学计算关系,就是指 E 和 D 不是随便选择的

密钥对的生成,是 RSA 最核心的问题,RSA 的美妙与奥秘也藏在这里面。

1. 求N

求 N 公式:N = p × q

其中, p 和 q 是两个质数 ,而且应该是很大又不是极大的质数。如果太小的话,密码就容易被破解;如果极大的话,计算时间就会很长。比如 512 比特的长度(155 位的十进制数字)就比较合适。

这样的质数是如何找出来的呢? 需要通过 “伪随机数生成器(PRNG)” 进行生成,然后再判断其是否为质数 。如果不是,就需要重新生成,重新判断。

2. 求L

求 L 公式:L = lcm(p-1, q-1)

lcm 代表 “最小公倍数(least common multiple)” 。注意,L 在加解密时都不需要, 仅出现在生成密钥对的过程中

3. 求E

E 要满足两个条件:
1)1 < E < L
2)gcd(E,L) = 1

gcd 代表 “最大公约数(greatest common divisor)” 。gcd(E,L) = 1 就代表 “E 和 L 的最大公约数为1,也就是说, E 和 L 互质 ”。

L 在第二步已经计算出来,而为了找到满足条件的 E, 第二次用到 “伪随机数生成器(PRNG)” ,在 1 和 L 之间生成 E 的候选,判断其是否满足 “gcd(E,L) = 1” 的条件。

经过前三步,已经能够得到密钥对种的 “公钥:{E, N}” 了。

4. 求D

D 要满足两个条件:
1)1 < D < L
2)E × D mod L = 1

只要 D 满足上面的两个条件,使用 {E, N} 进行加密的报文,就能够使用 {D, N} 进行解密。

至此,N、L、E、D 都已经计算出来,再整理一下

模拟实践的过程包括两部分,第一部分是生成密钥对,第二部分是对数据进行加解密。为了方便计算,都使用了较小的数字。

第一部分:生成密钥对

1. 求N
准备两个质数,p = 5,q = 7,N = 5 × 7 = 35

2. 求L
L = lcm(p-1, q-1) = lcm (4, 6) = 12

3. 求E
gcd(E, L) = 1,即 E 和 L 互质,而且 1 < E < L,满足条件的 E 有多个备选:5、7、11,选择最小的 5 即可。于是,公钥 = {E, N} = {5, 35}

4. 求D
E × D mod L = 1,即 5 × D mod 12 = 1,满足条件的 D 也有多个备选:5、17、41,选择 17 作为 D(如果选择 5 恰好公私钥一致了,这样不太直观),于是,私钥 = {D, N} = {17, 35}

至此,我们得到了公私钥对:

第二部分:模拟加解密

明文我们也使用一个比较小的数字 -- 4,利用 RSA 的加密公式:

密文 = 明文 ^ E mod N = 4 ^ 5 mod 35 = 9
明文 = 密文 ^ D mod N = 9 ^ 17 mod 35 = 4

从这个模拟的小例子能够看出,即使我们用了很小的数字,计算的中间结果也是超级大。如果再加上伪随机数生成器生成一个数字,判断其是否为质数等,这个过程想想脑仁儿就疼。还好,现代芯片技术,让计算机有了足够的运算速度。然而,相对于普通的逻辑运算,这类数学运算仍然是相当缓慢的。这也是一些非对称密码卡/套件中,很关键的性能规格就是密钥对的生成速度

公钥密码体系中,用公钥加密,用私钥解密,公钥公开,私钥隐藏。因此:

加密公式为:密文 = 明文 ^ E mod N

破译的过程就是对该公式进行逆运算。由于除了对明文进行幂次运算外, 还加上了“模运算” ,因此在数学上, 该逆运算就不再是简单的对数问题,而是求离散对数问题,目前已经在数学领域达成共识,尚未发现求离散对数的高效算法

暴力破解的本质就是逐个尝试。当前主流的 RSA 算法中,使用的 p 和 q 都是 1024 位以上,这样 N 的长度就是 2048 位以上。而 E 和 D 的长度和 N 差不多,因此要找出 D,就需要进行 2048 位以上的暴力破解。即使上文那个简单的例子,算出( 蒙出 ) “9 ^ D mod 35 = 4” 中的 D 也要好久吧。

因为 E 和 N 是已知的,而 D 和 E 在数学上又紧密相关(通过中间数 L),能否通过一种反向的算法来求解 D 呢?

从这个地方能够看出,p 和 q 是极为关键的,这两个数字不泄密,几乎无法通过公式反向计算出 D。也就是说, 对于 RSA 算法,质数 p 和 q 绝不能被黑客获取,否则等价于交出私钥

既然不能靠抢,N = p × q,N是已知的,能不能通过 “质因数分解” 来推导 p 和 q 呢?或者说, 一旦找到一种高效的 “质因数分解” 算法,就能够破解 RSA 算法了

幸运的是,这和上述的“离散对数求解”一样,当下在数学上还没有找到这种算法,当然,也无法证明“质因数分解”是否真的是一个困难问题 。因此只能靠硬算,只是当前的算力无法在可现实的时间内完成。 这也是很多人都提到过的,“量子时代来临,当前的加密体系就会崩溃”,从算力的角度看,或许如此吧

既不能抢,也不能算,能不能猜呢?也就是通过 “推测 p 和 q 进行破解”

p 和 q 是通过 PRNG(伪随机数生成器)生成的,于是,又一个关键因素,就是采用的 伪随机数生成器算法要足够随机

随机数对于密码学极为重要,后面会专门写一篇笔记

前三种攻击方式,都是基于 “硬碰硬” 的思路,而 “中间人攻击” 则换了一种迂回的思路,不去尝试破解密码算法,而是欺骗通信双方,从而获取明文。具体来说,就是: 主动攻击者 Mallory 混入发送者和接收者之间,面对发送者伪装成接收者,面对接收者伪装成发送者。

这个过程可以重复多次。需要注意的是,中间人攻击方式不仅能够针对 RSA,还可以针对任何公钥密码。能够看到,整个过程中,公钥密码并没有被破译,密码体系也在正常运转,但机密性却出现了问题,即 Alice 和 Bob 之间失去了机密性,却在 Alice 和 Mallory 以及 Mallory 和 Bob 之间保持了机密性。即使公钥密码强度再强大 N 倍也无济于事。也就是说,仅仅依靠密码算法本身,无法防御中间人攻击

而能够抵御中间人攻击的,就需要用到密码工具箱的另一种武器 -- 认证 。在下面一篇笔记中,就将涉及这个话题。

好了,以上就是公钥密码的基本知识了。

公钥密码体系能够完美的解决对称密码体系中 “密钥配送” 这个关键问题,但是抛开 “中间人攻击” 问题不谈,公钥密码自己也有个严重的问题:

公钥密码处理速度远远低于对称密码。不仅体现在密钥对的生成上,也体现在加解密运算处理上。

因此,在实际应用场景下,往往会将对称密码和公钥密码的优势相结合,构建一个 “混合密码体系” 。简单来说: 首先用相对高效的对称密码对消息进行加密,保证消息的机密性;然后用公钥密码加密对称密码的密钥,保证密钥的机密性。

下面是混合密码体系的加解密流程图。整个体系分为左右两个部分:左半部分加密会话密钥的过程,右半部分是加密原始消息的过程。原始消息一般较长,使用对称密码算法会比较高效;会话密钥一般比较短(十几个到几十个字节),即使公钥密码算法运算效率较低,对会话密钥的加解密处理也不会非常耗时。

着名的密码软件 PGP、SSL/TLS、视频监控公共联网安全建设规范(GB35114) 等应用,都运用了混合密码系统。

好了,以上就是公钥密码算法的全部内容了,拖更了很久,以后还要更加勤奋一些。

为了避免被傻啦吧唧的审核机器人处理,后面就不再附漂亮姑娘的照片(也是为了你们的健康),改成我的摄影作品,希望不要对收视率产生影响,虽然很多小伙儿就是冲着姑娘来的。

就从喀纳斯之旅开始吧。

⑽ 什么是公钥密码

自从1976年公钥密码的思想提出以来,国际上已经提出了许多种公钥密码体制。用抽象的观点来看,公钥密码就是一种陷门单向函数。
我们说一个函数f是单向函数,即若对它的定义域中的任意x都易于计算f(x),而对f的值域中的几乎所有的y,即使当f为已知时要计算f-l(y)在计算上也是不可行的。若当给定某些辅助信息(陷门信息)时则易于计算f-l(y),就称单向函数f是一个陷门单向函数。公钥密码体制就是基于这一原理而设计的,将辅助信息(陷门信息)作为秘密密钥。这类密码的安全强度取决于它所依据的问题的计算复杂度。

目前比较流行的公钥密码体制主要有两类:一类是基于大整数因子分解问题的,其中最典型的代表是RSA体制。另一类是基于离散对数问题的,如ElGamal公钥密码体制和影响比较大的椭圆曲线公钥密码体制。

公钥密码
一般要求:
1、加密解密算法相同,但使用不同的密钥
2、发送方拥有加密或解密密钥,而接收方拥有另一个密钥
安全性要求:
1、两个密钥之一必须保密
2、无解密密钥,解密不可行
3、知道算法和其中一个密钥以及若干密文不能确定另一个密钥