⑴ 公钥算法的定义
不对称加密算法使用两把完全不同但又是完全匹配的一对钥匙—公钥和私钥。在使用不对称加密算法加密文件时,只有使用匹配的一对公钥和私钥,才能完成对明文的加密和解密过程。加密明文时采用公钥加密,解密密文时使用私钥才能完成,而且发信方(加密者)知道收信方的公钥,只有收信方(解密者)才是唯一知道自己私钥的人。不对称加密算法的基本原理是,如果发信方想发送只有收信方才能解读的加密信息,发信者使用收信者的公钥加密信件,收信者使用自己的私钥钥解密信件。显然,采用不对称加密算法,收发信双方在通信之前,收信方必须将自己早已随机生成的公钥送给发信方,而自己保留私钥。由于不对称算法拥有两个密钥,因而特别适用于分布式系统中的数据加密。广泛应用的不对称加密算法有RSA算法和美国国家标准局提出的DSA。以不对称加密算法为基础的加密技术应用非常广泛。
⑵ 下面的密码算法,哪一种是公钥密码算法.a.des b.aes c.idea d.rsa
AES-256和RSA-2048绝对可以,用RSA加密密匙,AES加密数据,因为非对称算法加密数据速度实在太慢,所以用非对称算法加密数据根本行不通,但是安全性非常高。
⑶ 什么是公钥加密和私钥解密
如果只是单方面采用非对称性加密算法,其实有两种方式,用于不同用处.
第一种是签名,使用私钥加密,公钥解密,用于让所有公钥所有者验证私钥所有者的身份并且用来防止私钥所有者发布的内容被篡改.但是不用来保证内容不被他人获得.
第二种是加密,用公钥加密,私钥解密,用于向公钥所有者发布信息,这个信息可能被他人篡改,但是无法被他人获得.
如果甲想给乙发一个安全的保密的数据,那么应该甲乙各自有一个私钥,甲先用乙的公钥加密这段数据,再用自己的私钥加密这段加密后的数据.最后再发给乙,这样确保了内容即不会被读取,也不会被篡改.
⑷ 知道密钥,明文,密文,怎么知道这是什么加密算法
密钥这么短,不会是公钥加密,可以排除RSA、ECC
密文不是16的倍数,也不会是AES
给你排除几个选项,如果有明文、密文,可以进一步猜测,不过我了解的加密算法不多,很难猜出来
⑸ 公钥密码系统及RSA公钥算法
公钥密码系统及RSA公钥算法
本文简单介绍了公开密钥密码系统的思想和特点,并具体介绍了RSA算法的理论基础,工作原理和具体实现过程,并通过一个简单例子说明了该算法是如何实现。在本文的最后,概括说明了RSA算法目前存在的一些缺点和解决方法。
关键词:公钥密码体制 , 公钥 ,私钥 ,RSA
§1引言
随着计算机联网的逐步实现,Internet前景越来越美好,全球经济发展正在进入信息经济时代,知识经济初见端倪。计算机信息的保密问题显得越来越重要,无论是个人信息通信还是电子商务发展,都迫切需要保证Internet网上信息传输的安全,需要保证信息安全。信息安全技术是一门综合学科,它涉及信息论、计算机科学和密码学等多方面知识,它的主要任务是研究计算机系统和通信网络内信息的保护方法以实现系统内信息的安全、保密、真实和完整。其中,信息安全的核心是密码技术。密码技术是集数学、计算机科学、电子与通信等诸多学科于一身的交叉学科。它不仅能够保证机密性信息的加密,而且能够实现数字签名、身份验证、系统安全等功能。是现代化发展的重要科学之一。本文将对公钥密码系统及该系统中目前最广泛流行的RSA算法做一些简单介绍。
§2公钥密码系统
要说明公钥密码系统,首先来了解一下不同的加密算法:目前的加密算法按密钥方式可分为单钥密码算法和公钥密码算法。
2.1.单钥密码
又称对称式密码,是一种比较传统的加密方式,其加密运算、解密运算使用的是同样的密钥,信息的发送者和信息的接收者在进行信息的传输与处理时,必须共同持有该密码(称为对称密码)。因此,通信双方都必须获得这把钥匙,并保持钥匙的秘密。
单钥密码系统的安全性依赖于以下两个因素:第一,加密算法必须是足够强的,仅仅基于密文本身去解密信息在实践上是不可能的;第二,加密方法的安全性依赖于密钥的秘密性,而不是算法的秘密性,因此,我们没有必要确保算法的秘密性(事实上,现实中使用的很多单钥密码系统的算法都是公开的),但是我们一定要保证密钥的秘密性。
从单钥密码的这些特点我们容易看出它的主要问题有两点:第一,密钥量问题。在单钥密码系统中,每一对通信者就需要一对密钥,当用户增加时,必然会带来密钥量的成倍增长,因此在网络通信中,大量密钥的产生﹑存放和分配将是一个难以解决的问题。第二,密钥分发问题。单钥密码系统中,加密的安全性完全依赖于对密钥的保护,但是由于通信双方使用的是相同的密钥,人们又不得不相互交流密钥,所以为了保证安全,人们必须使用一些另外的安全信道来分发密钥,例如用专门的信使来传送密钥,这种做法的代价是相当大的,甚至可以说是非常不现实的,尤其在计算机网络环境下,人们使用网络传送加密的文件,却需要另外的安全信道来分发密钥,显而易见,这是非常不智是甚至是荒谬可笑的。
2.2公钥密码
正因为单钥密码系统存在如此难以解决的缺点,发展一种新的﹑更有效﹑更先进的密码体制显得更为迫切和必要。在这种情况下,出现了一种新的公钥密码体制,它突破性地解决了困扰着无数科学家的密钥分发问题,事实上,在这种体制中,人们甚至不用分发需要严格保密的密钥,这次突破同时也被认为是密码史上两千年来自单码替代密码发明以后最伟大的成就。
这一全新的思想是本世纪70年代,美国斯坦福大学的两名学者Diffie和Hellman提出的,该体制与单钥密码最大的不同是:
在公钥密码系统中,加密和解密使用的是不同的密钥(相对于对称密钥,人们把它叫做非对称密钥),这两个密钥之间存在着相互依存关系:即用其中任一个密钥加密的信息只能用另一个密钥进行解密。这使得通信双方无需事先交换密钥就可进行保密通信。其中加密密钥和算法是对外公开的,人人都可以通过这个密钥加密文件然后发给收信者,这个加密密钥又称为公钥;而收信者收到加密文件后,它可以使用他的解密密钥解密,这个密钥是由他自己私人掌管的,并不需要分发,因此又成称为私钥,这就解决了密钥分发的问题。
为了说明这一思想,我们可以考虑如下的类比:
两个在不安全信道中通信的人,假设为Alice(收信者)和Bob(发信者),他们希望能够安全的通信而不被他们的敌手Oscar破坏。Alice想到了一种办法,她使用了一种锁(相当于公钥),这种锁任何人只要轻轻一按就可以锁上,但是只有Alice的钥匙(相当于私钥)才能够打开。然后Alice对外发送无数把这样的锁,任何人比如Bob想给她寄信时,只需找到一个箱子,然后用一把Alice的锁将其锁上再寄给Alice,这时候任何人(包括Bob自己)除了拥有钥匙的Alice,都不能再打开箱子,这样即使Oscar能找到Alice的锁,即使Oscar能在通信过程中截获这个箱子,没有Alice的钥匙他也不可能打开箱子,而Alice的钥匙并不需要分发,这样Oscar也就无法得到这把“私人密钥”。
从以上的介绍可以看出,公钥密码体制的思想并不复杂,而实现它的关键问题是如何确定公钥和私钥及加/解密的算法,也就是说如何找到“Alice的锁和钥匙”的问题。我们假设在这种体制中, PK是公开信息,用作加密密钥,而SK需要由用户自己保密,用作解密密钥。加密算法E和解密算法D也都是公开的。虽然SK与PK是成对出现,但却不能根据PK计算出SK。它们须满足条件:
①加密密钥PK对明文X加密后,再用解密密钥SK解密,即可恢复出明文,或写为:DSK(EPK(X))=X
②加密密钥不能用来解密,即DPK(EPK(X))≠X
③在计算机上可以容易地产生成对的PK和SK。
④从已知的PK实际上不可能推导出SK。
⑤加密和解密的运算可以对调,即:EPK(DSK(X))=X
从上述条件可看出,公开密钥密码体制下,加密密钥不等于解密密钥。加密密钥可对外公开,使任何用户都可将传送给此用户的信息用公开密钥加密发送,而该用户唯一保存的私人密钥是保密的,也只有它能将密文复原、解密。虽然解密密钥理论上可由加密密钥推算出来,但这种算法设计在实际上是不可能的,或者虽然能够推算出,但要花费很长的时间而成为不可行的。所以将加密密钥公开也不会危害密钥的安全。
这种体制思想是简单的,但是,如何找到一个适合的算法来实现这个系统却是一个真正困扰密码学家们的难题,因为既然Pk和SK是一对存在着相互关系的密钥,那么从其中一个推导出另一个就是很有可能的,如果敌手Oscar能够从PK推导出SK,那么这个系统就不再安全了。因此如何找到一个合适的算法生成合适的Pk和SK,并且使得从PK不可能推导出SK,正是迫切需要密码学家们解决的一道难题。这个难题甚至使得公钥密码系统的发展停滞了很长一段时间。
为了解决这个问题,密码学家们考虑了数学上的陷门单向函数,下面,我们可以给出它的非正式定义:
Alice的公开加密函数应该是容易计算的,而计算其逆函数(即解密函数)应该是困难的(对于除Alice以外的人)。许多形式为Y=f(x)的函数,对于给定的自变量x值,很容易计算出函数Y的值;而由给定的Y值,在很多情况下依照函数关系f (x)计算x值十分困难。这样容易计算但难于求逆的函数,通常称为单向函数。在加密过程中,我们希望加密函数E为一个单项的单射函数,以便可以解密。虽然目前还没有一个函数能被证明是单向的,但是有很多单射函数被认为是单向的。
例如,有如下一个函数被认为是单向的,假定n为两个大素数p和q的乘积,b为一个正整数,那么定义f:
f (x )= x b mod n
(如果gcd(b,φ(n))=1,那么事实上这就是我们以下要说的RSA加密函数)
如果我们要构造一个公钥密码体制,仅给出一个单向的单射函数是不够的。从Alice的观点来看,并不需要E是单向的,因为它需要用有效的方式解密所收到的信息。因此,Alice应该拥有一个陷门,其中包含容易求出E的你函数的秘密信息。也就是说,Alice可以有效解密,因为它有额外的秘密知识,即SK,能够提供给你解密函数D。因此,我们称一个函数为一个陷门单向函数,如果它是一个单向函数,并在具有特定陷门的知识后容易求出其逆。
考虑上面的函数f (x) = xb mod n。我们能够知道其逆函数f -1有类似的形式f (x ) = xa mod n,对于合适的取值a。陷门就是利用n的因子分解,有效的算出正确的指数a(对于给定的b)。
为方便起见,我们把特定的某类陷门单向函数计为?。那么随机选取一个函数f属于?,作为公开加密函数;其逆函数f-1是秘密解密函数。那么公钥密码体制就能够实现了。
根据以上关于陷门单向函数的思想,学者们提出了许多种公钥加密的方法,它们的安全性都是基于复杂的数学难题。根据所基于的数学难题,至少有以下三类系统目前被认为是安全和有效的:大整数因子分解系统(代表性的有RSA)、椭园曲线离散对数系统(ECC)和离散对数系统(代表性的有DSA)。
§3 RSA算法
3.1简介
当前最着名、应用最广泛的公钥系统RSA是在1978年,由美国麻省理工学院(MIT)的Rivest、Shamir和Adleman在题为《获得数字签名和公开钥密码系统的方法》的论文中提出的。它是一个基于数论的非对称(公开钥)密码体制,是一种分组密码体制。其名称来自于三个发明者的姓名首字母。它的安全性是基于大整数素因子分解的困难性,而大整数因子分解问题是数学上的着名难题,至今没有有效的方法予以解决,因此可以确保RSA算法的安全性。RSA系统是公钥系统的最具有典型意义的方法,大多数使用公钥密码进行加密和数字签名的产品和标准使用的都是RSA算法。
RSA算法是第一个既能用于数据加密也能用于数字签名的算法,因此它为公用网络上信息的加密和鉴别提供了一种基本的方法。它通常是先生成一对RSA密钥,其中之一是保密密钥,由用户保存;另一个为公开密钥,可对外公开,甚至可在网络服务器中注册,人们用公钥加密文件发送给个人,个人就可以用私钥解密接受。为提高保密强度,RSA密钥至少为500位长,一般推荐使用1024位。
该算法基于下面的两个事实,这些事实保证了RSA算法的安全有效性:
1)已有确定一个数是不是质数的快速算法;
2)尚未找到确定一个合数的质因子的快速算法。
3.2工作原理
1)任意选取两个不同的大质数p和q,计算乘积r=p*q;
2)任意选取一个大整数e,e与(p-1)*(q-1)互质,整数e用做加密密钥。注意:e的选取是很容易的,例如,所有大于p和q的质数都可用。
3)确定解密密钥d:d * e = 1 molo(p - 1)*(q - 1) 根据e、p和q可以容易地计算出d。
4)公开整数r和e,但是不公开d;
5)将明文P (假设P是一个小于r的整数)加密为密文C,计算方法为:
C = Pe molo r
6)将密文C解密为明文P,计算方法为:
P = Cd molo r
然而只根据r和e(不是p和q)要计算出d是不可能的。因此,任何人都可对明文进行加密,但只有授权用户(知道d)才可对密文解密。
3.3简单实例
为了说明该算法的工作过程,我们下面给出一个简单例子,显然我们在这只能取很小的数字,但是如上所述,为了保证安全,在实际应用上我们所用的数字要大的多得多。
例:选取p=3, q=5,则r=15,(p-1)*(q-1)=8。选取e=11(大于p和q的质数),通过d * 11 = 1 molo 8,计算出d =3。
假定明文为整数13。则密文C为
C = Pe molo r
= 1311 molo 15
= 1,792,160,394,037 molo 15
= 7
复原明文P为:
P = Cd molo r
= 73 molo 15
= 343 molo 15
= 13
因为e和d互逆,公开密钥加密方法也允许采用这样的方式对加密信息进行"签名",以便接收方能确定签名不是伪造的。
假设A和B希望通过公开密钥加密方法进行数据传输,A和B分别公开加密算法和相应的密钥,但不公开解密算法和相应的密钥。A和B的加密算法分别是ECA和ECB,解密算法分别是DCA和DCB,ECA和DCA互逆,ECB和DCB互逆。 若A要向B发送明文P,不是简单地发送ECB(P),而是先对P施以其解密算法DCA,再用加密算法ECB对结果加密后发送出去。
密文C为:
C = ECB(DCA(P))
B收到C后,先后施以其解密算法DCB和加密算法ECA,得到明文P:
ECA(DCB(C))
= ECA(DCB(ECB(DCA(P))))
= ECA(DCA(P))/*DCB和ECB相互抵消*/
=
P /*DCB和ECB相互抵消*/
这样B就确定报文确实是从A发出的,因为只有当加密过程利用了DCA算法,用ECA才能获得P,只有A才知道DCA算法,没 有人,即使是B也不能伪造A的签名。
3.4优缺点
3.4.1优点
RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。该算法的加密密钥和加密算法分开,使得密钥分配更为方便。它特别符合计算机网络环境。对于网上的大量用户,可以将加密密钥用电话簿的方式印出。如果某用户想与另一用户进行保密通信,只需从公钥簿上查出对方的加密密钥,用它对所传送的信息加密发出即可。对方收到信息后,用仅为自己所知的解密密钥将信息脱密,了解报文的内容。由此可看出,RSA算法解决了大量网络用户密钥管理的难题,这是公钥密码系统相对于对称密码系统最突出的优点。
3.4.2缺点
1)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。
2)安全性, RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价,而且密码学界多数人士倾向于因子分解不是NPC问题。目前,人们已能分解140多个十进制位的大素数,这就要求使用更长的密钥,速度更慢;另外,目前人们正在积极寻找攻击RSA的方法,如选择密文攻击,一般攻击者是将某一信息作一下伪装(Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:
( XM )d = Xd *Md mod n
前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way Hash Function对文档作HASH处理,或同时使用不同的签名算法。除了利用公共模数,人们还尝试一些利用解密指数或φ(n)等等攻击.
3)速度太慢,由于RSA的分组长度太大,为保证安全性,n至少也要600 bitx以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET(Secure Electronic Transaction)协议中要求CA采用2048比特长的密钥,其他实体使用1024比特的密钥。为了速度问题,目前人们广泛使用单,公钥密码结合使用的方法,优缺点互补:单钥密码加密速度快,人们用它来加密较长的文件,然后用RSA来给文件密钥加密,极好的解决了单钥密码的密钥分发问题。
§4结束语
目前,日益激增的电子商务和其它因特网应用需求使公钥体系得以普及,这些需求量主要包括对服务器资源的访问控制和对电子商务交易的保护,以及权利保护、个人隐私、无线交易和内容完整性(如保证新闻报道或股票行情的真实性)等方面。公钥技术发展到今天,在市场上明显的发展趋势就是PKI与操作系统的集成,PKI是“Public
Key Infrastructure”的缩写,意为“公钥基础设施”。公钥体制广泛地用于CA认证、数字签名和密钥交换等领域。
公钥加密算法中使用最广的是RSA。RSA算法研制的最初理念与目标是努力使互联网安全可靠,旨在解决DES算法秘密密钥的利用公开信道传输分发的难题。而实际结果不但很好地解决了这个难题;还可利用RSA来完成对电文的数字签名以抗对电文的否认与抵赖;同时还可以利用数字签名较容易地发现攻击者对电文的非法篡改,以保护数据信息的完整性。目前为止,很多种加密技术采用了RSA算法,该算法也已经在互联网的许多方面得以广泛应用,包括在安全接口层(SSL)标准(该标准是网络浏览器建立安全的互联网连接时必须用到的)方面的应用。此外,RSA加密系统还可应用于智能IC卡和网络安全产品。
但目前RSA算法的专利期限即将结束,取而代之的是基于椭圆曲线的密码方案(ECC算法)。较之于RSA算法,ECC有其相对优点,这使得ECC的特性更适合当今电子商务需要快速反应的发展潮流。此外,一种全新的量子密码也正在发展中。
至于在实际应用中应该采用何种加密算法则要结合具体应用环境和系统,不能简单地根据其加密强度来做出判断。因为除了加密算法本身之外,密钥合理分配、加密效率与现有系统的结合性以及投入产出分析都应在实际环境中具体考虑。加密技术随着网络的发展更新,将有更安全更易于实现的算法不断产生,为信息安全提供更有力的保障。今后,加密技术会何去何从,我们将拭目以待。
参考文献:
[1] Douglas R.Stinson.《密码学原理与实践》.北京:电子工业出版社,2003,2:131-132
[2]西蒙.辛格.《密码故事》.海口:海南出版社,2001,1:271-272
[3]嬴政天下.加密算法之RSA算法.http://soft.winzheng.com/infoView/Article_296.htm,2003
[4]加密与数字签名.http://www.njt.cn/yumdq/dzsw/a2.htm
[5]黑客中级教程系列之十.http://www.qqorg.i-p.com/jiaocheng/10.html
⑹ 什么是RSA算法,有公钥和私钥对他的处理过程是这样的
RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥,使用其中一个加密,则需要用另一个才能解密。
RSA的算法涉及三个参数,n、e1、e2。
其中,n是两个大质数p、q的积,n的二进制表示时所占用的位数,就是所谓的密钥长度。
e1和e2是一对相关的值,e1可以任意取,但要求e1与(p-1)*(q-1)互质;再选择e2,要求(e2*e1)mod((p-1)*(q-1))=1。
(n及e1),(n及e2)就是密钥对。
RSA加解密的算法完全相同,设A为明文,B为密文,则:A=B^e1
mod
n;B=A^e2
mod
n;
e1和e2可以互换使用,即:
A=B^e2
mod
n;B=A^e1
mod
n;
补充回答:
对明文进行加密,有两种情况需要这样作:
1、您向朋友传送加密数据,您希望只有您的朋友可以解密,这样的话,您需要首先获取您朋友的密钥对中公开的那一个密钥,e及n。然后用这个密钥进行加密,这样密文只有您的朋友可以解密,因为对应的私钥只有您朋友拥有。
2、您向朋友传送一段数据附加您的数字签名,您需要对您的数据进行MD5之类的运算以取得数据的"指纹",再对"指纹"进行加密,加密将使用您自己的密钥对中的不公开的私钥。您的朋友收到数据后,用同样的运算获得数据指纹,再用您的公钥对加密指纹进行解密,比较解密结果与他自己计算出来的指纹是否一致,即可确定数据是否的确是您发送的、以及在传输过程中是否被篡改。
密钥的获得,通常由某个机构颁发(如CA中心),当然也可以由您自己创建密钥,但这样作,您的密钥并不具有权威性。
计算方面,按公式计算就行了,如果您的加密强度为1024位,则结果会在有效数据前面补0以补齐不足的位数。补入的0并不影响解密运算。
⑺ 不同的文档需要采取不同的秘钥那不同的秘钥怎样去区分
1、密钥对:在非对称加密技术中,有两种密钥,分为公钥和私钥。公钥是密钥对所有者持有,公布给他人的;私钥也是密钥对所有者持有,不可公布。2、密钥:指公钥或私钥。3、公钥:公钥用来给数据加密,用公钥加密的数据只能使用私钥解密。4、私钥:如上,用来解密公钥加密的数据。5、摘要:对需要传输的文本,做一个HASH计算,一般采用SHA1,SHA2来获得。6、签名:使用私钥对需要传输的文本的摘要进行加密,得到的密文即被称为该次传输过程的签名。(看最下面的一部分就明白了)6、签名验证:数据接收端,拿到传输文本,但是需要确认该文本是否就是发送发出的内容,中途是否曾经被篡改。因此拿自己持有的公钥对签名进行解密(密钥对中的一种密钥加密的数据必定能使用另一种密钥解密。),得到了文本的摘要,然后使用与发送方同样的HASH算法计算摘要值,再与解密得到的摘要做对比,发现二者完全一致,则说明文本没有被篡改过。秘钥,即密钥,在密码学中,密钥(key,又常称金钥)是指某个用来完成加密、解密、完整性验证等密码学应用的秘密信息。在对称密码学(或称密钥密码学)中,加密和解密用的是同一个钥匙,因此钥匙需要保密。而在公钥密码学(或称非对称密码学)中,加密和解密用的钥匙不同:通常一个是公开的,称为公钥;另一个保密,称为私钥。
秘钥,即密钥,在密码学中,密钥(key,又常称金钥)是指某个用来完成加密、解密、完整性验证等密码学应用的秘密信息。
在对称密码学(或称密钥密码学)中,加密和解密用的是同一个钥匙,因此钥匙需要保密。而在公钥密码学(或称非对称密码学)中,加密和解密用的钥匙不同:通常一个是公开的,称为公钥;另一个保密,称为私钥。
⑻ 什么是公钥密码算法
20世纪70年代,美国学者Diffie和Hellman,以及以色列学者Merkle分别独立地提出了一种全新的密码体制的概念。Diffie和Hellman首先将这个概念公布在1976年美国国家计算机会议上,几个月后,他们这篇开创性的论文《密码学的新方向》发表在IEEE杂志信息论卷上,由于印刷原因,Merkle对这一领域的贡献直到1978年才出版。他们所创造的新的密码学理论,突破了传统的密码体制对称密钥的概念,竖起了近代密码学的又一里程碑。
不同于以前采用相同的加密和解密密钥的对称密码体制,Diffie和Hellman提出了采用双钥体制,即每个用户都有一对选定的密钥:一个是可以公开的,另一个则是秘密的。公开的密钥可以像电话号码一样公布,因此称为公钥密码体制或双钥体制。
公钥密码体制的主要特点是将加密和解密的能力分开,因而可以实现多个用户的信息只能由一个用户解读;或只能由一个用户加密消息而由多个用户解读,前者可以用于公共网络中实现保密通信,而后者可以用于认证系统中对消息进行数字签名。
公开密钥密码的基本思想是将传统密码的密钥一分为二,分为加密密钥Ke和解密密钥Kd,用加密密钥Ke控制加密,用解密密钥Kd控制解密。而且由计算复杂性确保加密密钥Ke在计算上不能推导出解密密钥Kd。这样,即使将Ke公开也不会暴露Kd,也不会损害密码的安全。于是便可以将Ke公开,而只对Kd保密。由于Ke是公开的,只有Kd是保密的,因此从根本上克服了传统密码在密钥分配上的困难。
公开密钥密码满足的条件
根据公开密钥密码的基本思想,可知一个公开密钥密码应当满足下面三个条件:
- 解密算法D和加密算法E互逆,即对所有明文M都有,D(E(M,Ke),Kd)=M。
- 在计算上不能由Ke推导出Kd。
- 算法E和D都是高效的。
条件1是构成密码的基本条件,是传统密码和公开密钥密码都必须具备的起码条件。
条件2是公开密钥密码的安全条件,是公开密钥密码的安全基础,而且这一条件是最难满足的。目前尚不能从数学上证明一个公开密钥密码完全满足这一条件,而只能证明它不满足这一条件。
条件3是公开密钥密码的工程实用条件。因为只有算法E和D都是高效的,密码才能实用。否则,密码只有理论意义,而不能实际应用。
满足了以上三个条件,便可构成一个公开密钥密码,这个密码可以确保数据的秘密性。然而还需要确保数据的真实性,则还需满足第四个条件。
4.对于所有明文M都有E(D(M,Kd),Ke)=M。
条件4是公开密钥密码能够确保数据真实性的基本条件。如果满足了条件1、2、4,同样可以构成一个公开密钥密码,这个密码可以确保数据的真实性。
如果同时满足以上四个条件,则公开密钥密码可以同时确保数据的秘密性和真实性。此时,对于所有的明文M都有D(E(M,Ke),Kd)= E(D(M,Kd),Ke)=M。
公开密钥密码从根本上克服了传统密码在密钥分配上的困难,利用公开密钥密码进行保密通信需要成立一个密钥管理机构(KMC),每个用户将自己的姓名、地址和公开的加密密钥等信息在KMC登记注册,将公钥记入共享的公开密钥数据库。KMC负责密钥的管理,并对用户是可信赖的。这样,用户利用公开密钥密码进行保密通信就像查电话号码簿打电话一样方便,再也不需要通信双方预约密钥,因此特别适合计算机网络应用,而且公开密钥密码实现数字签名容易,所以特别受欢迎。
下图是公钥密码体制的框图,主要分为以下几步:
- 网络中要求接收消息的端系统,产生一对用来加密和解密的密钥,如图中的接收者B,产生一对密钥PKB,SKB,其中PKB是公开钥,SKB是秘密钥。
- 端系统B将加密密钥(图中的PKB)存储在一个公开的寄存器或文件中,另一密钥则被保密(图中个SKB)。
- A要想向B发送消息m,则使用B的公开钥加密m,表示为 c=EPKB[m] 其中,c是密文,E是加密算法。
- B收到密文c后,用自己的秘密钥SKB解密,表示为 m=DSKB[c] 其中,D是解密算法。因为只有B知道SKB,所以其他人无法对c解密。
这就是公开密钥的原理~
(转载需向本人获取权限)
⑼ 对称密钥算法与非对称密钥算法有何区别
密码学中两种常见的密码算法为对称密码算法(单钥密码算法)和非对称密码算法(公钥密码算法)。
对称密码算法有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,反过来也成立。在大多数对称算法中,加密解密密钥是相同的。这些算法也叫秘密密钥算法或单密钥算法,它要求发送者和接收者在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都能对消息进行加密解密。只要通信需要保密,密钥就必须保密。对称算法的加密和解密表示为:
Ek(M)=C
Dk(C)=M
对称算法可分为两类。一次只对明文中的单个位(有时对字节)运算的算法称为序列算法或序列密码。另一类算法是对明文的一组位进行运算,这些位组称为分组,相应的算法称为分组算法或分组密码。现代计算机密码算法的典型分组长度为64位――这个长度大到足以防止分析破译,但又小到足以方便作用。
这种算法具有如下的特性:
Dk(Ek(M))=M
常用的采用对称密码术的加密方案有5个组成部分(如图所示)
l)明文:原始信息。
2)加密算法:以密钥为参数,对明文进行多种置换和转换的规则和步骤,变换结果为密文。
3)密钥:加密与解密算法的参数,直接影响对明文进行变换的结果。
4)密文:对明文进行变换的结果。
5)解密算法:加密算法的逆变换,以密文为输入、密钥为参数,变换结果为明文。
对称密码术的优点在于效率高(加/解密速度能达到数十兆/秒或更多),算法简单,系统开销小,适合加密大量数据。
尽管对称密码术有一些很好的特性,但它也存在着明显的缺陷,包括:
l)进行安全通信前需要以安全方式进行密钥交换。这一步骤,在某种情况下是可行的,但在某些情况下会非常困难,甚至无法实现。
2)规模复杂。举例来说,A与B两人之间的密钥必须不同于A和C两人之间的密钥,否则给B的消息的安全性就会受到威胁。在有1000个用户的团体中,A需要保持至少999个密钥(更确切的说是1000个,如果她需要留一个密钥给他自己加密数据)。对于该团体中的其它用户,此种倩况同样存在。这样,这个团体一共需要将近50万个不同的密钥!推而广之,n个用户的团体需要N2/2个不同的密钥。
通过应用基于对称密码的中心服务结构,上述问题有所缓解。在这个体系中,团体中的任何一个用户与中心服务器(通常称作密钥分配中心)共享一个密钥。因而,需要存储的密钥数量基本上和团体的人数差不多,而且中心服务器也可以为以前互相不认识的用户充当“介绍人”。但是,这个与安全密切相关的中心服务器必须随时都是在线的,因为只要服务器一掉线,用户间的通信将不可能进行。这就意味着中心服务器是整个通信成败的关键和受攻击的焦点,也意味着它还是一个庞大组织通信服务的“瓶颈”
非对称密钥算法是指一个加密算法的加密密钥和解密密钥是不一样的,或者说不能由其中一个密钥推导出另一个密钥。1、加解密时采用的密钥的差异:从上述对对称密钥算法和非对称密钥算法的描述中可看出,对称密钥加解密使用的同一个密钥,或者能从加密密钥很容易推出解密密钥;②对称密钥算法具有加密处理简单,加解密速度快,密钥较短,发展历史悠久等特点,非对称密钥算法具有加解密速度慢的特点,密钥尺寸大,发展历史较短等特点。
⑽ 什么是公钥密码算法公钥的将密钥完全公开吗
公钥密码算法
公钥密码算法中的密钥依性质划分,可分为公钥和私钥两种。
用户或系统产生一对密钥,将其中的一个公开,称为公钥;另一个自己保留,称为私钥。
任何获悉用户公钥的人都可用用户的公钥对信息进行加密与用户实现安全信息交互。
由于公钥与私钥之间存在的依存关系,只有用户本身才能解密该信息,任何未受授权用户甚至信息的发送者都无法将此信息解密。
在近代公钥密码系统的研究中, 其安全性都是基于难解的可计算问题的。
如:
(1)大数分解问题;
(2)计算有限域的离散对数问题;
(3)平方剩余问题;
(4)椭圆曲线的对数问题等。基于这些问题, 于是就有了各种公钥密码体制。
关于公钥密码有众多的研究, 主要集中在以下的几个方面:
(1)RSA 公钥体制的研究;
(2)椭圆曲线密码体制的研究;
(3)各种公钥密码体制的研究;
(4)数字签名研究。
公钥加密体制具有以下优点:
(1)密钥分配简单;
(2)密钥的保存量少;
(3)可以满足互不相识的人之间进行私人谈话时的保密性要求;
(4)可以完成数字签名和数字鉴别。
答案补充
SHA-1算法
SHA-1杂凑算法[4]起初是针对DSA算法而设计的,其设计原理与Ron Rivest提出的MD2,MD4,尤其是MD5杂凑函数的设计原理类似。当输入长度<264bit的消息时,输出160bit的摘要,其算法分为5步:
(1)填充消息使其长度为512的倍数减去64,填充的方法是添一个“1”在消息后,然后添加“0”直至达到要求的长度,要求至少1位,至多512位填充位;
(2)完成第1步后,在新得到的消息后附加上64bit填充前的消息长度值;
(3)初始化缓存,SHA-1用5字的缓存,每个字均是32bit;
(4)进入消息处理主循环,一次循环处理512bit,主循环有4轮,每轮20次操作;
(5)循环结束后,得到的输出值即为所求。