‘壹’ 从1到9个数字列出6位数字密码有哪些,列出来
很多,列不完的
一共有9的6次方种密码
就是531441种可能
‘贰’ 从0到9,6位数密码都有什么
0到9的6位数密码一共有1000000组(一百万组),就是1000000种可能。
做题思路:
0~9有十个数,每个位置都能用上0~9,所以容易知道六位数密码每一个位上都有十种可能性(0~9),这是排列问题,用乘法就可以解决。所以每个位置的可能性相乘,6个10相乘得到结果 10×10×10×10×10×10=1000000 。
6个数字可以重复的话,每个位数上可以有10种方法(0~9中任取其一),共有6位数,所以就是:10^6=10×10×10×10×10×10=1000000(种)。
=3628800/24=151200
因此,0-9的数字可以组成不含重复数字的排列有151200种。
‘叁’ 六位数密码组合有多少种
共有1000000种方法。
每一个数从0~9中挑选,共有10种结果,共有6个数组合,即有10*10*10*10*10*10=1000000种组合。
拓展资料:
密码是一种用来混淆的技术,它希望将正常的(可识别的)信息转变为无法识别的信息。当然,对一小部分人来说,这种无法识别的信息是可以再加工并恢复的。密码在中文里是"口令"(password)的通称。登录网站、电子邮箱和银行取款时输入的"密码"其实严格来讲应该仅被称作"口令",因为它不是本来意义上的"加密代码",但是也可以称为秘密的号码。主要限定于个别人理解(如一则电文)的符号系统。如密码电报、密码式打字机。
‘肆’ 一种密码锁的密码由1-9中的六个数字组成'(允许重复),可以组成多少个密码
允许重复就是:11111-99999
用数学的排列组合计算就是
‘伍’ 用1到9这9个数字组成的六位数有多少个
第一个数有9种选择,第二个数有8种,第三个数有7种,依次类推,
根据乘法原理,这个六位数共有
9×8×7×6×5×4=60480
个
‘陆’ 在1到9这些数字任意组合成6位位有多少种分别为
在1到9这些数字任意组合成6位数共有60480种,太多了无法列出来
123456、123457、123458、123459、123465…………987654
‘柒’ 6位数有多少个密码
0到9的6位数密码一共有1000000组(一百万组),就是1000000种可能。
做题思路:
0~9有十个数,每个位置可以使用0~9,因此很容易知道六位数密码的每个位有十种可能性,这是排列问题,用乘法就可以解决。所以每个位置的可能性相乘,6个10相乘得到结果 10*10*10*10*10*10=1000000 。
从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列。当m=n时所有的排列情况叫全排列。
(7)1到9的六位数密码有多少个扩展阅读:
排列组合中的基本计数原理
1、加法原理和分类计数法
(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
(2)第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
‘捌’ 6位数密码有多少组合
0到9的6位数密码一共有1000000组(一百万组),就是1000000种可能。
做题思路:
0~9有十个数,每个位置可以使用0~9,因此很容易知道六位数密码的每个位有十种可能性,这是排列问题,用乘法就可以解决。所以每个位置的可能性相乘,6个10相乘得到结果 10*10*10*10*10*10=1000000 。
从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列。当m=n时所有的排列情况叫全排列。
(8)1到9的六位数密码有多少个扩展阅读:
排列组合中的基本计数原理
1、加法原理和分类计数法
(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
(2)第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
‘玖’ 0到9的6位数密码一共有多少组
0到9的6位数密码一共有1000000组(一百万组),就是1000000种可能。
做题思路:
0~9有十个数,每个位置都能用上0~9,所以容易知道六位数密码每一个位上都有十种可能性(0~9),这是排列问题,用乘法就可以解决。所以每个位置的可能性相乘,6个10相乘得到结果 10*10*10*10*10*10=1000000 。
基本计数原理:
一、加法原理和分类计数法
1、加法原理:做一件事,完成它可以有n类办法,在
第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
2、第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
3、分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
二、乘法原理和分步计数法
1、乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。
2、合理分步的要求
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。