❶ 密码子具有什么样的性质
密码子的性质
1. 通用性:
高等生物和低等生物在很大程度上共用一套密码子,体现了生命的同一性。正因为生物共用一套遗传密码子,所以人们才能通过基因工程手段获得所需要的基因工程产物或培育出有新性状的生物体。如将人的胰岛素基因通过基因工程手段转移到大肠杆菌细胞内,正因为大肠杆菌和人在密码子上的通用性,所以才能利用大肠杆菌的快速繁殖来大量合成人的胰岛素。
2. 简并性:
除色氨酸和甲硫氨酸外,其他氨基酸的密码子均多于1个(2~6个)。简并性并不意味着密码不完善,每个密码子只对应1种氨基酸。简并性可使突变的有害影响减到最小。
3. 连续阅读无标点:
两个密码之间没有任何标点符号相分隔。因此,阅读密码时从一个正确的起点开始,一个不漏地接着读,直至碰到终止信号为止。若从某处插入或删去一个碱基,就会使该部位以后的密码发生连锁变化。增减非3倍数量碱基对的基因突变常常是致死的。
4. 不重叠:
任何两个相邻的密码子没有共用的核苷酸。后来虽在某些噬菌体中发现核酸的同一碱基序列可以编码不同的蛋白质,但因其长碱基序列分割成三联体的方式,即可译框架不同,就每种读码方式而言,密码子彼此仍没有共用的核苷酸。如CATCATCATCAT因可译框架不同可以读成CAT CAT CAT CAT,C ATC ATC ATC AT或CA TCA TCA TCA T。
5. 专一性:
氨基酸似乎主要由密码子的前2个碱基决定,第3个碱基的改变,一般不引起氨基酸的改变。
❷ 密码子的简并性能体现生物界的统一性吗
可以。这是生命观念。
❸ 密码子简并性的意义
密码子简并性的意义:
密码子简并性具有重要的生物学意义,它可以减少有害突变。若每种氨基酸只有一个密码子,61个密码子中只有20个是有意义的,各对应于一种氨基酸。剩下41个密码子都无氨基酸所对应,将导致肽链合成终止。由基因突变而引起肽链合成终止的概率也会大大增加。简并性使得那些即使密码子中碱基被改变,仍然能编码原来氨基酸的可能性大为提高。密码的简并也使DNA分子上碱基组成有较大余地的变动,例如细菌DNA中G+C含量变动很大,但不同G+C含量的细菌却可以编码出相同的多肽链。所以遗传密码的简并性在物种的稳定上起着重要的作用。
❹ 密码子的通用性是指
密码子的通用性:无论原核细胞还是真核细胞,它们使用的遗传密码都是一样的,也就是说,都是每3个相邻的碱基决定一个氨基酸,这个规则在原核细胞、真核细胞之间是普遍适用的。
它是针对于细胞质中核糖体编码蛋白质而言的,在线粒体中,线粒体自身所含的DNA也能编码蛋白质,它所使用的密码子的规则可能会与细胞质中不同。
❺ 密码子的特点有哪些
密码子的特点有:简并性,普遍性与特殊性,连续性,摆动性。
1、遗传密码子是三联体密码:一个密码子由信使核糖核酸(mRNA)上相邻的三个碱基组成。
2、密码子具有通用性:不同的生物密码子基本相同,即共用一套密码子。
3、遗传密码子无逗号:两个密码子间没有标点符号,密码子与密码子之间没有任何不编码的核苷酸,读码必须按照一定的读码框架,从正确的起点开始,一个不漏地一直读到终止信号。
4、遗传密码子不重叠,在多核苷酸链上任何两个相邻的密码子不共用任何核苷酸。
5、密码子具有简并性:除了甲硫氨酸和色氨酸外,每一个氨基酸都至少有两个密码子。这样可以在一定程度内,使氨基酸序列不会因为某一个碱基被意外替换而导致氨基酸错误。
(5)密码子的同一性说明了什么扩展阅读:
遗传信息是指DNA分子中基因上的脱氧核苷(碱基)排列顺序,密码子是指信使RNA上决定一个氨基酸的三个相邻碱基的排列顺序,反密码子是指转运RNA上的一端的三个碱基排列顺序。
其联系是:DNA(基因)的遗传信息通过转录传递到信使RNA上,转运RNA一端携带氨基酸,另一端反密码子与信使RNA上的密码子(碱基)配对。
提高基因的异源表达:可通过分析密码子使用模式,预测目的基因的最佳宿主;或者应用基因工程手段,为目的基因表达提供最优的密码子使用模式。3种不同的方式,目的都是利用密码子偏性来提高异源基因的表达。
密码子的使用模式在细胞核和细胞质遗传物质之间也存在差异,如核基因中的起始密码子只有ATG,而线粒体基因中的起始密码子为ATN;核基因中的终止密码子TGA在线粒体基因中用来编码色氨酸等。
反密码子第一位为A或C时只能识别1种密码子,为G或U时可以识别2种密码子,为I 时可识别三种密码子。如果有几个密码子同时编码一个氨基酸,凡是第一和第二位碱基不同的密码子都对应于各自独立的tRNA。
❻ 氨基酸的密码子基本相同,怎样理解基本二字
在一般的情况下是相同的,就是在平常的时候我们大可认为是形同的,只有在特殊情况下,一般是又说明的,氨基酸的密码子又可能是不同的。
❼ 密码子到底有哪些特性
①遗传密码子是三联体密码:一个密码子由信使核糖核酸(mRNA)上相邻的三个碱基组成。
② 密码子具有通用性:不同的生物密码子基本相同,即共用一套密码子。
③ 遗传密码子无逗号:两个密码子间没有标点符号,密码子与密码子之间没有任何不编码的核苷酸,读码必须按照一定的读码框架,从正确的起点开始,一个不漏地一直读到终止信号。
④ 遗传密码子不重叠,在多核苷酸链上任何两个相邻的密码子不共用任何核苷酸。
⑤ 密码子具有简并性:除了甲硫氨酸和色氨酸外,每一个氨基酸都至少有两个密码子。这样可以在一定程度内,使氨基酸序列不会因为某一个碱基被意外替换而导致氨基酸错误。
⑥ 密码子阅读与翻译具有一定的方向性:从5'端到3'端。
⑦有起始密码子和终止密码子,起始密码子有两种,一种是甲硫氨酸(AUG),一种是缬氨酸(GUG),而终止密码子(有3个,分别是UAA、UAG、UGA)没有相应的转运核糖核酸(tRNA)存在,只供释放因子识别来实现翻译的终止。
❽ 简述遗传密码子的特点,其对理解生命过程有什么意义
遗传密码是一组规则,将DNA或RNA序列以三个核苷酸为一组的密码子转译为蛋白质的氨基酸序列,以用于蛋白质合成。几乎所有的生物都使用同样的遗传密码,称为标准遗传密码;即使是非细胞结构的病毒,它们也是使用标准遗传密码。但是也有少数生物使用一些稍微不同的遗传密码。
特点
1、方向性,密码子是对mRNA分子的碱基序列而言的,它的阅读方向是与mRNA的合成方向或mRNA编码方向一致的,即从5'端至3'端。
2、连续性,mRNA的读码方向从5'端至3'端方向,两个密码子之间无任何核苷酸隔开。mRNA链上碱基的插入、缺失和重叠,均造成框移突变。
3、简并性,指一个氨基酸具有两个或两个以上的密码子。密码子的第三位碱基改变往往不影响氨基酸翻译。
4、摆动性,mRNA上的密码子与转移RNA(tRNA)J上的反密码子配对辨认时,大多数情况遵守碱基互补配对原则,但也可出现不严格配对,尤其是密码子的第三位碱基与反密码子的第一位碱基配对时常出现不严格碱基互补,这种现象称为摆动配对。
5、通用性,蛋白质生物合成的整套密码,从原核生物到人类都通用。但已发现少数例外,如动物细胞的线粒体、植物细胞的叶绿体。
❾ 密码子的特点有哪些
密码子的特点包含:
1、遗传密码子是三联体密码:一个密码子由信使核糖核酸(mRNA)上相邻的三个碱基组成。
2、密码子具有通用性:不同的生物密码子基本相同,即共用一套密码子。
3、遗传密码子无逗号:两个密码子间没有标点符号,密码子与密码子之间没有任何不编码的核苷酸,读码必须按照一定的读码框架,从正确的起点开始,一个不漏地一直读到终止信号。
4、遗传密码子不重叠,在多核苷酸链上任何两个相邻的密码子不共用任何核苷酸。
5、密码子具有简并性:除了甲硫氨酸和色氨酸外,每一个氨基酸都至少有两个密码子。这样可以在一定程度内,使氨基酸序列不会因为某一个碱基被意外替换而导致氨基酸错误。
6、密码子阅读与翻译具有一定的方向性:从5'端到3'端。
7、有起始密码子和终止密码子,起始密码子有两种,一种是甲硫氨酸(AUG),一种是缬氨酸(GUG),而终止密码子(有3个,分别是UAA、UAG、UGA)没有相应的转运核糖核酸(tRNA)存在,只供释放因子识别来实现翻译的终止。
密码子的应用:
1、提高基因的异源表达
可通过分析密码子使用模式,预测目的基因的最佳宿主;或者应用基因工程手段,为目的基因表达提供最优的密码子使用模式。3种不同的方式,目的都是利用密码子偏爱性来提高异源基因的表达。
2、翻译起始效应
mRNA浓度是翻译起始速率的主要影响因素之一,密码子直接影响转录效率,决定mRNA浓度。如单子叶植物在“翻译起始区”的密码子偏性大于“翻译终止区”,暗示“翻译起始区”的密码子使用对提高蛋白质翻译的效率和精确性更为重要,因此,通过修饰编码区5′端的DNA序列,来提高蛋白质的表达水平将有望成为可能。
3、影响蛋白质的结构与功能
基因的密码子偏性与所编码蛋白质结构域的连接区和二级结构单元的连接区有关、翻译速率在连接区会降低。
通过聚类分析的方法研究发现,哺乳动物MHC基因的密码子偏爱性与所编码蛋白质的三级结构密切相关,并可通过影响mRNA不同区域的翻译速度,来改变编码蛋白质的空间构象。
❿ 为什么生物密码子相同
密码子在进化是是严格保守的,在从共同的祖先进化的过程中没有发生大的突变。