当前位置:首页 » 网络管理 » zookeeper临时节点什么时候删除
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

zookeeper临时节点什么时候删除

发布时间: 2022-05-07 18:50:32

1. zookeeper 节点有什么用

ZooKeeper 节点是有生命周期的,这取决于节点的类型。在 ZooKeeper 中,节点类型可以分为持久节点(PERSISTENT )、临时节点(EPHEMERAL),以及时序节点(SEQUENTIAL ),具体在节点创建过程中,一般是组合使用,可以生成以下 4 种节点类型。

持久节点(PERSISTENT)

所谓持久节点,是指在节点创建后,就一直存在,直到有删除操作来主动清除这个节点——不会因为创建该节点的客户端会话失效而消失。

持久顺序节点(PERSISTENT_SEQUENTIAL)

这类节点的基本特性和上面的节点类型是一致的。额外的特性是,在ZK中,每个父节点会为他的第一级子节点维护一份时序,会记录每个子节点创建的先后顺序。基于这个特性,在创建子节点的时候,可以设置这个属性,那么在创建节点过程中,ZK会自动为给定节点名加上一个数字后缀,作为新的节点名。这个数字后缀的范围是整型的最大值。

临时节点(EPHEMERAL)

和持久节点不同的是,临时节点的生命周期和客户端会话绑定。也就是说,如果客户端会话失效,那么这个节点就会自动被清除掉。注意,这里提到的是会话失效,而非连接断开。另外,在临时节点下面不能创建子节点。

临时顺序节点(EPHEMERAL_SEQUENTIAL)

可以用来实现分布式锁

客户端调用create()方法创建名为“_locknode_/guid-lock-”的节点,需要注意的是,这里节点的创建类型需要设置为EPHEMERAL_SEQUENTIAL。
客户端调用getChildren(“_locknode_”)方法来获取所有已经创建的子节点,注意,这里不注册任何Watcher。
客户端获取到所有子节点path之后,如果发现自己在步骤1中创建的节点序号最小,那么就认为这个客户端获得了锁。
如果在步骤3中发现自己并非所有子节点中最小的,说明自己还没有获取到锁。此时客户端需要找到比自己小的那个节点,然后对其调用exist()方法,同时注册事件监听。
之后当这个被关注的节点被移除了,客户端会收到相应的通知。这个时候客户端需要再次调用getChildren(“_locknode_”)方法来获取所有已经创建的子节点,确保自己确实是最小的节点了,然后进入步骤3。

2. zookeeper集群,分布式锁怎么保证正确

1. 利用节点名称的唯一性来实现共享锁
ZooKeeper抽象出来的节点结构是一个和unix文件系统类似的小型的树状的目录结构。ZooKeeper机制规定:同一个目录下只能有一个唯一的文件名。例如:我们在Zookeeper目录/test目录下创建,两个客户端创建一个名为Lock节点,只有一个能够成功。
算法思路: 利用名称唯一性,加锁操作时,只需要所有客户端一起创建/test/Lock节点,只有一个创建成功,成功者获得锁。解锁时,只需删除/test/Lock节点,其余客户端再次进入竞争创建节点,直到所有客户端都获得锁。
基于以上机制,利用节点名称唯一性机制的共享锁算法流程如图所示:

该共享锁实现很符合我们通常多个线程去竞争锁的概念,利用节点名称唯一性的做法简明、可靠。
由上述算法容易看出,由于客户端会同时收到/test/Lock被删除的通知,重新进入竞争创建节点,故存在"惊群现象"。
使用该方法进行测试锁的性能列表如下:

总结 这种方案的正确性和可靠性是ZooKeeper机制保证的,实现简单。缺点是会产生“惊群”效应,假如许多客户端在等待一把锁,当锁释放时候所有客户端都被唤醒,仅仅有一个客户端得到锁。

2. 利用临时顺序节点实现共享锁的一般做法
首先介绍一下,Zookeeper中有一种节点叫做顺序节点,故名思议,假如我们在/lock/目录下创建节3个点,ZooKeeper集群会按照提起创建的顺序来创建节点,节点分别为/lock/0000000001、/lock/0000000002、/lock/0000000003。
ZooKeeper中还有一种名为临时节点的节点,临时节点由某个客户端创建,当客户端与ZooKeeper集群断开连接,则开节点自动被删除。
利用上面这两个特性,我们来看下获取实现分布式锁的基本逻辑:
客户端调用create()方法创建名为“locknode/guid-lock-”的节点,需要注意的是,这里节点的创建类型需要设置为EPHEMERAL_SEQUENTIAL。
客户端调用getChildren(“locknode”)方法来获取所有已经创建的子节点,同时在这个节点上注册上子节点变更通知的Watcher。
客户端获取到所有子节点path之后,如果发现自己在步骤1中创建的节点是所有节点中序号最小的,那么就认为这个客户端获得了锁。
如果在步骤3中发现自己并非是所有子节点中最小的,说明自己还没有获取到锁,就开始等待,直到下次子节点变更通知的时候,再进行子节点的获取,判断是否获取锁。
释放锁的过程相对比较简单,就是删除自己创建的那个子节点即可。
上面这个分布式锁的实现中,大体能够满足了一般的分布式集群竞争锁的需求。这里说的一般性场景是指集群规模不大,一般在10台机器以内。
不过,细想上面的实现逻辑,我们很容易会发现一个问题,步骤4,“即获取所有的子点,判断自己创建的节点是否已经是序号最小的节点”,这个过程,在整个分布式锁的竞争过程中,大量重复运行,并且绝大多数的运行结果都是判断出自己并非是序号最小的节点,从而继续等待下一次通知——这个显然看起来不怎么科学。客户端无端的接受到过多的和自己不相关的事件通知,这如果在集群规模大的时候,会对Server造成很大的性能影响,并且如果一旦同一时间有多个节点的客户端断开连接,这个时候,服务器就会像其余客户端发送大量的事件通知——这就是所谓的惊群效应。而这个问题的根源在于,没有找准客户端真正的关注点。

3. 如何实现一个zookeeper的分布式锁

1. 利用节点名称的唯一性来实现共享锁
ZooKeeper抽象出来的节点结构是一个和unix文件系统类似的小型的树状的目录结构。ZooKeeper机制规定:同一个目录下只能有一个唯一的文件名。例如:我们在Zookeeper目录/test目录下创建,两个客户端创建一个名为Lock节点,只有一个能够成功。
算法思路: 利用名称唯一性,加锁操作时,只需要所有客户端一起创建/test/Lock节点,只有一个创建成功,成功者获得锁。解锁时,只需删除/test/Lock节点,其余客户端再次进入竞争创建节点,直到所有客户端都获得锁。
基于以上机制,利用节点名称唯一性机制的共享锁算法流程如图所示:
该共享锁实现很符合我们通常多个线程去竞争锁的概念,利用节点名称唯一性的做法简明、可靠。
由上述算法容易看出,由于客户端会同时收到/test/Lock被删除的通知,重新进入竞争创建节点,故存在"惊群现象"。
使用该方法进行测试锁的性能列表如下:
总结 这种方案的正确性和可靠性是ZooKeeper机制保证的,实现简单。缺点是会产生“惊群”效应,假如许多客户端在等待一把锁,当锁释放时候所有客户端都被唤醒,仅仅有一个客户端得到锁。
2. 利用临时顺序节点实现共享锁的一般做法
首先介绍一下,Zookeeper中有一种节点叫做顺序节点,故名思议,假如我们在/lock/目录下创建节3个点,ZooKeeper集群会按照提起创建的顺序来创建节点,节点分别为/lock/0000000001、/lock/0000000002、/lock/0000000003。
ZooKeeper中还有一种名为临时节点的节点,临时节点由某个客户端创建,当客户端与ZooKeeper集群断开连接,则开节点自动被删除。
利用上面这两个特性,我们来看下获取实现分布式锁的基本逻辑:
客户端调用create()方法创建名为“locknode/guid-lock-”的节点,需要注意的是,这里节点的

4. zookeeper 临时节点 多久删除

如/myapp/data/1,在创建节点的时候还可以指定节点的类型:是永久节点,永久顺序节点,临时节点,临时顺序节点。
这个节点类型是非常强大的。永久节点一经创建就永久保留了,就像我们在文件系统上创建一个普通文件,这个文件的生命周期跟创建它的应用没有任何关系。
而临时节点呢,当创建这个临时节点的应用与zookeeper之间的会话过期之后就会被zookeeper自动删除了。

5. zookeeper创建有序节点,序号是否会被用完

ZooKeeper 节点是有生命周期的,这取决于节点的类型。在 ZooKeeper 中,节点类型可以分为持久节点(PERSISTENT )、临时节点(EPHEMERAL),以及时序节点(SEQUENTIAL ),具体在节点创建过程中,一般是组合使用,可以生成以下 4 种节点类型。
持久节点(PERSISTENT)
所谓持久节点,是指在节点创建后,就一直存在,直到有删除操作来主动清除这个节点——不会因为创建该节点的客户端会话失效而消失。
持久顺序节点(PERSISTENT_SEQUENTIAL)
这类节点的基本特性和上面的节点类型是一致的。额外的特性是,在ZK中,每个父节点会为他的第一级子节点维护一份时序,会记录每个子节点创建的先后顺序。基于这个特性,在创建子节点的时候,可以设置这个属性,那么在创建节点过程中,ZK会自动为给定节点名加上一个数字后缀,作为新的节点名。这个数字后缀的范围是整型的最大值。
临时节点(EPHEMERAL)
和持久节点不同的是,临时节点的生命周期和客户端会话绑定。也就是说,如果客户端会话失效,那么这个节点就会自动被清除掉。注意,这里提到的是会话失效,而非连接断开。另外,在临时节点下面不能创建子节点。
临时顺序节点(EPHEMERAL_SEQUENTIAL)
可以用来实现分布式锁
客户端调用create()方法创建名为“_locknode_/guid-lock-”的节点,需要注意的是,这里节点的创建类型需要设置为EPHEMERAL_SEQUENTIAL。
客户端调用getChildren(“_locknode_”)方法来获取所有已经创建的子节点,注意,这里不注册任何Watcher。
客户端获取到所有子节点path之后,如果发现自己在步骤1中创建的节点序号最小,那么就认为这个客户端获得了锁。
如果在步骤3中发现自己并非所有子节点中最小的,说明自己还没有获取到锁。此时客户端需要找到比自己小的那个节点,然后对其调用exist()方法,同时注册事件监听。
之后当这个被关注的节点被移除了,客户端会收到相应的通知。这个时候客户端需要再次调用getChildren(“_locknode_”)方法来获取所有已经创建的子节点,确保自己确实是最小的节点了,然后进入步骤3。

6. 如何判断zookeeper节点是持久节点还是临时节点

zookeeper 持久节点:该数据节点被创建后,就会一直存在于zookeeper服务器上,直到有删除操作来主动删除这个节点。
zookeeper临时节点:临时节点的生命周期和客户端会话绑定在一起,客户端会话失效,则这个节点就会被自动清除。

我们执行 sh zkCli.sh -server 127.0.0.1:2181登录zookeeper,分别创建一个持久节点和临时节点。
create /yujie-persistent "" //创建持久节点

create -e /yujie-ephemeral "" // 创建临时节点

7. zookeeper 到底是个什么

1. 什么是Zookeeper
大数据集群包括多种类型的服务节点,如何协调各节点之间的服务,需要一种强有力的工具来完成。如果我们把大数据集群中的每个服务节点当作一种动物,那么ZooKeeper便是这里的动物管理员了。借助网络的定义,ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务。
Zookeeper提供的服务功能有:
1) 数据注册功能;
2) 数据查询功能;
3) 数据监听功能;
Zookeeper能用来做什么:
a) 分布式系统中主从协调
b) 分布式系统中配置信息同步
c) 分布式系统中分布式共享锁(Master选举)
d) 分布式系统中负载均衡
e) 分布式系统中明名称服务
2. Zookeeper的数据组织形式
Zookeeper的数据存储形式是key-value, key类型与平时我们看到的类型不太一样,这里是一种类似路径的形式,如”/aa/bb”。 value值是byte[]字节数组类型。 我们称它为ZNode。
ZNode根据其特点不同,可以分为三种类型:持久(persistent)节点、顺序(sequential)节点和临时(ephemeral)节点。
持久节点: 一经创建,就会一直存储,除非客户端主动删除该节点。
顺序节点:客户端在创建此类节点时,会在该节点后拼接上一个序号,类似/aa0000000001,/aa0000000002...
临时节点:创建此类节点时,客户端必须和zookeeper服务端保持心跳。
其中还可以将这三种节点进行组合:
永久节点+顺序节点;
临时节点+顺序节点;

8. zookeeper 临时节点多长时间能够删掉

(1)解压为zookeepertar -xf -C /home/myuser/zookeeper/ 复制zookeeper文件夹3份,分别重名名为zookeeperA,zookeeperB,zookeeperC。 并且创建数据快照以及日志存放文件夹,命名为zooA,zooB,zooC。 (2)编辑对应的zookeeper配置文件

9. Consul和ZooKeeper,Doozerd,Etcd的区别

ZooKeeper、Doozerd、Etcd在架构上都非常相似,它们都有服务节点(server node),而这些服务节点的操作都要求达到节点的仲裁数(通常,节点的仲裁数遵循的是简单多数原则)。此外,它们都是强一致性的,并且提供各种原语。通过应用程序内部的客户端lib库,这些原语可以用来构建复杂的分布式系统。
Consul在一个单一的数据中心内部使用服务节点。在每个数据中心中,为了Consule能够运行,并且保持强一致性,Consul服务端需要仲裁。然而,Consul原生支持多数据中心,就像一个丰富gossip系统连接服务器节点和客户端一样。
当提供K/V存储的时候,这些系统具有大致相同的语义,读取是强一致性的,并且在面对网络分区的时候,为了保持一致性,读取的可用性是可以牺牲的。然而,当系统应用于复杂情况时,这种差异会变得更加明显。
这些系统提供的语义对开发人员构建服务发现系统很有吸引力,但更重要的是,强调开发人员要构建这些特性。ZooKeeper
只提供一个原始的K/V值存储,并要求开发人员构建他们自己的系统来提供服务发现功能。相反的是,Consul提供了一个坚固的框架,这不仅仅是为了提供
服务发现功能,也是为了减少推测工作和开发工作量。客户端只需简单地完成服务注册工作,然后使用一个DNS接口或者HTTP接口就可以执行工作了,而其他
系统则需要你定制自己的解决方案。
一个令人信服的服务发现框架必须包含健康检测功能,并且考虑失败的可能性。要是节点失败或者服务故障了,即使开发人员知道节点A提供Foo服务也是没用的。Navie系统利用的是心跳、周期性更新和TTLs,这些系统不仅需要工作量与节点数量成线性关系,并且对服务器的固定数量提出了要求。此外,故障检测窗口的存活时间至少要和TTL一样长。
ZooKeeper提供了临时节点,这些临时节点就是K/V条目,当客户端断开连接时,这些条目会被删除。虽
然这些临时节点比一个心跳系统更高级,但仍存在固有的扩展性问题,并且会增加客户端的复杂性。与ZooKeeper服务器端连接时,客户端必须保持活跃,
并且去做持续性连接。此外,ZooKeeper还需要胖客户端,而胖客户端是很难编写,并且胖客户端会经常导致调试质询。
Consul使用一个完全不同的架构进行健康检测。Consul
客户端可以运行在集群中的每一个节点上,而不是拥有服务器节点,这些Consul客户端属于一个gossip pool,gossip
pool提供了一些功能,包括分布式健康检测。gossip协议提供了一个高效的故障检测工具,这个故障检测工具可以应用到任意规模的集群,而不仅仅是作
用于特定的服务器组。同时,这个故障检测工具也支持在本地进行多种健康检测。与此相反,ZooKeeper的临时节点只是一个非常原始的活跃度检测。因为
有了Consul,客户端可以检测web服务器是否正在返回200状态码,内存利用率是否达到临界点,是否有足够的数据存储盘等。此
外,ZooKeeper会暴露系统的复杂性给客户端,为了避免ZooKeeper出现的这种情况,Consul只提供一个简单HTTP接口。
Consul为服务发现、健康检测、K/V存储和多数据中心提供了一流的支持。为
了支持任意存储,而不仅仅是简单的K/V存储,其他系统都要求工具和lib库要率先建立。然而,通过使用客户端节点,Consul提供了一个简单的
API,这个API的开发只需要瘦客户端就可以了,
而且,通过使用配置文件和DNS接口,开发人员可以建立完整的服务发现解决方案,最终,达到避免开发API的目的。