Ⅰ sql 程序解释
id小于500就继续循环。假设表内没有ID为0的书籍。
输出:
1--对应的书籍名称
3--对应的书籍名称
5--对应的书籍名称
......
7--对应的书籍名称
9--对应的书籍名称
11--对应的书籍名称
......
一直循环
......
495--对应的书籍名称
497--对应的书籍名称
499--对应的书籍名称
......
*** the end ***
是输出奇数,jackyc23 的写的很好很详细
Ⅱ 数据库SQL语言的程序问题
...你给0分!!!
Ⅲ sql中 事务的作用 什么情况下要用事务 需要什么条件
什么是事务:事务是一个不可分割的工作逻辑单元,在数据库系统上执行并发操作时事务是做为最小的控制单元来使用的。他包含的所有数据库操作命令作为一个整体一起向系提交或撤消,这一组数据库操作命令要么都执行,要么都不执行。
简单例子银行转帐,如果甲把钱汇出去了,但是银行发生了点问题,钱没有汇到乙的钱包里,那钱怎么办。
这个时候如果用上事务,钱就会回滚到甲,一个减少,一个增加,要么执行,要么不执行
Ⅳ sql题目。
主键
单元格
Ⅳ SQL事务概念是什么,举个例子说明什么样的东西是事务,与程序又有何区别,
数据库事务是构成单一逻辑工作单元的操作集合。
举例:转账是生活中常见的操作,比如从A账户转账100元到B账号。站在用户角度而言,这是一个逻辑上的单一操作,然而在数据库系统中,至少会分成两个步骤来完成:
1、将A账户的金额减少100元
2、将B账户的金额增加100元。
与程序的区别:一个程序中包含多个事务。在关系数据库中,一个事务可以是一条SQL语句,一组SQL语句或整个程序。
(5)sql程序最小工作单元扩展阅读:
事务必须具备四个属性,简称ACID属性:
1、原子性(Atomicity):事务是一个完整的操作。事务的各步操作是不可分的(原子的);要么都执行,要么都不执行。
2、一致性(Consistency):当事务完成时,数据必须处于一致状态。
3、隔离性(Isolation):对数据进行修改的所有并发事务是彼此隔离的,这表明事务必须是独立的,它不应以任何方式依赖于或影响其他事务。
4、永久性(Durability):事务完成后,它对数据库的修改被永久保持,事务日志能够保持事务的永久性。
Ⅵ 高分求sql数据库问题
SQL数据库操作完全手册
SQL数据库完全手册
日期:2001-3-24 0:47:00
出处:电脑报
作者:未知
SQL是Structured Quevy Language(结构化查询语言)的缩写。SQL是专为数据库而建立的操作命令集,是一种功能齐全的数据库语言。在使用它时,只需要发出“做什么”的命令,“怎么做”是不用使用者考虑的。SQL功能强大、简单易学、使用方便,已经成为了数据库操作的基础,并且现在几乎所有的数据库均支持SQL。
##1 二、SQL数据库数据体系结构
SQL数据库的数据体系结构基本上是三级结构,但使用术语与传统关系模型术语不同。在SQL中,关系模式(模式)称为“基本表”(base table);存储模式(内模式)称为“存储文件”(stored file);子模式(外模式)称为“视图”(view);元组称为“行”(row);属性称为“列”(column)。名称对称如^00100009a^:
##1 三、SQL语言的组成
在正式学习SQL语言之前,首先让我们对SQL语言有一个基本认识,介绍一下SQL语言的组成:
1.一个SQL数据库是表(Table)的集合,它由一个或多个SQL模式定义。
2.一个SQL表由行集构成,一行是列的序列(集合),每列与行对应一个数据项。
3.一个表或者是一个基本表或者是一个视图。基本表是实际存储在数据库的表,而视图是由若干基本表或其他视图构成的表的定义。
4.一个基本表可以跨一个或多个存储文件,一个存储文件也可存放一个或多个基本表。每个存储文件与外部存储上一个物理文件对应。
5.用户可以用SQL语句对视图和基本表进行查询等操作。在用户角度来看,视图和基本表是一样的,没有区别,都是关系(表格)。
6.SQL用户可以是应用程序,也可以是终端用户。SQL语句可嵌入在宿主语言的程序中使用,宿主语言有FORTRAN,COBOL,PASCAL,PL/I,C和Ada语言等。SQL用户也能作为独立的用户接口,供交互环境下的终端用户使用。
##1 四、对数据库进行操作
SQL包括了所有对数据库的操作,主要是由4个部分组成:
1.数据定义:这一部分又称为“SQL DDL”,定义数据库的逻辑结构,包括定义数据库、基本表、视图和索引4部分。
2.数据操纵:这一部分又称为“SQL DML”,其中包括数据查询和数据更新两大类操作,其中数据更新又包括插入、删除和更新三种操作。
3.数据控制:对用户访问数据的控制有基本表和视图的授权、完整性规则的描述,事务控制语句等。
4.嵌入式SQL语言的使用规定:规定SQL语句在宿主语言的程序中使用的规则。
下面我们将分别介绍:
##2 (一)数据定义
SQL数据定义功能包括定义数据库、基本表、索引和视图。
首先,让我们了解一下SQL所提供的基本数据类型:(如^00100009b^)
1.数据库的建立与删除
(1)建立数据库:数据库是一个包括了多个基本表的数据集,其语句格式为:
CREATE DATABASE <数据库名> 〔其它参数〕
其中,<数据库名>在系统中必须是唯一的,不能重复,不然将导致数据存取失误。〔其它参数〕因具体数据库实现系统不同而异。
例:要建立项目管理数据库(xmmanage),其语句应为:
CREATE DATABASE xmmanage
(2) 数据库的删除:将数据库及其全部内容从系统中删除。
其语句格式为:DROP DATABASE <数据库名>
例:删除项目管理数据库(xmmanage),其语句应为:
DROP DATABASE xmmanage
2.基本表的定义及变更
本身独立存在的表称为基本表,在SQL语言中一个关系唯一对应一个基本表。基本表的定义指建立基本关系模式,而变更则是指对数据库中已存在的基本表进行删除与修改。
(1)基本表的定义:基本表是非导出关系,其定义涉及表名、列名及数据类型等,其语句格式为:
CREATE TABLE〔<数据库名>.〕<表名>
(<列名> 数据类型 〔缺省值〕 〔NOT NULL / NULL〕
〔,<列名> 数据类型 〔缺省值〕 〔NOT NULL / NULL〕〕......
〔,UNIQUE (列名〔,列名〕......)〕
〔,PRIMARY KEY(列名)〕
〔,FOREIGN KEY(列名〔,列名〕......)REFERENCE <表名>(列名〔,列名〕......)〕
〔,CHECK(条件)〕 〔其它参数〕)
其中,〈数据库名〉.〕指出将新建立的表存放于该数据库中;
新建的表由两部分组成:其一为表和一组列名,其二是实际存放的数据(即可在定义表的同时,直接存放数据到表中);
列名为用户自定义的易于理解的名称,列名中不能使用空格;
数据类型为上面所介绍的几种标准数据类型;
〔NOT NULL/NULL〕指出该列是否允许存放空值,SQL语言支持空值的概念,所谓空值是“不知道”或“无意义”的值,值得注意的是数据“0”和空格都不是空值,系统一般默认允许为空值,所以当不允许为空值时,必须明确使用NOT NULL;
〔,UNIQUE〕将列按照其规定的顺序进行排列,如不指定排列顺序,则按列的定义顺序排列;
〔PRIMARY KEY〕用于指定表的主键(即关系中的主属性),实体完整性约束条件规定:主键必须是唯一的,非空的;
〔,FOREIGN KEY (列名〔,列名〕......) REFERENCE<表名>(列名〔,列名〕......)〕是用于指定外键参照完整性约束条件,FOREIGN KEY指定相关列为外键,其参照对象为另外一个表的指定列,即使用REFERENCE引入的外表中的列,当不指定外表列名时,系统将默认其列名与参照键的列名相同,要注意的是:使用外键时必须使用参照,另外数据的外键参照完整性约束条件规定:外键的值要么与相对应的主键相同,要么为空值(具体由实现系统不同而异)
〔,CHECK〕用于使用指定条件对存入表中的数据进行检查,以确定其合法性,提高数据的安全性。
例:要建立一个学生情况表(student)
CREATE TABLE student //创建基本表student
(st_class CHAR(8),// 定义列st_class班级,数据类型为8位定长字符串
st_no CHAR(10) NOT NULL,//定义列st_no学号,类型为10位定长字符串,非空
st_name CHAR(8) NOT NULL,//定义列st_name姓名,类型为8位定长字符串,非空
st_sex CHAR(2),//定义列st_sex性别,类型为2位定长字符串
st_age SMALLINT,//定义列st_age年龄,类型为短整型
PRIMARY KEY (st_no))//定义st_no学号为主键。
例:要建立课程设置表(subject)
CREATE TABLE subject//创建基本表subject
(su_no CHAR(4) NOT NULL,// 定义列su_no课号,类型为4位定长字符串,非空
su_subject CHAR(20) NOT NULL,// 定义列su_subject课程名,类型为20位定长字符串,非空
su_credit INTEGER,// 定义列su_credit学分,类型为长整数
su_period INTEGER,//定义列su_period学时,类型为长整数
su_preno CHAR(4),//定义列su_preno先修课号,类型为4位定长字符串
PRIMARY KEY(su_no))//定义su_no课号为主键。
例:要建立学生选课表(score)
CREATE TABLE score //创建基本表score
(st_no CHAR(10),//定义列st_no学号,类型为10位定长字符串
su_no CHAR(4),//定义列su_no课号,类型为4位定长字符串
sc_score INTEGER NULL,//定义列sc_score,类型为长整形,可以为空值
FOREIGN KEY (st_no) REFERENCE student,//从表student中引入参照外键st_no,以确保本表与表student的关联与同步
FOREIGN KEY (suno) REFERENCE subject)//从表subject中引入参照外键su_no,以确保本表与表subject的关联与同步
(2)基本表的删除:用以从数据库中删除一个基本表及其全部内容,其语句格式为:
DROP TABLE〔<数据库名>.〕表名
例如:将上面建立的表都删除
DROP TABLE student,subject,score
(3)基本表的修改:在基本表建立并使用一段时间后,可能需要根据实际要求对基本表的结构进行修改,即增加新的属性或删除属性。
增加属性的语句格式为:
ALTER TABLE 〔<数据库名>.〕表名 ADD
(<列名> 数据类型 〔缺省值〕 〔NOT NULL / NULL〕
〔,<列名> 数据类型〔缺省值〕〔NOT NULL / NULL〕〕......
〔,UNIQUE (列名〔,列名〕......)〕
〔,PRIMARY KEY(列名)〕
〔,FOREIGN KEY(列名〔,列名〕......) REFERENCE <表名>(列名〔,列名〕......)〕
〔,CHECK(条件)〕〔其它参数〕)
例如:在基本表student中加入列stborn出生日期,数据类型为DATE,且不能为空值
ALTER TABLE student ADD (stborn DATE NOT NULL)
删除属性的语句格式为:
ALTER TABLE 〔<数据库名>.〕表名 DROP
( <列名> 数据类型 〔缺省值〕〔NOT NULL / NULL〕
〔,<列名> 数据类型 〔缺省值〕〔NOT NULL / NULL〕〕......)
例如:将基本表student中的列st_age删除
ALTER TABLE student DROP (st_age)
3.视图定义与删除
在SQL中,视图是外模式一级数据结构的基本单位。它是从一个或几个基本表中导出的表,是从现有基本表中抽取若干子集组成用户的“专用表”。这种构造方式必须使用SQL中的SELECT语句来实现。在定义一个视图时,只是把其定义存放在系统的数据中,而并不直接存储视图对应的数据,直到用户使用视图时才去求得对应的数据。
(1)视图的定义:定义视图可以使用CREATE VIEW语句实现,其语句格式为:
CREATE VIEW 视图名 AS SELECT语句
从一个基本表中导出视图:
例:从基本表student中导出只包括女学生情况的视图
CREATE VIEW WOMANVIEW AS //创建一个视图WOMANVIEW
SELECT st_class,st_no,st_name,st_age //选择列st_class,st_no,st_name,st_age显示
FROM student //从基本表student引入
WHERE st_sex=‘女’//引入条件为性别为“女”,注意字符变量都使用单引号引用
从多个基本表中导出视图:
例如:从基本表student和score中导出只包括女学生且分数在60分以上的视图
CREATEVIEW WOMAN_SCORE AS //定义视图WOMANSCORE
SELECT student.st_class,student.st_no,student.st_name,student.st_age,score.sc_score //有选择性显示相关列
FROM student.score //从基本表student和score中引入
WHERE student.st_sex=‘女’AND score.sc_score>=60 AND student.st_no=score.st_no //选择条件:性别为“女” 且分数在60分以上。并使用st_no将两表联系起来。
以后如果进行这一视图的应用,则只需使用语句
SELECT * FROM WOMAN_SCORE //其中“*”为通配符,代表所有元素
(2)视图的删除:用于删除已不再使用的视图,其语句格式如下:
DROP VIEW 视图名
例:将上面建立的WOMAN_SCORE视图删除
DROP VIEW WOMAN_SCORE
4.索引的定义与删除
索引属于物理存储概念,而不是逻辑的概念。在SQL中抛弃了索引概念,直接使用主键概念。值得一提的是,有些关系DBMS同时包括索引机制和主键机制,这里我们推荐使用主键机制,因为它对系统资源占用较低且效率较高。
(1)索引的定义:索引是建立在基本表之上的,其语句格式为:
CREATE 〔UNIQUE〕 INDEX 索引名 ON
〔<数据库名>.〕表名(列名 〔ASC/DESC〕〔,列名 〔ASC/DESC〕〕......)
这里,保留字UNIQUE表示基本表中的索引值不允许重复,若缺省则表示索引值在表中允许重复;DESC表示按索引键降序排列,若缺省或ASC表示升序排列。
例:对基本表student中的st_no和st_age建立索引,分别为升序与降序,且索引值不允许重复
CREATE UNIQUE INDEX STINDEX ON//创建索引STINDEX
student(st_no ASC,st_age DESC)//对student中的st_no和st_age建立索引
(2)索引的删除:
DROP INDEX 索引名
例:删除上面建立的索引STINDEX
DROP INDEX STINDEX
##2 (二)数据查询
SQL是一种查询功能很强的语言,只要是数据库存在的数据,总能通过适当的方法将它从数据库中查找出来。SQL中的查询语句只有一个:SELECT,它可与其它语句配合完成所有的查询功能。SELECT语句的完整语法,可以有6个子句。完整的语法如下:
SELECT 目标表的列名或列表达式集合
FROM 基本表或(和)视图集合
〔WHERE条件表达式〕
〔GROUP BY列名集合
〔HAVING组条件表达式〕〕
〔ORDER BY列名〔集合〕…〕
整个语句的语义如下:从FROM子句中列出的表中,选择满足WHERE子句中给出的条件表达式的元组,然后按GROUPBY子句(分组子句)中指定列的值分组,再提取满足HAVING子句中组条件表达式的那些组,按SELECT子句给出的列名或列表达式求值输出。ORDER子句(排序子句)是对输出的目标表进行重新排序,并可附加说明ASC(升序)或DESC(降序)排列。
在WHERE子句中的条件表达式F中可出现下列操作符和运算函数:
算术比较运算符:<,<=,>,>=,=,<>。
逻辑运算符:AND,OR,NOT。
集合运算符:UNION(并),INTERSECT(交),EXCEPT(差)。
集合成员资格运算符:IN,NOT IN
谓词:EXISTS(存在量词),ALL,SOME,UNIQUE。
聚合函数:AVG(平均值),MIN(最小值),MAX(最大值),SUM(和),COUNT(计数)。
F中运算对象还可以是另一个SELECT语句,即SELECT语句可以嵌套。
上面只是列出了WHERE子句中可出现的几种主要操作,由于WHERE子句中的条件表达式可以很复杂,因此SELECT句型能表达的语义远比其数学原形要复杂得多。
下面,我们以上面所建立的三个基本表为例,演示一下SELECT的应用:
1.无条件查询
例:找出所有学生的的选课情况
SELECT st_no,su_no
FROM score
例:找出所有学生的情况
SELECT*
FROM student
“*”为通配符,表示查找FROM中所指出关系的所有属性的值。
2.条件查询
条件查询即带有WHERE子句的查询,所要查询的对象必须满足WHERE子句给出的条件。
例:找出任何一门课成绩在70以上的学生情况、课号及分数
SELECT UNIQUE student.st_class,student.st_no,student.st_name,student.st_sex,student.st_age,score.su_no,score.score
FROM student,score
WHERE score.score>=70 AND score.stno=student.st_no
这里使用UNIQUE是不从查询结果集中去掉重复行,如果使用DISTINCT则会去掉重复行。另外逻辑运算符的优先顺序为NOT→AND→OR。
例:找出课程号为c02的,考试成绩不及格的学生
SELECT st_no
FROM score
WHERE su_no=‘c02’AND score<60
3.排序查询
排序查询是指将查询结果按指定属性的升序(ASC)或降序(DESC)排列,由ORDER BY子句指明。
例:查找不及格的课程,并将结果按课程号从大到小排列
SELECT UNIQUE su_no
FROM score
WHERE score<60
ORDER BY su_no DESC
4.嵌套查询
嵌套查询是指WHERE子句中又包含SELECT子句,它用于较复杂的跨多个基本表查询的情况。
例:查找课程编号为c03且课程成绩在80分以上的学生的学号、姓名
SELECT st_no,st_name
FROM student
WHERE stno IN (SELECT st_no
FROM score
WHERE su_no=‘c03’ AND score>80 )
这里需要明确的是:当查询涉及多个基本表时用嵌套查询逐次求解层次分明,具有结构程序设计特点。在嵌套查询中,IN是常用到的谓词。若用户能确切知道内层查询返回的是单值,那么也可用算术比较运算符表示用户的要求。
5.计算查询
计算查询是指通过系统提供的特定函数(聚合函数)在语句中的直接使用而获得某些只有经过计算才能得到的结果。常用的函数有:
COUNT(*) 计算元组的个数
COUNT(列名) 对某一列中的值计算个数
SUM(列名) 求某一列值的总和(此列值是数值型)
AVG(列名) 求某一列值的平均值(此列值是数值型)
MAX(列名) 求某一列值中的最大值
MIN(列名) 求某一列值中的最小值
例:求男学生的总人数和平均年龄
SELECT COUNT(*),AVG(st_age)
FROM student
WHERE st_sex=‘男’
例:统计选修了课程的学生的人数
SELECT COUNT(DISTINCT st_no)
FROM score
注意:这里一定要加入DISTINCT,因为有的学生可能选修了多门课程,但统计时只能按1人统计,所以要使用DISTINCT进行过滤。
##2 (三) 数据更新
数据更新包括数据插入、删除和修改操作。它们分别由INSERT语句,DELETE语句及UPDATE语句完成。这些操作都可在任何基本表上进行,但在视图上有所限制。其中,当视图是由单个基本表导出时,可进行插入和修改操作,但不能进行删除操作;当视图是从多个基本表中导出时,上述三种操作都不能进行。
1.数据插入
将数据插入SQL的基本表有两种方式:一种是单元组的插入,另一种是多元组的插入。
单元组的插入:向基本表score中插入一个成绩元组(100002,c02,95),可使用以下语句:
INSERT INTO score(st_no,su_no,score) VALUES(‘100002’,‘c02’,95)
由此,可以给出单元组的插入语句格式:
INSERT INTO表名(列名1〔,列名2〕…) VALUES(列值1〔,列值2〕…)
其中,列名序列为要插入值的列名集合,列值序列为要插入的对应值。若插入的是一个表的全部列值,则列名可以省略不写如上面的(st_no,su_no,score)可以省去;若插入的是表的部分列值,则必须列出相应列名,此时,该关系中未列出的列名取空值。
多元组的插入:这是一种把SELECT语句查询结果插入到某个已知的基本表中的方法。
例如:需要在表score中求出每个学生的平均成绩,并保留在某个表中。此时可以先创建一个新的基本表stu_avggrade,再用INSERT语句把表score中求得的每一个学生的平均成绩(用SELECT求得)插入至stu_avggrade中。
CREATE TABLE stu_avggrade
(st_no CHAR(10) NOT NULL,//定义列st_no学号,类型为10位定长字符串,非空
age_grade SMALLINT NOT NULL )// 定义列age_grade平均分,类型为短整形,非空
INSERT INTO stu_avggrade(st_no,age_grade)
SELECT st_no,AVG(score)
FROM score
GROUP BY st_no //因为要求每一个学生所有课程的平均成绩,必须按学号分组进行计算。
2.数据删除
SQL的删除操作是指从基本表中删除满足WHERE<条件表达式>的记录。如果没有WHERE子句,则删除表中全部记录,但表结构依然存在。其语句格式为:
DELETE FROM表名〔WHERE 条件表达式〕
下面举例说明:
单元组的删除:把学号为100002的学生从表student中删除,可用以下语句:
DELETE FROM student
WHERE st_no=‘100002’//因为学号为100002的学生在表student中只有一个,所以为单元组的删除
多元组的删除:学号为100002的成绩从表score中删除,可用以下语句:
DELETE FROM score
WHERE st_no=‘100002’//由于学号为100002的元组在表score中可能有多个,所以为多元组删除
带有子查询的删除操作:删除所有不及格的学生记录,可用以下语句
DELETE FROM student
WHERE st_no IN
(SELETE st_no
FROM score
WHERE score<60)
3.数据修改
修改语句是按SET子句中的表达式,在指定表中修改满足条件表达式的记录的相应列值。其语句格式如下:
UPDATE 表名 SET 列名=列改变值〔WHERE 条件表达式〕
例:把c02的课程名改为英语,可以用下列语句:
UPDATE subject
SET su_subject=‘英语’
WHERE su_no=‘c02’
例:将课程成绩达到70分的学生成绩,再提高10%
UPDATE score
SET score=1.1*score
WHERE score>=70
SQL的删除语句和修改语句中的WHERE子句用法与SELECT中WHERE子句用法相同。数据的删除和修改操作,实际上要先做SELECT查询操作,然后再把找到的元组删除或修改。
##2 (四) 数据控制
由于数据库管理系统是一个多用户系统,为了控制用户对数据的存取权利,保持数据的共享及完全性,SQL语言提供了一系列的数据控制功能。其中,主要包括安全性控制、完整性控制、事务控制和并发控制。
1.安全性控制
数据的安全性是指保护数据库,以防非法使用造成数据泄露和破坏。保证数据安全性的主要方法是通过对数据库存取权力的控制来防止非法使用数据库中的数据。即限定不同用户操作不同的数据对象的权限。
存取权控制包括权力的授与、检查和撤消。权力授与和撤消命令由数据库管理员或特定应用人员使用。系统在对数据库操作前,先核实相应用户是否有权在相应数据上进行所要求的操作。
(1)权力授与:权力授与有数据库管理员专用的授权和用户可用的授权两种形式。数据库管理员专用授权命令格式如下:
|CONNECT |
GRANT|RESOURCE|TO 用户名〔IDENTIFED BY 口令〕
|DBA |
其中,CONNECT表示数据库管理员允许指定的用户具有连接到数据库的权力,这种授权是针对新用户;RESOURCE表示允许用户建立自己的新关系模式,用户获得CONNECT权力后,必须获得RESOURCE权力才能创建自己的新表;DBA表示数据库管理员将自己的特权授与指定的用户。若要同时授与某用户上述三种授权中的多种权力,则必须通过三个相应的GRANT命令指定。
另外,具有CONNECT和RESOURCE授权的用户可以建立自己的表,并在自己建立的表和视图上具有查询、插入、修改和删除的权力。但通常不能使用其他用户的关系,除非能获得其他用户转授给他的相应权力。
例:若允许用户SSE连接到数据库并可以建立他自己的关系,则可通过如下命令授与权力:
GRANT CONNECT TO SSE INENTIFIED BY BD1928
GRANT RESOURCE TO SSE
用户可用的授权是指用户将自己拥有的部分或全部权力转授给其他用户的命令形式,其命令格式如下:
|SELECT |
|INSERT |
|DELETE |
GRANT|UPDATE(列名1[,列名2]…)|ON|表名 |TO|用户名|〔WITH GRANT OPTION〕
|ALTER | |视图名| |PUBLIC|
|NDEX |
|ALL |
若对某一用户同时授与多种操作权力,则操作命令符号可用“,”相隔。
PUBLIC 表示将权力授与数据库的所有用户,使用时要注意:
任选项WITH GRANT OPTION表示接到授权的用户,具有将其所得到的同时权力再转授给其他用户权力。
例:如果将表student的查询权授与所有用户,可使用以下命令:
GRANT SELECT ON student TO PUBLIC
例:若将表subject的插入及修改权力授与用户SSE并使得他具有将这种权力转授他人的权力,则可使用以下命令:
GRANT INSERT,UPDATE(su_subject) ON subject TO SSE WITH GRANT OPTION
这里,UPDATE后面跟su_subject是指出其所能修改的列。
(2)权力回收:权力回收是指回收指定用户原已授与的某些权力。与权力授与命令相匹配,权力回收也有数据库管理员专用和用户可用的两种形式。
DBA专用的权力回收命令格式为:
|CONNECT |
REVOKE|RESOURCE|FROM用户名
|DBA |
用户可用的权力回收命令格式为:
|SELECT |
|INSERT |
|DELETE |
REVOKE|UPDATE(列名1〔,列名2〕…) |ON|表名 |FROM |用户名|
|ALTER | |视图名| |PUBLIC|
|INDEX |
|ALL |
例:回收用户SSE的DBA权力:
REVOKE DBA FROM SSE
2.完整性控制
数据库的完整性是指数据的正确性和相容性,这是数据库理论中的重要概念。完整性控制的主要目的是防止语义上不正确的数据进入数据库。关系系统中的完整性约束条件包括实体完整性、参照完整性和用户定义完整性。而完整性约束条件的定义主要是通过CREATE TABLE语句中的〔CHECK〕子句来完成。另外,还有一些辅助命令可以进行数据完整性保护。如UNIQUE和NOT NULL,前者用于防止重复值进入数据库,后者用于防止空值。
3.事务控制
事务是并发控制的基本单位,也是恢复的基本单位。在SQL中支持事务的概念。所谓事务,是用户定义的一个操作序列(集合),这些操作要么都做,要么一个都不做,是一个不可分割的整体。一个事务通常以BEGIN TRANSACTION开始,以COMMIT或ROLLBACK结束。
SQL提供了事务提交和事务撤消两种命令:
(1)事务提交:事务提交的命令为:
COMMIT 〔WORK〕
事务提交标志着对数据库的某种应用操作成功地完成,所有对数据库的操作都必须作为事务提交给系统时才有效。事务一经提交就不能撤消。
(2)事务撤消:事务撤消的命令是:
ROLLBACK 〔WORK〕
事务撤消标志着相应事务对数据库操作失败,因而要撤消对数据库的改变,即要“回滚”到相应事务开始时的状态。
当系统非正常结束时(如掉电、系统死机),将自动执行ROLLBACK命令
SQL还提供了自动提交事务的机制,其命令为:
SET AUTO COMMIT ON
其对应的人工工作方式命令为:
SET AUTO COMMIT OFF
一旦规定了自动提交事务方式,则系统将每条SQL命令视为一个事务,并在命令成功执行完成时自动地完成事务提交。
4.并发控制
数据库作为共享资源,允许多个用户程序并行地存取数据。当多个用户并行地操作数据库时,需要通过并发控制对它们加以协调、控制,以保证并发操作的正确执行,并保证数据库的一致性。
在SQL中,并发控制采用封锁技术实现,当一个事务欲对某个数据对象操作时,可申请对该对象加锁,取得对数据对象的一定控制,以限制其他事务对该对象的操作。其语句格式为:
|SHARE |
LOCK TABLE 表名(或表名集合)IN |EXCLUSVE |MODE 〔NOWAIT]
|SHARE UPDATE|
其中,表名(或表名集合)中指出封锁对象,若为多个表名,则各个表名间以“,”相隔;任选项NOWAIT表示多个用户要求封锁相同的关系时,后来提出的要求会被立即退回去,否则会等待该资源释放。
SHARE表示共享封锁方式;EXCLUSIVE表示独占封锁方式;SHARE UPDAE表示共享更新封锁方式。其中共享封锁方式允许其他事务读同一数据,但防止其他事务对已封锁的表进行更新,该锁主要防止在表的两次查询之间对该表的改动;共享更新封锁SHARE UPDATE是一个行封锁机制,
Ⅶ SQL事务概念问题
所谓事务是用户定义的一个数据库操作序列,这些操作要么全做要么全不做,是一个不可分割的工作单位。例如,在关系数据库中,一个事务可以是一条SQL语句、一组SQL语句或整个程序。
事务和程序是两个概念。一般地讲,一个程序中包含多个事务。
事务的开始与结束可以由用户显式控制。如果用户没有显式地定义事务,则由DBMS按缺省规定自动划分事
务。在SQL语言中,定义事务的语句有三条:
BEGIN TRANSACTION
COMMIT
ROLLBACK
Ⅷ SQL语句执行流程与顺序原理解析
SQL语句执行流程与顺序原理解析
Oracle语句执行流程
第一步:客户端把语句发给服务器端执行
当我们在客户端执行SQL语句时,客户端会把这条SQL语句发送给服务器端,让服务器端的进程来处理这语句。也就是说,Oracle 客户端是不会做任何的操作,他的主要任务就是把客户端产生的一些SQL语句发送给服务器端。服务器进程从用户进程把信息接收到后, 在PGA 中就要此进程分配所需内存,存储相关的信息,如:在会话内存存储相关的登录信息等。
虽然在客户端也有一个数据库进程,但是,这个进程的作用跟服务器上的进程作用是不相同的,服务器上的数据库进程才会对SQL 语句进行相关的处理。不过,有个问题需要说明,就是客户端的进程跟服务器的进程是一一对应的。也就是说,在客户端连接上服务器后,在客户端与服务器端都会形成一个进程,客户端上的我们叫做客户端进程,而服务器上的我们叫做服务器进程。
第二步:语句解析
当客户端把SQL语句传送到服务器后,服务器进程会对该语句进行解析。这个解析的工作是在服务器端所进行的,解析动作又可分为很多小动作。
1)查询高速缓存(library cache)
服务器进程在接到客户端传送过来的SQL语句时,不会直接去数据库查询。服务器进程把这个SQL语句的字符转化为ASCII等效数字码,接着这个ASCII码被传递给一个HASH函数,并返回一个hash值,然后服务器进程将到shared pool中的library cache(高速缓存)中去查找是否存在相同的hash值。如果存在,服务器进程将使用这条语句已高速缓存在SHARED POOL的library cache中的已分析过的版本来执行,省去后续的解析工作,这便是软解析。若调整缓存中不存在,则需要进行后面的步骤,这便是硬解析。硬解析通常是昂贵的操作,大约占整个SQL执行的70%左右的时间,硬解析会生成执行树,执行计划,等等。
所以,采用高速数据缓存的话,可以提高SQL 语句的查询效率。其原因有两方面:一方面是从内存中读取数据要比从硬盘中的数据文件中读取数据效率要高,另一方面也是因为避免语句解析而节省了时间。
不过这里要注意一点,这个数据缓存跟有些客户端软件的数据缓存是两码事。有些客户端软件为了提高查询效率,会在应用软件的客户端设置数据缓存。由于这些数据缓存的存在,可以提高客户端应用软件的查询效率。但是,若其他人在服务器进行了相关的修改,由于应用软件数据缓存的存在,导致修改的数据不能及时反映到客户端上。从这也可以看出,应用软件的数据缓存跟数据库服务器的高速数据缓存不是一码事。
2)语句合法性检查(data dict cache)
当在高速缓存中找不到对应的SQL语句时,则服务器进程就会开始检查这条语句的合法性。这里主要是对SQL语句的语法进行检查,看看其是否合乎语法规则。如果服务器进程认为这条SQL语句不符合语法规则的时候,就会把这个错误信息反馈给客户端。在这个语法检查的过程中,不会对SQL语句中所包含的表名、列名等等进行检查,只是检查语法。
3)语言含义检查(data dict cache)
若SQL 语句符合语法上的定义的话,则服务器进程接下去会对语句中涉及的表、索引、视图等对象进行解析,并对照数据字典检查这些对象的名称以及相关结构,看看这些字段、表、视图等是否在数据库中。如果表名与列名不准确的话,则数据库会就会反馈错误信息给客户端。
所以,有时候我们写select语句的时候,若语法与表名或者列名同时写错的话,则系统是先提示说语法错误,等到语法完全正确后再提示说列名或表名错误。
4)获得对象解析锁(control structer)
当语法、语义都正确后,系统就会对我们需要查询的对象加锁。这主要是为了保障数据的一致性,防止我们在查询的过程中,其他用户对这个对象的结构发生改变。
5)数据访问权限的核对(data dict cache)
当语法、语义通过检查之后,客户端还不一定能够取得数据,服务器进程还会检查连接用户是否有这个数据访问的权限。若用户不具有数据访问权限的话,则客户端就不能够取得这些数据。要注意的是数据库服务器进程先检查语法与语义,然后才会检查访问权限。
6)确定最佳执行计划
当语法与语义都没有问题权限也匹配,服务器进程还是不会直接对数据库文件进行查询。服务器进程会根据一定的规则,对这条语句进行优化。在执行计划开发之前会有一步查询转换,如:视图合并、子查询解嵌套、谓语前推及物化视图重写查询等。为了确定采用哪个执行计划,Oracle还需要收集统计信息确定表的访问联结方法等,最终确定可能的最低成本的执行计划。
不过要注意,这个优化是有限的。一般在应用软件开发的过程中,需要对数据库的sql语句进行优化,这个优化的作用要大大地大于服务器进程的自我优化。
当服务器进程的优化器确定这条查询语句的最佳执行计划后, 就会将这条SQL语句与执行计划保存到数据高速缓存(library cache)。如此,等以后还有这个查询时,就会省略以上的语法、语义与权限检查的步骤,而直接执行SQL语句,提高SQL语句处理效率。
第三步:绑定变量赋值
如果SQL语句中使用了绑定变量,扫描绑定变量的声明,给绑定变量赋值,将变量值带入执行计划。若在解析的第一个步骤,SQL在高速缓冲中存在,则直接跳到该步骤。
第四步:语句执行
语句解析只是对SQL语句的语法进行解析,以确保服务器能够知道这条语句到底表达的是什么意思。等到语句解析完成之后,数据库服务器进程才会真正的执行这条SQL语句。
对于SELECT语句:
1)首先服务器进程要判断所需数据是否在db buffer存在,如果存在且可用,则直接获取该数据而不是从数据库文件中去查询数据,同时根据LRU 算法增加其访问计数;
2)若数据不在缓冲区中,则服务器进程将从数据库文件中查询相关数据,并把这些数据放入到数据缓冲区中(buffer cache)。
其中,若数据存在于db buffer,其可用性检查方式为:查看db buffer块的头部是否有事务,如果有事务,则从回滚段中读取数据;如果没有事务,则比较select的scn和db buffer块头部的scn,如果前者小于后者,仍然要从回滚段中读取数据;如果前者大于后者,说明这是一非脏缓存,可以直接读取这个db buffer块的中内容。
对于DML语句(insert、delete、update):
1)检查所需的数据库是否已经被读取到缓冲区缓存中。如果已经存在缓冲区缓存,则直接执行步骤3;
2)若所需的数据库并不在缓冲区缓存中,则服务器将数据块从数据文件读取到缓冲区缓存中;
3)对想要修改的表取得的数据行锁定(Row Exclusive Lock),之后对所需要修改的数据行取得独占锁;
4)将数据的Redo记录复制到redo log buffer;
5)产生数据修改的undo数据;
6)修改db buffer;
7)dbwr将修改写入数据文件;
其中,第2步,服务器将数据从数据文件读取到db buffer经经历以下步骤:
1)首先服务器进程将在表头部请求TM锁(保证此事务执行过程其他用户不能修改表的结构),如果成功加TM锁,再请求一些行级锁(TX锁),如果TM、TX锁都成功加锁,那么才开始从数据文件读数据。
2)在读数据之前,要先为读取的文件准备好buffer空间。服务器进程需要扫描LRU list寻找free db buffer,扫描的过程中,服务器进程会把发现的所有已经被修改过的db buffer注册到dirty list中。如果free db buffer及非脏数据块缓冲区不足时,会触发dbwr将dirty buffer中指向的缓冲块写入数据文件,并且清洗掉这些缓冲区来腾出空间缓冲新读入的数据。
3)找到了足够的空闲buffer,服务器进程将从数据文件中读入这些行所在的每一个数据块(db block)(DB BLOCK是ORACLE的最小操作单元,即使你想要的数据只是DB BLOCK中很多行中的一行或几行,ORACLE也会把这个DB BLOCK中的所有行都读入Oracle DB BUFFER中)放入db buffer的空闲的区域或者覆盖已被挤出LRU list的非脏数据块缓冲区,并且排列在LRU列表的头部,也就是在数据块放入db buffer之前也是要先申请db buffer中的锁存器,成功加锁后,才能读数据到db buffer。
若数据块已经存在于db buffer cache(有时也称db buffer或db cache),即使在db buffer中找到一个没有事务,而且SCN比自己小的非脏缓存数据块,服务器进程仍然要到表的头部对这条记录申请加锁,加锁成功才能进行后续动作,如果不成功,则要等待前面的进程解锁后才能进行动作(这个时候阻塞是tx锁阻塞)。
在记redo日志时,其具体步骤如下:
1)数据被读入到db buffer后,服务器进程将该语句所影响的并被读入db buffer中的这些行数据的rowid及要更新的原值和新值及scn等信息从PGA逐条的写入redo log buffer中。在写入redo log buffer之前也要事先请求redo log buffer的锁存器,成功加锁后才开始写入。
2)当写入达到redo log buffer大小的三分之一或写入量达到1M或超过三秒后或发生检查点时或者dbwr之前发生,都会触发lgwr进程把redo log buffer的数据写入磁盘上的redo file文件中(这个时候会产生log file sync等待事件)。
3)已经被写入redo file的redo log buffer所持有的锁存器会被释放,并可被后来的写入信息覆盖,redo log buffer是循环使用的。Redo file也是循环使用的,当一个redo file写满后,lgwr进程会自动切换到下一redo file(这个时候可能出现log file switch(check point complete)等待事件)。如果是归档模式,归档进程还要将前一个写满的redo file文件的内容写到归档日志文件中(这个时候可能出现log file switch(archiving needed)。
在为事务建立undo信息时,其具体步骤如下:
1)在完成本事务所有相关的redo log buffer之后,服务器进程开始改写这个db buffer的块头部事务列表并写入scn(一开始scn是写在redo log buffer中的,并未写在db buffer)。
2)然后包含这个块的头部事务列表及scn信息的数据副本放入回滚段中,将这时回滚段中的信息称为数据块的“前映像”,这个“前映像”用于以后的回滚、恢复和一致性读。(回滚段可以存储在专门的回滚表空间中,这个表空间由一个或多个物理文件组成,并专用于回滚表空间,回滚段也可在其它表空间中的数据文件中开辟)。
在修改信息写入数据文件时,其具体步骤如下:
1)改写db buffer块的数据内容,并在块的头部写入回滚段的地址。
2)将db buffer指针放入dirty list。如果一个行数据多次update而未commit,则在回滚段中将会有多个“前映像”,除了第一个“前映像”含有scn信息外,其他每个"前映像"的头部都有scn信息和"前前映像"回滚段地址。一个update只对应一个scn,然后服务器进程将在dirty list中建立一条指向此db buffer块的指针(方便dbwr进程可以找到dirty list的db buffer数据块并写入数据文件中)。接着服务器进程会从数据文件中继续读入第二个数据块,重复前一数据块的动作,数据块的读入、记日志、建立回滚段、修改数据块、放入dirty list。
3)当dirty queue的长度达到阀值(一般是25%),服务器进程将通知dbwr把脏数据写出,就是释放db buffer上的锁存器,腾出更多的free db buffer。前面一直都是在说明oracle一次读一个数据块,其实oracle可以一次读入多个数据块(db_file_multiblock_read_count来设置一次读入块的个数)
当执行commit时,具体步骤如下:
1)commit触发lgwr进程,但不强制dbwr立即释放所有相应db buffer块的锁。也就是说有可能虽然已经commit了,但在随后的一段时间内dbwr还在写这条sql语句所涉及的数据块。表头部的行锁并不在commit之后立即释放,而是要等dbwr进程完成之后才释放,这就可能会出现一个用户请求另一用户已经commit的资源不成功的现象。
2)从Commit和dbwr进程结束之间的时间很短,如果恰巧在commit之后,dbwr未结束之前断电,因为commit之后的数据已经属于数据文件的内容,但这部分文件没有完全写入到数据文件中。所以需要前滚。由于commit已经触发lgwr,这些所有未来得及写入数据文件的更改会在实例重启后,由smon进程根据重做日志文件来前滚,完成之前commit未完成的工作(即把更改写入数据文件)。
3)如果未commit就断电了,因为数据已经在db buffer更改了,没有commit,说明这部分数据不属于数据文件。由于dbwr之前触发lgwr也就是只要数据更改,(肯定要先有log)所有dbwr在数据文件上的修改都会被先一步记入重做日志文件,实例重启后,SMON进程再根据重做日志文件来回滚。
其实smon的前滚回滚是根据检查点来完成的,当一个全部检查点发生的时候,首先让LGWR进程将redologbuffer中的所有缓冲(包含未提交的重做信息)写入重做日志文件,然后让dbwr进程将dbbuffer已提交的缓冲写入数据文件(不强制写未提交的)。然后更新控制文件和数据文件头部的SCN,表明当前数据库是一致的,在相邻的两个检查点之间有很多事务,有提交和未提交的。
当执行rollback时,具体步骤如下:
服务器进程会根据数据文件块和db buffer中块的头部的事务列表和SCN以及回滚段地址找到回滚段中相应的修改前的副本,并且用这些原值来还原当前数据文件中已修改但未提交的改变。如果有多个”前映像“,服务器进程会在一个“前映像”的头部找到“前前映像”的回滚段地址,一直找到同一事务下的最早的一个“前映像”为止。一旦发出了commit,用户就不能rollback,这使得commit后dbwr进程还没有全部完成的后续动作得到了保障。
第五步:提取数据
当语句执行完成之后,查询到的数据还是在服务器进程中,还没有被传送到客户端的用户进程。所以,在服务器端的进程中,有一个专门负责数据提取的一段代码。他的作用就是把查询到的数据结果返回给用户端进程,从而完成整个查询动作。
从这整个查询处理过程中,我们在数据库开发或者应用软件开发过程中,需要注意以下几点:
一是要了解数据库缓存跟应用软件缓存是两码事情。数据库缓存只有在数据库服务器端才存在,在客户端是不存在的。只有如此,才能够保证数据库缓存中的内容跟数据库文件的内容一致。才能够根据相关的规则,防止数据脏读、错读的发生。而应用软件所涉及的数据缓存,由于跟数据库缓存不是一码事情,所以,应用软件的数据缓存虽然可以提高数据的查询效率,但是,却打破了数据一致性的要求,有时候会发生脏读、错读等情况的发生。所以,有时候,在应用软件上有专门一个功能,用来在必要的时候清除数据缓存。不过,这个数据缓存的清除,也只是清除本机上的数据缓存,或者说,只是清除这个应用程序的数据缓存,而不会清除数据库的数据缓存。
二是绝大部分SQL语句都是按照这个处理过程处理的。我们DBA或者基于Oracle数据库的开发人员了解这些语句的处理过程,对于我们进行涉及到SQL语句的开发与调试,是非常有帮助的。有时候,掌握这些处理原则,可以减少我们排错的时间。特别要注意,数据库是把数据查询权限的审查放在语法语义的后面进行检查的。所以,有时会若光用数据库的权限控制原则,可能还不能满足应用软件权限控制的需要。此时,就需要应用软件的前台设置,实现权限管理的要求。而且,有时应用数据库的权限管理,也有点显得繁琐,会增加服务器处理的工作量。因此,对于记录、字段等的查询权限控制,大部分程序涉及人员喜欢在应用程序中实现,而不是在数据库上实现。
Oracle SQL语句执行顺序
(8)SELECT (9) DISTINCT (11) <select_list>
(1) FROM <left_table>
(3) <join_type> JOIN <right_table>
(2) ON <join_condition>
(4) WHERE <where_condition>
(5) GROUP BY <group_by_list>
(6) WITH {CUBE | ROLLUP}
(7) HAVING <having_condition>
(10) ORDER BY <order_by_list>
1)FROM:对FROM子句中的表执行笛卡尔积(交叉联接),生成虚拟表VT1。
2)ON:对VT1应用ON筛选器,只有那些使为真才被插入到TV2。
3)OUTER (JOIN):如果指定了OUTER JOIN(相对于CROSS JOIN或INNER JOIN),保留表中未找到匹配的行将作为外部行添加到VT2,生成TV3。如果FROM子句包含两个以上的表,则对上一个联接生成的结果表和下一个表重复执行步骤1到步骤3,直到处理完所有的表位置。
4)WHERE:对TV3应用WHERE筛选器,只有使为true的行才插入TV4。
5)GROUP BY:按GROUP BY子句中的列列表对TV4中的行进行分组,生成TV5。
6)CUTE|ROLLUP:把超组插入VT5,生成VT6。
7)HAVING:对VT6应用HAVING筛选器,只有使为true的组插入到VT7。
8)SELECT:处理SELECT列表,产生VT8。
9)DISTINCT:将重复的行从VT8中删除,产品VT9。
10)ORDER BY:将VT9中的行按ORDER BY子句中的列列表顺序,生成一个游标(VC10),生成表TV11,并返回给调用者。
以上每个步骤都会产生一个虚拟表,该虚拟表被用作下一个步骤的输入。这些虚拟表对调用者(客户端应用程序或者外部查询)不可用。只有最后一步生成的表才会会给调用者。如果没有在查询中指定某一个子句,将跳过相应的步骤。
Ⅸ sql server 存储过程
在执行存储过程时,我们常遇到执行超时的情况。如果是因为要处理的数据过多,修改流程复杂等原因的话,如以用以下方法解决:在存储过程的处理工作中加上事务管理:SET TRANSACTION ISOLATION LEVEL REPEATABLE READ --->要这行
BEGIN TRAN /* 这里是程序处理代码段*/commit transaction
QuitWithRollback:
IF (@@TRANCOUNT > 0)
BEGIN
ROLLBACK TRANSACTION
END 以下是事务相关的知识:BEGIN TRANSACTION--开始事务DECLARE @errorSun INT --定义错误计数器SET @errorSun=0 --没错为0UPDATE a SET id=232 WHERE a=1 --事务操作SQL语句SET @errorSun=@errorSun+@@ERROR --累计是否有错UPDATE aa SET id=2 WHERE a=1 --事务操作SQL语句SET @errorSun=@errorSun+@@ERROR --累计是否有错IF @errorSun<>0 BEGIN PRINT '有错误,回滚'ROLLBACK TRANSACTION--事务回滚语句END ELSE BEGIN PRINT '成功,提交'COMMIT TRANSACTION--事务提交语句END1.什么是事务:事务是一个不可分割的工作逻辑单元,在数据库系统上执行并发操作时事务是做为最小的控制单元来使用的。他包含的所有数据库操作命令作为一个整体一起向系提交或撤消,这一组数据库操作命令要么都执行,要么都不执行。2.事务的语句开始事物:BEGIN TRANSACTION 提交事物:COMMIT TRANSACTION 回滚事务:ROLLBACK TRANSACTION3.事务的4个属性①原子性(Atomicity):事务中的所有元素作为一个整体提交或回滚,事务的个元素是不可分的,事务是一个完整操作。②一致性(Consistemcy):事物完成时,数据必须是一致的,也就是说,和事物开始之前,数据存储中的数据处于一致状态。保证数据的无损。③隔离性(Isolation):对数据进行修改的多个事务是彼此隔离的。这表明事务必须是独立的,不应该以任何方式以来于或影响其他事务。④持久性(Durability):事务完成之后,它对于系统的影响是永久的,该修改即使出现系统故障也将一直保留,真实的修改了数据库4.事务的保存点 SAVE TRANSACTION 保存点名称 --自定义保存点的名称和位置 ROLLBACK TRANSACTION 保存点名称 --回滚到自定义的保存点 二事例 所谓事务是指一组逻辑操作单元,它使数据从一种状态变换到另一种状态。包括四个特性:1、原子性 就是事务应作为一个工作单元,事务处理完成,所有的工作要么都在数据库中保存下来,要么完全回滚,全部不保留2、一致性 事务完成或者撤销后,都应该处于一致的状态3、隔离性 多个事务同时进行,它们之间应该互不干扰.应该防止一个事务处理其他事务也要修改的数据时, 不合理的存取和不完整的读取数据4、持久性 事务提交以后,所做的工作就被永久的保存下来 示例:创建一个存储过程,向两个表中同时插入数据Create proc RegisterUser(@usrName varchar(30),@usrPasswd varchar(30),@age int,@sex varchar(10),@PhoneNum varchar(20),@Address varchar(50) )as beginbegin traninsert into userinfo(userName,userPasswd)values(@usrName,@usrPasswd)if @@error<>0begin rollback tranreturn -1endinsert into userdoc(userName,age,sex,PhoneNumber,Address)values(@Usrname,@age,@sex,@PhoneNum,@Address)if @@error<>0begin rollback tranreturn -1endcommit tranreturn 0end事务的分类按事务的启动与执行方式,可以将事务分为3类:显示事务 也称之为用户定义或用户指定的事务,即可以显式地定义启动和结束的事务。分布式事务属于显示事务自动提交事务默认事务管理模式。如果一个语句成功地完成,则提交该语句;如果遇到错误,则回滚该语句。隐性事务当连接以此模式进行操作时,sql将在提交或回滚当前事务后自动启动新事务。无须描述事务的开始,只需提交或回滚每个事务。它生成连续的事务链。一、显示事务通过begin transacton、commit transaction、commit work、rollback transaction或rollback work等语句完成。1、启动事务格式:begin tran 事务名或变量 with mark 描述2、结束事务格式:commit tran 事务名或变量 (事务名与begin tran中的事务名一致或commit work 但此没有参数3、回滚事务 rollback tran 事务名或变量 | savepoint_name | savepoint_variable 或rollback work 说明:清除自事务的起点或到某个保存点所做的所有数据修改4、在事务内设置保存点格式:save tran savepoint_name | savepoint_variable 示例:use bookdbgobegin tran mytraninsert into book values(9,"windows2000',1,22,'出版社')save tran mysavedelete book where book_id=9rollback tran mysavecommit trangoselect * from bookgo可以知道,上面的语句执行后,在book中插入了一笔记录,而并没有删除。因为使用rollback tran mysave 语句将操作回滚到了删除前的保存点处。5、标记事务格式:with mark 例:使用数据库标记将日志恢复到预定义时间点的语句 在事务日志中置入一个标记。请注意,被标记的事务至少须提交一个更新,以标记该日志。BEGIN TRAN MyMark WITH MARK UPDATE pubs.dbo.LastLogMark SET MarkTime = GETDATE() COMMIT TRAN MyMark 按照您常用的方法备份事务日志。BACKUP LOG pubs TO DISK='C:/Backups/Fullbackup.bak' WITH INIT 现在您可以将数据库恢复至日志标记点。首先恢复数据库,并使其为接受日志恢复做好准备。 RESTORE DATABASE pubs FROM DISK=N'C:/Backups/Fullbackup.bak' WITH NORECOVERY 现在将日志恢复至包含该标记的时间点,并使其可供使用。请注意,STOPAT在数据库正在执行大容量日志时禁止执行。 RESTORE LOG pubs FROM DISK=N'C:/Backups/Logbackup.bak' WITH RECOVERY, STOPAT='02/11/2002 17:35:00'5、不能用于事务的操作创建数据库 create database 修改数据库 alter database 删除数据库 drop database 恢复数据库 restore database 加载数据库 load database 备份日志文件 backup log 恢复日志文件 restore log 更新统计数据 update statitics 授权操作 grant 复制事务日志 mp tran 磁盘初始化 disk init 更新使用sp_configure后的系统配置 reconfigure二、自动提交事务 sql连接在begin tran 语句启动显式事务,或隐性事务模式设置为打开之前,将以自动提交模式进行操作。当提交或回滚显式事务,或者关闭隐性事务模式时,将返回到自动提交模式。示例: 由于编译错误,使得三个insert都没执行use testgocreate table testback(cola int primary key ,colb char(3))goinsert into testback values(1,'aaa')insert into testback values(2,'bbb')insert into testback value(3,'ccc')goselect * from testbackgo 没有任何结果返回三、隐式事务通过 API 函数或 Transact-SQL SET IMPLICIT_TRANSACTIONS ON 语句,将隐性事务模式设置为打开。下一个语句自动启动一个新事务。当该事务完成时,再下一个 Transact-SQL 语句又将启动一个新事务。当有大量的DDL 和DML命令执行时会自动开始,并一直保持到用户明确提交为止,切换隐式事务可以用SET IMPLICIT_TRANSACTIONS 为连接设置隐性事务模式.当设置为 ON 时,SET IMPLICIT_TRANSACTIONS 将连接设置为隐性事务模式。当设置为 OFF 时,则使连接返回到自动提交事务模式 语句包括: alter table insert open create delete revoke drop select fetch truncate table grant update 示例: 下面使用显式与隐式事务。它使用@@tracount函数演示打开的事务与关闭的事务:use testgoset nocount oncreate table t1(a int)goinsert into t1 values(1)goprint '使用显式事务'begin traninsert into t1 values(2)print '事务外的事务数目:'+cast(@@trancount as char(5))commint tranprint '事务外的事务数目:'+cast(@@trancount as char(5))goprintgoset implicit_transactions on go print '使用隐式事务'goinsert into t1 values*4)print'事务内的事务数目:'+cast(@@trancount as char(5))commint tran print'事务外的事务数目:'+cast(@@trancount as char(5))go执行结果: 使用显示事务事务内的事务数目:2 事务外的事务数目:1 使用隐式事务事务内的事务数目:1 事务外的事务数目:0四、分布式事务跨越两个或多个数据库的单个sql server中的事务就是分布式事务。与本地事务区别:必须由事务管理器管理,以尽量避免出现因网络故障而导致一个事务由某些资源管理器成功提交,但由另一些资源管理器回滚的情况。 sql server 可以由DTc microsoft distributed transaction coordinator 来支持处理分布式事务,可以使用 BEgin distributed transaction 命令启动一个分布式事务处理 分二阶段:A 准备阶段 B 提交阶段执行教程:1、sql 脚本或应用程序连接执行启动分布式事务的sql语句2、执行该语句的sql在为事务中的主控服务器3、脚本或应用程序对链接的服务器执行分布式查询,或对远程服务器执行远程存储过程。4、当执行了分布式查询或远程过程调用后,主控服务器将自动调用msdtc以便登记分布式事务中链接的服务器和远程服务器5、当脚本或应用程序发出commit或rollback语句时,主控sql将调用msdtc管理两阶段提交过程,或者通知链接的服务器和远程服务器回滚其事务。