㈠ 如何利用Zynq-7000的PL和PS进行交互
在Zynq-7000上编程PL大致有3种方法:
1. 用FSBL,将bitstream集成到boot.bin中
2. 用U-BOOT命令
3. 在Linux下用xdevcfg驱动。
步骤:
1. 去掉bitstream的文件头
用FSBL烧写PL Images没有什么好说的,用Xilinx SDK的Create Boot Image工具即可完成,不再赘述。用后两种方法需要把bitstream文件的文件头用bootgen工具去掉。
一个典型的bif文件如下所示:
the_ROM_image:
{
[bootloader]<fsbl_name>.elf
<pl_bitstream_name>.bit
<u-boot_name>.elf
}
bif文件可以用文本编辑器写,也可以用Xilinx SDK的Create Boot Image工具生成。然后在命令行下用以下命令即可去掉bitstream文件的文件头。
bootgen -image <bootimage>.bif -split bin -o i BOOT.BIN
"-split”参数可以生成以下文件:
<pl_bitstream_name>.bit.bin
2. 在U-BOOT下烧写PL Image
命令”fpga load”和”fpga loadb”都可以。区别是前一个命令接受去掉了文件头的bitstream文件,后一个命令接受含有文件头的bitstream文件。
在OSL 2014.2上,缺省编译就可以完整支持写入PL Image的功能。但是在Petalinux 2013.10下,尽管可以在U-BOOT下看到命令”fpga”,还需要在文件
<PROJ>/subsystems/linux/configs/u-boot/platform-top.h 中增加以下内容后重新编译才可以支持具体的功能。
/* Enable the PL to be downloaded */
#define CONFIG_FPGA
#define CONFIG_FPGA_XILINX
#define CONFIG_FPGA_ZYNQPL
#define CONFIG_CMD_FPGA
#define CONFIG_FPGA_LOADFS
在OSL 2014.2 U-BOOT中,具体的功能是在zynqpl.c的zynq_load()中实现的。
3. 在Linux下烧写PL Image
OSL Linux 2014.2.01中已经含有xdevcfg驱动了(之前就有,不过本文是在这个版本上验证的),直接用以下命令就可以完成PL Image写入。
cat <path_to_storage_media>/<pl_bitstream_name>.bit.bin > /dev/xdevcfg
Linux驱动的源代码在xilinx_devcfg.c中。因为驱动的编号是通过alloc_chrdev_region()动态分配的,所以不需要手工用mknod命令手动建立设备节点。
在Linux驱动中,每次往DevCfg中写入4096字节,直到全部写完。
4. 在用户程序中烧写PL Image
目前没有现成的源码来完成这个功能,不过可以用mmap()把DevCfg的寄存器映射到用户程序的虚地址中,然后参考一些现成的软件代码来完成这个功能:
* FSBL中的pcap.c
* U-BOOT中的zynqpl.c
* Linux中的xilinx_devcfg.c
* Xilinx SDK中的例子。例子位于以下位置,随SDK的版本会有变化。
C:\Xilinx\SDK\2014.1\data\embeddedsw\XilinxProcessorIPLib\drivers\devcfg_v3_0\examples\index.html
小结:
DevCfg外设内部有自己的DMA,只需要简单的配置PL Image的基地址和长度到DevCfg寄存器,就可以完成Zynq-7000 PL Image的加载。Xilinx已经提供了灵活的解决方案,如果开发者要把这个功能集成在自己的应用程序中,也有很多的代码可以参考,并不是很困难的任务。
㈡ zynq 33.333mhz 晶振怎么配
补充楼上的,cpu执行的一条指令是指汇编指令(包括内存寻址和寄存器寻址),而不是c语言的一条语句;
㈢ 如何学习zynq以太网控制器及协议栈
第 9 章 ZedBoard 入门
前面大家已经对 ZYNQ 架构以及相应的开发工具有一定的认识,接下来我们将带领大家来一起 体验 ZYNQ,体验软硬件协同设计的魅力。由于时间的关系,下面的一些实验(本章及后续章节的实验) 可能有不完善的地方,欢迎读者向我们反馈。 9.1 跑马灯 本实验将指导大家使用 Vivado 集成设计环境创建本书的第一个 Zynq 设计。这里,我们使用跑马灯 这个入门实验来向大家介绍 Vivado IDE 的 IP Integrator 环境,并在 Zedboard 上实现这个简单的 Zynq 嵌 入式系统。之后,我们将会使用 SDK 创建一个简单的软件应用程序,并下载到 Zynq 的 ARM 处理器中, 对在 PL 端实现的硬件进行控制。本实验分为三个小节来向大家进行介绍: ? 第一节我们将使用 Vivado IDE 创建一个工程。 ? 在第一节的基础上,第二节我们将继续构建一个 Zynq 嵌入式处理系统,并将完成后的硬件导入 到 SDK 中进行软件设计。 ? 最后一节我们将使用 SDK 编写 ARM 测试应用程序, 并下载到 ZedBoard 上进行调试。 实验环境:Windows 7 x64 操作系统, Vivado2013.4,SDK 2013.4
9.1.1 Vivado 工程创建
1) 双击桌面 Vivado 快捷方式 ,或者浏览 Start > All Programes > Xilinx Design Tools > Vivado
2013.4 > Vivado 2013.4 来启动 Vivado. 2) 当 Vivado 启动后,可以看到图 9-1 的 Getting Started 页面。
图 9- 1 Vivado 开始界面
3) 选择 Create New Project 选项,图 9-2 所示的 New Project 向导将会打开,点击 Next。
图 9- 2 New Project 对话框 4) 在 Project Name 对话框中,输入 first_zynq_design 作为 Project name, 选择 C:/XUP/Zed 作为 Project location,确保 Create project subdirectory 被勾选上,如图 9-3,点击 Next。
图 9- 3 Project Name 对话框 5) 在 Project Type 对话框中,选择 RTL Project,确保 Do not specify sources at this time 选项没有 被勾选,如图 9-4,点击 Next。
图 9- 4 Project Type 对话框 6) 在 Add Source 对话框中, 选择 Verilog 作为目标语言,如果你对 VHDL 熟悉的话, 你也可以 选择 VHDL,如果这里你忘记了选择,在工程创建完成后,也可以在工程设置中选择你熟悉的 HDL 语言。如果你已经有了源文件,在这里就可以选择 Add file 或者 Add directory 进行添加, 由于我们没有任何的源文件, 所以这里我们直接点击 Next 即可,如图 9-5。
图 9- 5 添加源文件 7) 在 Add Existing IP 对话框中,点击 Next。 8) 在 Add Constraints 对话框中,点击 Next。 9) 在 Default Part 对话框中,在 Specify 框中选择 Boards 选项,在下面的 Board 列表中选择 ZedBoard Zynq Evaluation and Development Kit,点击 Next,如图 9-6。
图 9- 6 芯片选择 10) 在 New Project Summary 对话框中,点解 Finish 完成工程创建,至此,我们已经使用 Vivado 创建了一个 Zynq 设计的工程框架,图 9-7 为 Vivado 的工程界面,在第四章我们已经对该界面 进行过介绍,如果还不熟悉的读者再回到前面复习一下。下面我将使用 Flow Navigator 的 IP Integrator 功能完成第二节的嵌入式系统设计。
图 9- 7 Vivado 工程界面
9.1.2 在 Vivado 中创建 Zynq 嵌入式系统 这一节我们将创建一个简单的 Zynq 嵌入式系统,该系统使用 Zynq PL 部分实现一个通用 I/O 控制 器 (GPIO),控制器同 ZedBoard 上的 8 个 LED 相连接,并且通过 AXI 总线连接到 PS 端,这样我们就可 以通过将要在第三小节中实现的 ARM 应用程序来对 LED 进行控制。系统结构图如图 9-8 所示。
㈣ ZYNQ 内核i2c驱动支持16位地址寄存器写操作吗
ynq7000的I2C控制器是cadence公司的IP,做一个驱动如果从阅读数据手册开始,效率会很低,因此首先找到了其Linux的I2C驱动文件i2c_cadence.c,话一部分时间阅读两遍后,会了解Zynq7000的I2C控制器工作流程和操作方法。
开始是基于Linux的驱动进行移植的,进展不是很顺利,主要是Linux驱动中的数据收发均是在中断中完成,并加入了Linux自身的驱动框架。为了方便的调试驱动,先调试无中断情况下的功能,然后在将中断、FIFO等加入以提高效率是一个比较不错的方法。为了快速的调试通过I2C驱动,这里考虑了其Uboot中的驱动文件。
Zynq7000的I2C控制器Uboot下的驱动文件是zynq_i2c.c,此文件设计非常容易理解,文件中一共有7个函数,其中有用的是如下5个函数,通过阅读以下五个函数,可以很容易了解I2C的操作过程,而且可以直接在驱动中使用**read、**write函数进行测试。
㈤ zynq 如何写driver
步骤:
1. 首先在vivado SDK中分别建立两个工程
注意:如上图所示,Core0 工程建立时选择ps7_cortexa9_0, Core1 工程建立时选择ps7_cortexa9_1
完成后如下图所示:
2.配置Core1即从核中的BSP文件
在下图中画圈处,配置:-DUSE_AMP=1
3 配置Core0和Core1的DDR空间分配
通过修改lscript.ld文件中的内容,可以改变在存储器中的执行位置,
因为ELF文件是加载到DDR中执行的,所以两个DDR地址不能重合
Core0的配置 :画圈处 栈空间也要分配,防止溢出
Core1配置
4 建立FSBL文件,并配置mian()文件
配置main() 跟第三步中的DDR空间配置有关
在FSBL的src中找到main.c文件打开,在里面添加下面一段代码,用于启动CPU1:
#define sev() __asm__("sev")
#define CPU1STARTADR 0xFFFFFFF0 //Core1 DDR配置中的SIZE大小
#define CPU1STARTMEM 0x10000000 //Core1 DDR配置中的起始地址
void StartCpu1(void)
{
#if 1
Xil_Out32(CPU1STARTADR, CPU1STARTMEM);
dmb(); //waits until write has finished
sev();
#endif
}
将上面的代码在main()中添加到:
Load boot image的位置,将CPU1的启动函数,放置于此位置,改动后的代码段如下:
5 生成mcs文件和烧写mcs文件到QSPI Flash
单击‘Core1’,选择Xilinx Tools –> Create zynq boot image,选择Add,选择文件…/ Core1/Debug/ Core1.elf,点击打开。然后选择Core1.elf, Core0.elf在Core1.elf上面。然后在Output pach后面把boot.bin修改为Boot.mcs。然后点击 Create Image
选择Core0
选择文件生成存储地址
选择MCS
画圈处是添加的文件
顺序为:FSBL.elf .bit文件 Core0.elf Core1.elf
点击Create Image 生成.mcs文件
6 完成操作 将 .MCS 文件烧写进板子里
bin文件用来烧写到SD卡,mcs文件用来烧写到QSPI flash中 ,
选择Xilinx Tools –> Program Flash,在Image File后面选择刚才生成的Boot.mcs文件,Offset为0x0,Flash Type为qsip_single。勾选Blank check after erase和Verify after flash。检查开发板上电和连线状况,然后点击Program
㈥ zynq 驱动程序的makefile怎么写
就把这个记录一下,便后面查看:
wilcard字面解释是通配符
按照这个意思以及看这几个语句:C_SRCS
:=
$(wildcard
.;*不会写makefile,但是,需要看看,理解一下怎么建立的整个工程,所以理解makefile的规范还是有必要的,makefile读起来也很容易理解,今天看到wilcard这个东西,不理解,然后就google了一下.cpp)C_HEADERS
:=
$(wildcard
../share/src/*.c)CPP_SRCS
:=
$(wildcard
./,Xilinx已经写好了makefile文件
㈦ Xilinx Zynq Z-7020这款FPGA是完全使用C语言开发的吗
硬件的最底层都是机器码,汇编指令,但是开发者可以使用任何语言开发,最后都会被编译器转换成机器码。你这个硬件的一般都是用c开发的。
㈧ 用 c/c++ 也能开发 zynq 系统sdsoc 有那么神吗
Zynq系列是赛灵思公司(Xilinx)推出的行业第一个可扩展处理平台,旨在为视频监视、汽车驾驶员辅助以及工厂自动化等高端嵌入式应用提供所需的处理与计算性能水平。该系列四款新型器件得到了工具和IP 提供商生态系统的支持
㈨ 如何在Zynq-7000上烧写PL Image
在Zynq-7000上编程PL大致有3种方法:
1. 用FSBL,将bitstream集成到boot.bin中
2. 用U-BOOT命令
3. 在Linux下用xdevcfg驱动。
步骤:
1. 去掉bitstream的文件头
用FSBL烧写PL Images没有什么好说的,用Xilinx SDK的Create Boot Image工具即可完成,不再赘述。用后两种方法需要把bitstream文件的文件头用bootgen工具去掉。
一个典型的bif文件如下所示:
the_ROM_image:
{
[bootloader]<fsbl_name>.elf
<pl_bitstream_name>.bit
<u-boot_name>.elf
}
bif文件可以用文本编辑器写,也可以用Xilinx SDK的Create Boot Image工具生成。然后在命令行下用以下命令即可去掉bitstream文件的文件头。
bootgen -image <bootimage>.bif -split bin -o i BOOT.BIN
"-split”参数可以生成以下文件:
<pl_bitstream_name>.bit.bin
2. 在U-BOOT下烧写PL Image
命令”fpga load”和”fpga loadb”都可以。区别是前一个命令接受去掉了文件头的bitstream文件,后一个命令接受含有文件头的bitstream文件。
在OSL 2014.2上,缺省编译就可以完整支持写入PL Image的功能。但是在Petalinux 2013.10下,尽管可以在U-BOOT下看到命令”fpga”,还需要在文件
<PROJ>/subsystems/linux/configs/u-boot/platform-top.h 中增加以下内容后重新编译才可以支持具体的功能。
/* Enable the PL to be downloaded */
#define CONFIG_FPGA
#define CONFIG_FPGA_XILINX
#define CONFIG_FPGA_ZYNQPL
#define CONFIG_CMD_FPGA
#define CONFIG_FPGA_LOADFS
在OSL 2014.2 U-BOOT中,具体的功能是在zynqpl.c的zynq_load()中实现的。
3. 在Linux下烧写PL Image
OSL Linux 2014.2.01中已经含有xdevcfg驱动了(之前就有,不过本文是在这个版本上验证的),直接用以下命令就可以完成PL Image写入。
㈩ 如何在Zynq 7000平台上使用Linux spidev.c驱动
一、在前一篇博客中,我们采用xilinx针对Zynq 7000处理器提供的spi-cadence.c驱动实现了芯片上SPI总线驱动的注册,接下来需要修改设备树文件以时我们的外设挂接在SPI总线下。
在petalinux工程的../subsystems/linux/configs/device-tree目录下找到zynq相关的设备树文件,目录所包含的文件如下图所示。
打开其中的zynq-7000.dtsi文件,找到其中的spi0节点(具体使用spi0还是spi1根据硬件工程的配置情况),并在该节点下添加如下内容: