A. c语言模块化编程ICCAVR
在.C文件中用#inclued语句 引用.H文件就行了,
例如:
在.H文件中定义函数,
func.h
#ifnded __FUNC.H__
#define __FUNC.H__
int Func1(int a,int b);
#endif
在.C文件中定义函数实体
func.c
#include "func.h"
int Func1(int a , int b)
{
int c;
c=a+b;
return c;
}
B. 怎么用c语言模块化函数编一个求1!+2!+...+n!的程序
用一个临时变量记录前一次的阶乘值,可以极大的提高时效。举例代码如下:
//#include"stdafx.h"//Ifthevc++6.0,withthisline.
#include"stdio.h"
intmain(void){
inti,sum,tmp;
for(tmp=sum=1,i=2;i<11;sum+=tmp*=i++);
printf("Theresultis%d ",sum);
return0;
}
C. 如何在C语言中实现模块化
以函数
为小模块。
以文件为中模块。
若干个文件编译成库,形成大模块。
这样一级级的
实现模块化。
D. C语言宏定义 和 编程模块化
一.
#define是C语言中提供的宏定义命令,其主要目的是为程序员在编程时提供一定的方便,并能在一定程度上提高程序的运行效率,但学生在学习时往往不能理解该命令的本质,总是在此处产生一些困惑,在编程时误用该命令,使得程序的运行与预期的目的不一致,或者在读别人写的程序时,把运行结果理解错误,这对 C语言的学习很不利。
1#define命令剖析
1.1 #define的概念
#define命令是C语言中的一个宏定义命令,它用来将一个标识符定义为一个字符串,该标识符被称为宏名,被定义的字符串称为替换文本。
该命令有两种格式:一种是简单的宏定义,另一种是带参数的宏定义。
(1) 简单的宏定义:
#define <宏名><字符串>
例: #define PI 3.1415926
(2) 带参数的宏定义
#define <宏名> (<参数表>) <宏体>
例: #define A(x) x
一个标识符被宏定义后,该标识符便是一个宏名。这时,在程序中出现的是宏名,在该程序被编译前,先将宏名用被定义的字符串替换,这称为宏替换,替换后才进行编译,宏替换是简单的替换。
1.2 宏替换发生的时机
为了能够真正理解#define的作用,让我们来了解一下对C语言源程序的处理过程。当我们在一个集成的开发环境如Turbo C中将编写好的源程序进行编译时,实际经过了预处理、编译、汇编和连接几个过程,见图1。 源程序 预处理器 修改后的源程序 编译器 汇编程序 汇编器 可重定位的目标程序 连接器 可执行的目标程序 图1C语言的编译过程 其中预处理器产生编译器的输出,它实现以下的功能:
(1) 文件包含
可以把源程序中的#include 扩展为文件正文,即把包含的.h文件找到并展开到#include 所在处。
(2) 条件编译
预处理器根据#if和#ifdef等编译命令及其后的条件,将源程序中的某部分包含进来或排除在外,通常把排除在外的语句转换成空行。
(3) 宏展开
预处理器将源程序文件中出现的对宏的引用展开成相应的宏 定义,即本文所说的#define的功能,由预处理器来完成。
经过预处理器处理的源程序与之前的源程序有所有不同,在这个阶段所进行的工作只是纯粹的替换与展开,没有任何计算功能,所以在学习#define命令时只要能真正理解这一点,这样才不会对此命令引起误解并误用。
2#define使用中的常见问题解析
2.1 简单宏定义使用中出现的问题
在简单宏定义的使用中,当替换文本所表示的字符串为一个表达式时,容易引起误解和误用。如下例:
例1 #define N 2+2
void main()
{
int a=N*N;
printf(“%d”,a);
}
(1) 出现问题:在此程序中存在着宏定义命令,宏N代表的字符串是2+2,在程序中有对宏N的使用,一般同学在读该程序时,容易产生的问题是先求解N为2+2=4,然后在程序中计算a时使用乘法,即N*N=4*4=16,其实该题的结果为8,为什么结果有这么大的偏差?
(2)问题解析:如1节所述,宏展开是在预处理阶段完成的,这个阶段把替换文本只是看作一个字符串,并不会有任何的计算发生,在展开时是在宏N出现的地方 只是简单地使用串2+2来代替N,并不会增添任何的符号,所以对该程序展开后的结果是a=2+2*2+2,计算后=8,这就是宏替换的实质,如何写程序才 能完成结果为16的运算呢?
(3)解决办法:将宏定义写成如下形式
#define N (2+2)
这样就可替换成(2+2)*(2+2)=16
2.2 带参数的宏定义出现的问题
在带参数的宏定义的使用中,极易引起误解。例如我们需要做个宏替换能求任何数的平方,这就需要使用参数,以便在程序中用实际参数来替换宏定义中的参数。一般学生容易写成如下形式:
#define area(x) x*x
这在使用中是很容易出现问题的,看如下的程序
void main()
{
int y=area(2+2);
printf(“%d”,y);
}
按理说给的参数是2+2,所得的结果应该为4*4=16,但是错了,因为该程序的实际结果为8,仍然是没能遵循纯粹的简单替换的规则,又是先计算再替换 了,在这道程序里,2+2即为area宏中的参数,应该由它来替换宏定义中的x,即替换成2+2*2+2=8了。那如果遵循(1)中的解决办法,把2+2 括起来,即把宏体中的x括起来,是否可以呢?#define area(x) (x)*(x),对于area(2+2),替换为(2+2)*(2+2)=16,可以解决,但是对于area(2+2)/area(2+2)又会怎么样呢,有的学生一看到这道题马上给出结果,因为分子分母一样,又错了,还是忘了遵循先替换再计算的规则了,这道题替换后会变为(2+2)*(2+2)/(2+2)*(2+2)即4*4/4*4按照乘除运算规则,结果为16/4*4=4*4=16,那应该怎么呢?解决方法是在整个 宏体上再加一个括号,即#define area(x) ((x)*(x)),不要觉得这没必要,没有它,是不行的。
要想能够真正使用好宏定义,那么在读别人的程序时,一定要记住先将程序中对宏的使用全部替换成它所代表的字符串,不要自作主张地添加任何其他符号,完全展开后再进行相应的计算,就不会写错运行结果。如果是自己编程使用宏替换,则在使用简单宏定义时,当字符串中不只一个符号时,加上括号表现出优先级,如果是 带参数的宏定义,则要给宏体中的每个参数加上括号,并在整个宏体上再加一个括号。看到这里,不禁要问,用宏定义这么麻烦,这么容易出错,可不可以摒弃它,那让我们来看一下在C语言中用宏定义的好处吧。
3 宏定义的优点
(1) 方便程序的修改
使用简单宏定义可用宏代替一个在程序中经常使用的常量,这样在将该常量改变时,不用对整个程序进行修改,只修改宏定义的字符串即可,而且当常量比较长时,我们可以用较短的有意义的标识符来写程序,这样更方便一些。我们所说的常量改变不是在程序运行期间改变,而是在编程期间的修改,举一个大家比较熟悉的例 子,圆周率π是在数学上常用的一个值,有时我们会用3.14来表示,有时也会用3.1415926等,这要看计算所需要的精度,如果我们编制的一个程序中 要多次使用它,那么需要确定一个数值,在本次运行中不改变,但也许后来发现程序所表现的精度有变化,需要改变它的值,这就需要修改程序中所有的相关数值,这会给我们带来一定的不便,但如果使用宏定义,使用一个标识符来代替,则在修改时只修改宏定义即可,还可以减少输入 3.1415926这样长的数值多次的情况,我们可以如此定义#define pi 3.1415926,既减少了输入又便于修改,何乐而不为呢?
(2) 提高程序的运行效率
使用带参数的宏定义可完成函数调用的功能,又能减少系统开 销,提高运行效率。正如C语言中所讲,函数的使用可以使程序更加模块化,便于组织,而且可重复利用,但在发生函数调用时,需要保留调用函数的现场,以便子函数执行结束后能返回继续执行,同样在子函数执行完后要恢复调用函数的现场,这都需要一定的时间,如果子函数执行的操作比较多,这种转换时间开销可以忽 略,但如果子函数完成的功能比较少,甚至于只完成一点操作,如一个乘法语句的操作,则这部分转换开销就相对较大了,但使用带参数的宏定义就不会出现这个问题,因为它是在预处理阶段即进行了宏展开,在执行时不需要转换,即在当地执行。宏定义可完成简单的操作,但复杂的操作还是要由函数调用来完成,而且宏定义 所占用的目标代码空间相对较大。所以在使用时要依据具体情况来决定是否使用宏定义。
4 结语
本文对C语言中宏定义#define在使用时容易出现的问题进行了解析,并从C源程序处理过程的角度对#define的处理进行了分析,也对它的优点进行 了阐述。只要能够理解宏展开的规则,掌握使用宏定义时,是在预处理阶段对源程序进行替换,只是用对应的字符串替换程序中出现的宏名,这样就可在正确使用的基础上充分享受使用宏定义带来的方便和效率了
二.
最近看com相关的资料,看到CCmdTarget实现com接口的时候,去读了一些宏的定义,在afxdisp.h头文件中
#define BEGIN_INTERFACE_PART(localClass, baseClass) \
class X##localClass : public baseClass \
本来这个宏定义很容易理解的,但是这里多出个X##,我真没见过这种用法,不晓得它是什么用意。
后来问了几个朋友也都不知道。
你知道么?
也许你也不知道~呵呵,最后我还是找到了相关的资料,解读了这个define,还顺便认识了另外两个不常用的define
#define Conn(x,y) x##y
#define ToChar(x) #@x
#define ToString(x) #x
x##y表示什么?表示x连接y,举例说:
int n = Conn(123,456); 结果就是n=123456;
char* str = Conn("asdf", "adf")结果就是str = "asdfadf";
怎么样,很神奇吧
再来看#@x,其实就是给x加上单引号,结果返回是一个const char。举例说:
char a = ToChar(1);结果就是a='1';
做个越界试验char a = ToChar(123);结果是a='3';
但是如果你的参数超过四个字符,编译器就给给你报错了!error C2015: too manycharacters in constant :P
最后看看#x,估计你也明白了,他是给x加双引号
char* str = ToString(123132);就成了str="123132";
最后留几个小试验给大家去测测:
#define Dec(x,y) (x-y)
int n = Dec( A(123,1), 1230);
n = Conn(123, Conn(123,332) );
char* str = A("12", ToString( Dec(3,1));
结果会如何呢? 嘿嘿嘿嘿~
三.
#define xxx() {}
标准C支持的
#define xxx() ({})
GCC新增的功能,主要为了防止宏展开出现问题,默认展开时是要加上一个;的,容易出问题。
CODE:#define A(a,b,c) ({a=1;b+=1;c=3;a+b+c;})
#include <stdio.h>
int main()
{
int a;
int b=1;
int c;
int d;
d=A(a,b,c);
printf("%d,%d,%d,%d\n",a,b,c,d);
return 0;
}
表示该宏函数还有返回值,最后一个式子的返回值作为宏函数的返回值。
运行结果:
1,2,3,6
E. c语言模块化程序设计
1.模块化编程是指将一个庞大的程序划分为若干个功能独立的模块,对各个模块进行独立开发,然后再将这些模块统一合并为一个完整的程序。这是C语言面向过程的编程方法,可以缩短开发周期,提高程序的可读性和可维护性。
2.在单片机程序里,程序比较小或者功能比较简单的时候,我们不需要采用模块化编程,但是,当程序功能复杂、涉及的资源较多的时候,模块化编程就能体现它的优越性了。如前面我们写过的HT1380驱动程序、独立按键扫描程序和12864程序,每一个程序都是只用一个源文件编写就能完成,但是,当您制作一个12864液晶日历的时候,需要用到HT1380驱动程序、独立按键扫描程序和12864显示程序,如果把这三个程序全部集中在一个源文件里,将导致主体程序臃肿且杂乱,这样做并非不可取,只是降低了程序可读性、可维护性和代码的重用率。如果把这三个程序当做三个独立的模块放到你的主体工程进行模块化编程,效果就不一样了。实际上,模块化编程就是模块合并的过程,就是建立每个模块的头文件和源文件并将其加入到主体程序的过程。主体程序调用模块的函数是通过包含模块的头文件来实现,模块的头文件和源文件是模块密不可分的两个部分,缺一不可。所以,模块化编程必须提供每个模块的头文件和源文件。
F. C语言的模块化编程还是不太理解,还请各位大神指点!
模块化编程是为了更好的管理工程、方便以后移植代码、使主函数或主文件(即有main函数的那个文件)变得简单,因为我们读代码时一般都是从主函数开始读的。
那怎么进行模块化呢?
简单的就是一个功能包装成一个函数,要实现什么功能就调用哪个函数实现。
而复杂点的就是,一个功能模块统一放一个C文件中,这个模块相关的函数全部在这个C文件中实现,在主文件(即有main函数的C文件)想要使用这个模块的功能函数,只需要包含它的头文件就可以调用了。那头文件就只是放这个功能模块的函数声明。
这样子做,以后移植就方便多了。如果别的工程需要这个功能模块,只需复制一下它的C文件已经H文件到这个工程目录下,就能使用。
比如实现LCD描字、划线、画圆等等函数都放在一个叫做lcd.c的文件中,那就应该有一个叫做lcd.h的文件跟它对应,这个.h都是放这个.c文件对外函数的声明。主文件的开头出只需来一个#include"lcd.h"就可以调用这些画圆划线函数了。
G. 请你简单阐述用C语言编写一个模块化程序的基本过程
模块化程序设计即模块化设计,简单地说就是程序的编写不是开始就逐条录入计算机语句和指令,而是首先用主程序、子程序、子过程等框架把软件的主要结构和流程描述出来,并定义和调试好各个框架之间的输入、输出链接关系。逐步求精的结果是得到一系列以功能块为单位的算法描述。以功能块为单位进行程序设计,实现其求解算法的方法称为模块化。模块化的目的是为了降低程序复杂度,使程序设计、调试和维护等操作简单化。
简单的说就是用函数封装一个完成某个特定功能的程序块,主函数通过调用这些函数使得编程的整体框架清晰,整个程序的代码量看上去应该像一个三角形,最顶上的是主函数,代码量比大部分调用函数都要少。模块化编程的另一个好处就是功能的复用,比如你的程序里反复需要用到求数组里所有元素的和的操作,就可以建立一个数组求和的函数来反复调用此函数求和。
H. 求简单C语言程序代码!
输入2个正整数m和n,求其最大公约数和最小公倍数
#include
#include
int main()
int m,n,p,q,s,r;
printf("请输入两个正整数;m,n ");
scanf("%d,%d",&m,&n);
#include<stdio.h>
main()
int a,b,t=0;
scanf("%d %d",&a,&b);
if (a<b)
printf("%d %d %d %d %d",(a+b),(a-b),(a/b),(a*b),(a%b));
}
主要特点
C语言是一种结构化语言,它有着清晰的层次,可按照模块的方式对程序进行编写,十分有利于程序的调试,且c语言的处理和表现能力都非常的强大,依靠非常全面的运算符和多样的数据类型,可以轻易完成各种数据结构的构建,通过指针类型更可对内存直接寻址以及对硬件进行直接操作,因此既能够用于开发系统程序,也可用于开发应用软件。
以上内容参考:网络-c语言