当前位置:首页 » 编程语言 » c语言递推最小二乘
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

c语言递推最小二乘

发布时间: 2022-05-11 11:52:00

‘壹’ 求一个最小二乘法c语言程序

#include <stdio.h>
#include <conio.h>
#include <math.h>
#include <process.h>
#define N 5//N个点
#define T 3 //T次拟合
#define W 1//权函数
#define PRECISION 0.00001
float pow_n(float a,int n)
{
int i;
if(n==0)
return(1);
float res=a;
for(i=1;i<n;i++)
{
res*=a;
}
return(res);
}
void mutiple(float a[][N],float b[][T+1],float c[][T+1])
{
float res=0;
int i,j,k;
for(i=0;i<T+1;i++)
for(j=0;j<T+1;j++)
{
res=0;
for(k=0;k<N;k++)
{
res+=a[i][k]*b[k][j];
c[i][j]=res;
}
}
}
void matrix_trans(float a[][T+1],float b[][N])
{
int i,j;
for(i=0;i<N;i++)
{
for(j=0;j<T+1;j++)
{
b[j][i]=a[i][j];
}
}
}
void init(float x_y[][2],int n)
{
int i;
printf("请输入%d个已知点:\n",N);
for(i=0;i<n;i++)
{
printf("(x%d y%d):",i,i);
scanf("%f %f",&x_y[i][0],&x_y[i][1]);
}
}
void get_A(float matrix_A[][T+1],float x_y[][2],int n)
{
int i,j;
for(i=0;i<N;i++)
{
for(j=0;j<T+1;j++)
{
matrix_A[i][j]=W*pow_n(x_y[i][0],j);
}
}
}
void print_array(float array[][T+1],int n)
{
int i,j;
for(i=0;i<n;i++)
{
for(j=0;j<T+1;j++)
{
printf("%-g",array[i][j]);
}
printf("\n");
}
}
void convert(float argu[][T+2],int n)
{
int i,j,k,p,t;
float rate,temp;
for(i=1;i<n;i++)
{
for(j=i;j<n;j++)
{
if(argu[i-1][i-1]==0)
{
for(p=i;p<n;p++)
{
if(argu[p][i-1]!=0)
break;
}
if(p==n)
{
printf("方程组无解!\n");
exit(0);
}
for(t=0;t<n+1;t++)
{
temp=argu[i-1][t];
argu[i-1][t]=argu[p][t];
argu[p][t]=temp;
}
}
rate=argu[j][i-1]/argu[i-1][i-1];
for(k=i-1;k<n+1;k++)
{
argu[j][k]-=argu[i-1][k]*rate;
if(fabs(argu[j][k])<=PRECISION)
argu[j][k]=0;
}
}
}
}
void compute(float argu[][T+2],int n,float root[])
{
int i,j;
float temp;
for(i=n-1;i>=0;i--)
{
temp=argu[i][n];
for(j=n-1;j>i;j--)
{
temp-=argu[i][j]*root[j];
}
root[i]=temp/argu[i][i];
}
}
void get_y(float trans_A[][N],float x_y[][2],float y[],int n)
{
int i,j;
float temp;
for(i=0;i<n;i++)
{
temp=0;
for(j=0;j<N;j++)
{
temp+=trans_A[i][j]*x_y[j][1];
}
y[i]=temp;
}
}
void cons_formula(float coef_A[][T+1],float y[],float coef_form[][T+2])
{
int i,j;
for(i=0;i<T+1;i++)
{
for(j=0;j<T+2;j++)
{
if(j==T+1)
coef_form[i][j]=y[i];
else
coef_form[i][j]=coef_A[i][j];
}
}
}
void print_root(float a[],int n)
{
int i,j;
printf("%d个点的%d次拟合的多项式系数为:\n",N,T);
for(i=0;i<n;i++)
{
printf("a[%d]=%g,",i+1,a[i]);
}
printf("\n");
printf("拟合曲线方程为:\ny(x)=%g",a[0]);
for(i=1;i<n;i++)
{
printf(" + %g",a[i]);
for(j=0;j<i;j++)
{
printf("*X");
}
}
printf("\n");
}
void process()
{
float x_y[N][2],matrix_A[N][T+1],trans_A[T+1][N],coef_A[T+1][T+1],coef_formu[T+1][T+2],y[T+1],a[T+1];
init(x_y,N);
get_A(matrix_A,x_y,N);
printf("矩阵A为:\n");
print_array(matrix_A,N);
matrix_trans(matrix_A,trans_A);
mutiple(trans_A,matrix_A,coef_A);
printf("法矩阵为:\n");
print_array(coef_A,T+1);
get_y(trans_A,x_y,y,T+1);
cons_formula(coef_A,y,coef_formu);
convert(coef_formu,T+1);
compute(coef_formu,T+1,a);
print_root(a,T+1);
}
void main()
{
process();
}
]]>
</Content>
<PostDateTime>2007-4-19 19:23:57</PostDateTime>
</Reply>
<Reply>
<PostUserNickName></PostUserNickName>
<rank>一级(初级)</rank>
<ranknum>user1</ranknum>
<credit>100</credit>
<ReplyID>40389872</ReplyID>
<TopicID>5478010</TopicID>
<PostUserId>1526752</PostUserId>
<PostUserName>jiangxc2004</PostUserName>
<Point>0</Point>
<Content>
<![CDATA[
你可以改一下
不从终端输入,直接在程序中给出参数
请输入5个已知点:
(x0 y0):-2 -0.1
(x1 y1):-1 0.1
(x2 y2):0 0.4
(x3 y3):1 0.9
(x4 y4):2 1.6
矩阵A为:
1 -2 4 -8
1 -1 1 -1
1 0 0 0
1 1 1 1
1 2 4 8
法矩阵为:
5 0 10 0
0 10 0 34
10 0 34 0
0 34 0 130
5个点的3次拟合的多项式系数为:
a[1]=0.408571, a[2]=0.391667, a[3]=0.0857143, a[4]=0.00833333,
拟合曲线方程为:
y(x)=0.408571 + 0.391667*X + 0.0857143*X*X + 0.00833333*X*X*X
]]>
</Content>
<PostDateTime>2007-4-19 19:26:11</PostDateTime>
</Reply>
<Reply>
<PostUserNickName></PostUserNickName>
<rank>一级(初级)</rank>
<ranknum>user1</ranknum>
<credit>100</credit>
<ReplyID>40390406</ReplyID>
<TopicID>5478010</TopicID>
<PostUserId>1526752</PostUserId>
<PostUserName>jiangxc2004</PostUserName>
<Point>0</Point>
<Content>
<![CDATA[
这样就可以直接调用process()函数了!
二次拟合的话就把宏 T 成2;
拟合点的数目 N 也可以修改!
也可以去到注释的部分进行返回值的调用!

‘贰’ 系统辨识中递推最小二乘法的C语言编程问题

'/0'是多字符字符常量,有的编译器不支持,即便支持出来的效果也前插万别。不过就这上下文的话,因为是打印%c所以只考虑低字节'/0'和'0'就没区别了(多数编译器低字节在后面,和字符串相反)。'0'是0x30,也就是48,68+48时116也就是't'

以上作为你没写错考虑的

如果是'\0'的话那就是0,68+0还是0。68对应的是'D'
我可以帮助你,你先设置我最佳答案后,我网络Hii教你。

‘叁’ 计算方法中最小二乘法如何用C语言编程

#include <stdio.h>
#include <math.h>
#define epsilon 1e-6
void nihe1(int n,int m,float sum_x,float sum_y,float sum_xy,float x2);
void nihe2(int n,int m,float sum_x,float sum_y,float sum_xy,float x2,float x2y,float x3,float x4);
int main(){
float x[100]={0.0};
float y[100]={0.0};
int n,i,flag=1;
float sum_y=0.0,sum_x=0,x2=0,sum_xy=0.0,x3=0,x4=0,x2y=0.0;
printf("请你输入需要测试的数据(先输入x[],后输入y[])的个数:");
scanf("%d",&n);
for(i = 0; i < n; i++){
scanf("%f",&x[i]);}
for(i = 0; i < n; i++){
scanf("%f",&y[i]);}
for(i = 0; i < n; i++){
sum_x += x[i];
sum_y += y[i];
sum_xy += x[i]*y[i];
x2 += x[i]*x[i];
x2y += x[i]*x[i]*y[i];
x3 += x[i]*x[i]*x[i];
x4 += x[i]*x[i]*x[i]*x[i];}
printf("---------------请你输入的要拟合的函数------------------\n");
printf(" 1、拟合一次函数\n");
printf(" 2、拟合二次函数\n");
scanf("%d",&flag);
switch(flag){
case 1:
nihe1(n,flag+1,sum_x,sum_y,sum_xy,x2); break;
case 2:
nihe2(n,flag+1,sum_x,sum_y,sum_xy,x2,x2y,x3,x4); break;
default:
printf("ERROR\n");}
return 0;}
void nihe1(int n,int m,float sum_x,float sum_y,float sum_xy,float x2){
int i,k,j;
float t,s=0;
float a[2][3] = {{(float)n,sum_x,sum_y},{sum_x,x2,sum_xy}};
n=m;
//if(m == 3)
// a[3][4] = {{n,sum_x,sum_y},{sum_x,x2,x3,sum_xy},{x2,x3,x4,x2y}};
for(k=0;k<n-1;k++) {
for(i=k+1;i<n;i++)
if( abs((int)a[i][k]) > abs((int)a[k][k]) )
for(j=k;j<n+1;j++) {
t=a[k][j];
a[k][j]=a[i][j];
a[i][j]=t; }
if( abs((int)a[k][k]) < epsilon) {
printf("\nError,主元消去法 cann't be rable,break at %d!\n",k+1);
return; }
for(i=k+1;i<n;i++){
a[i][k]=a[i][k] / a[k][k];
for(j=k+1;j<n+1;j++)
a[i][j]=a[i][j]-a[i][k] * a[k][j]; }}
a[n-1][n]=a[n-1][n] / a[n-1][n-1];
for(k=n-2;k>=0;k--) {
s=0;
for(j=k+1;j<n;j++)
s+=a[k][j]*a[j][n];
a[k][n]=( a[k][n]-s ) / a[k][k]; }
printf("\n*****The Result*****\n");
for(i=0;i<n;i++)
printf(" x[%d]=%.4f\n",i+1,a[i][n]);
printf("函数为:p(x) = %.4f + (%.4f)*x\n",a[0][n],a[1][n]);
getchar();}
void nihe2(int n,int m,float sum_x,float sum_y,float sum_xy,float x2,float x2y,float x3,float x4){
int i,k,j;
float t,s=0;
float a[3][4]=
{{(float)n,sum_x,x2,sum_y},{sum_x,x2,x3,sum_xy},{x2,x3,x4,x2y}};
n=m;
for(k=0;k<n-1;k++) {
for(i=k+1;i<n;i++)
if( abs((int)a[i][k]) > abs((int)a[k][k]) )
for(j=k;j<n+1;j++) {
t=a[k][j];
a[k][j]=a[i][j];
a[i][j]=t; }
if( abs((int)a[k][k]) < epsilon) {
printf("\nError,主元消去法 cann't be rable,break at %d!\n",k+1);
return; }
for(i=k+1;i<n;i++){
a[i][k]=a[i][k] / a[k][k];
for(j=k+1;j<n+1;j++)
a[i][j]=a[i][j]-a[i][k] * a[k][j]; } }
a[n-1][n]=a[n-1][n] / a[n-1][n-1];
for(k=n-2;k>=0;k--) {
s=0;
for(j=k+1;j<n;j++)
s+=a[k][j]*a[j][n];
a[k][n]=( a[k][n]-s ) / a[k][k]; }
printf("\n*****The Result*****\n");
for(i=0;i<n;i++)
printf(" x[%d]=%.4f\n",i+1,a[i][n]);
printf("函数为:p(x) = %.4f + (%.4f)*x + (%.4f)*x*x\n",a[0][n],a[1][n],a[2][n]);
getchar();}

‘肆’ 怎么用C语言实现最小二乘法

最小二乘法常用于根据实测数据求线性方程的最近似解。根据如图(图片引用于网络)的描述,利用C语言求,使用最小二乘法算法求线性方程的解,程序如下:

#include<stdio.h>
#defineN4//共有4个记录,根据需要增加记录
typedefstructData{//定义实验记录结构
intw;//实验次数
doublex;
doubley;
}DATA;
//根据d中的n个DATA记录,计算出线性方程的a,b两值
voidgetcs(DATA*d,intn,double&a,double&b){
doublefi11=0,fi12=0,fi21=0,fi22=0,f1=0,f2=0;
inti;
for(i=0;i<n;i++){
fi11+=d[i].w;
fi12+=d[i].w*d[i].x;
fi21=fi12;
fi22+=d[i].w*d[i].x*d[i].x;
f1+=d[i].w*d[i].y;
f2+=d[i].w*d[i].x*d[i].y;
}
//解一元一次方程
b=(f2*fi11/fi21-f1)/(fi22*fi11/fi21-fi12);
a=(f2*fi12/fi22-f1)/(fi21*fi12/fi22-fi11);

}
intmain(){
DATAd[N]={//定义时赋初值,共4个记录
{2,0.1,1.1},
{1,0.2,1.9},
{1,0.3,3.1},
{1,0.4,3.9}
};

doublea,b;
getcs(d,N,a,b);//计算线性方程参数a,b
printf("线性方程是:Y=%.4lf+%.4lfX ",a,b);
}

‘伍’ 急求用maple编写最小二乘法的程序。

其实最小二乘法也可以写得不像我原来的那么麻烦:
fid=fopen('input.txt','r+');
U=fscanf(fid,'%f',a);
fclose(fid);
fid1=fopen('output1.txt','r+');
Y=fscanf(fid1,'%f',a);
fclose(fid1);
U1=U(1:a-1);
U2=U(1:a-2);
Y1=Y(1:a-1);
Y2=Y(1:a-2);
D1=-1*[0;Y1];
D2=-1*[0;0;Y2];
D3=[0;U1];
D4=[0;0;U2];
D=[D1 D2 D3 D4];
Q=inv(D'*D)*D'*Y
下面是递推最小二乘的算法:
m=input('m=')
fid=fopen('input.txt','r+');
U=fscanf(fid,'%f',a);
fclose(fid);
fid1=fopen('output1.txt','r+');
Y=fscanf(fid1,'%f',a);
fclose(fid1);
U1=U(1:m-1);
U2=U(1:m-2);
Y1=Y(1:m-1);
Y2=Y(1:m-2);
Y3=Y(1:m);
D1=-1*[0;Y1];
D2=-1*[0;0;Y2];
D3=[0;U1];
D4=[0;0;U2];
D=[D1 D2 D3 D4];
Q=inv(D'*D)*D'*Y3;
P=inv(D'*D);
%以上程序是用最小二乘法计算的初值,取前m个数据%
for i=m:a-1;
x=[-1*Y(i);-1*Y(i-1);U(i);U(i-1)];
y=Y(i+1);
p=1/(1+x'*P*x);
Z=Q+P*x*p*(y-x'*Q);
P=P-P*x*p*x'*P;
q=norm(Z-Q)/norm(Q);
Q=Z;
if q<10e-6;
k=i-m
q
Q
break
end
end
ppp='help me!'

‘陆’ 用c语言编写最小二乘法

#include "stdafx.h"

#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

#include <cmath>

#include <iostream>

using namespace std;




void polyfit(int n, double x[], double y[], int poly_n, double a[])

{

int i, j;

double *tempx, *tempy, *sumxx, *sumxy, *ata;

void gauss_solve(int n, double A[], double x[], double b[]);

tempx = new double[n];

sumxx = new double[poly_n * 2 + 1];

tempy = new double[n];

sumxy = new double[poly_n + 1];

ata = new double[(poly_n + 1)*(poly_n + 1)];


for (i = 0; i<n; i++)

{

tempx[i] = 1;

tempy[i] = y[i];

}

for (i = 0; i<2 * poly_n + 1; i++)

for (sumxx[i] = 0, j = 0; j<n; j++)

{

sumxx[i] += tempx[j];

tempx[j] *= x[j];

}

for (i = 0; i<poly_n + 1; i++)

for (sumxy[i] = 0, j = 0; j<n; j++)

{

sumxy[i] += tempy[j];

tempy[j] *= x[j];

}

for (i = 0; i<poly_n + 1; i++)

for (j = 0; j<poly_n + 1; j++)

ata[i*(poly_n + 1) + j] = sumxx[i + j];

gauss_solve(poly_n + 1, ata, a, sumxy);


delete [] tempx;

tempx = NULL;

delete [] sumxx;

sumxx = NULL;

delete [] tempy;

tempy = NULL;

delete [] sumxy;

sumxy = NULL;

delete [] ata;

ata = NULL;

}


void gauss_solve(int n, double A[], double x[], double b[])

{

int i, j, k, r;

double max;

for (k = 0; k<n - 1; k++)

{

max = fabs(A[k*n + k]); /*find maxmum*/

r = k;

for (i = k + 1; i<n - 1; i++)

if (max<fabs(A[i*n + i]))

{

max = fabs(A[i*n + i]);

r = i;

}

if (r != k)

for (i = 0; i<n; i++) /*change array:A[k]&A[r] */

{

max = A[k*n + i];

A[k*n + i] = A[r*n + i];

A[r*n + i] = max;

}

max = b[k]; /*change array:b[k]&b[r] */

b[k] = b[r];

b[r] = max;

for (i = k + 1; i<n; i++)

{

for (j = k + 1; j<n; j++)

A[i*n + j] -= A[i*n + k] * A[k*n + j] / A[k*n + k];

b[i] -= A[i*n + k] * b[k] / A[k*n + k];

}

}


for (i = n - 1; i >= 0; x[i] /= A[i*n + i], i--)

for (j = i + 1, x[i] = b[i]; j<n; j++)

x[i] -= A[i*n + j] * x[j];

}



/*==================polyfit(n,x,y,poly_n,a)===================*/

/*=======拟合y=a0+a1*x+a2*x^2+……+apoly_n*x^poly_n========*/

/*=====n是数据个数 x y是数据值 poly_n是多项式的项数======*/

/*===返回a0,a1,a2,……a[poly_n],系数比项数多一(常数项)=====*/

void main()

{

int n = 9, poly_n = 2;

//double x[20] = { 1 ,2 , 3 , 4 , 7 ,8 ,9,11,12, 13,15,15,17 ,17, 19 ,18 ,20,19,20, 20 },

//y[20] = { 1,3,6 ,10 ,17,25,34,45,57,70,85,100,117,134,153,171,191,210 , 230 , 250 };

double x[9]={1,3,4,5,6,7,8,9,10},

y[9]={10,5,4,2,1,1,2,3,4};

double a[50];

polyfit(n, x, y, poly_n, a);

for (int i = 0; i < poly_n + 1; i++)/*这里是升序排列,Matlab是降序排列*/

cout << "a[" << i << "]=" << a[i] << endl;


}

运行结果,我是拟合的2次的,你可以拟合多次。

方程式:

0.267571*x*x-3.60531*x+13.4597=0

这个2次多项式的最低点还用我说吗,在那个区间上,自己代入;