這裡蒐索程式師資訊,查找有用的技術資料
当前位置:首页 » 编程语言 » C语言线性表返回位序
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

C语言线性表返回位序

发布时间: 2022-05-08 00:20:56

⑴ 求高手用C写一段线性表的顺序存储(包括创建,插入,删除和查找),不用很复杂,最简单的就可以了!

#include<malloc.h> /* malloc()等 */
#include<stdio.h> /* EOF(=^Z或F6),NULL */
#include<stdlib.h> /* atoi() */
#include<io.h> /* eof() */
/* 函数结果状态代码 */
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
#define OVERFLOW -2
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int Boolean; /* Boolean是布尔类型,其值是TRUE或FALSE */
typedef int ElemType;
#define LIST_INIT_SIZE 10 /* 线性表存储空间的初始分配量 */
#define LISTINCREMENT 2 /* 线性表存储空间的分配增量 */
typedef struct
{
ElemType *elem; /* 存储空间基址 */
int length; /* 当前长度 */
int listsize; /* 当前分配的存储容量(以sizeof(ElemType)为单位) */
}sqlist;

Status InitList(SqList *L) //创建
{ /* 操作结果:构造一个空的顺序线性表 */
(*L).elem=(ElemType*)malloc(LIST_INIT_SIZE*sizeof(ElemType));
if(!(*L).elem)
exit(OVERFLOW); /* 存储分配失败 */
(*L).length=0; /* 空表长度为0 */
(*L).listsize=LIST_INIT_SIZE; /* 初始存储容量 */
return OK;
}

Status DestroyList(SqList *L) //销毁
{ /* 初始条件:顺序线性表L已存在。操作结果:销毁顺序线性表L */
free((*L).elem);
(*L).elem=NULL;
(*L).length=0;
(*L).listsize=0;
return OK;
}

Status ClearList(SqList *L) //置空
{ /* 初始条件:顺序线性表L已存在。操作结果:将L重置为空表 */
(*L).length=0;
return OK;
}

Status ListEmpty(SqList L) //判空
{ /* 初始条件:顺序线性表L已存在。操作结果:若L为空表,则返回TRUE,否则返回FALSE */
if(L.length==0)
return TRUE;
else
return FALSE;
}

int ListLength(SqList L)
{ /* 初始条件:顺序线性表L已存在。操作结果:返回L中数据元素个数 */
return L.length;
}

Status GetElem(SqList L,int i,ElemType *e)
{ /* 初始条件:顺序线性表L已存在,1≤i≤ListLength(L) */
/* 操作结果:用e返回L中第i个数据元素的值 */
if(i<1||i>L.length)
exit(ERROR);
*e=*(L.elem+i-1);
return OK;
}

int LocateElem(SqList L,ElemType e,Status(*compare)(ElemType,ElemType)) //查找
{ /* 初始条件:顺序线性表L已存在,compare()是数据元素判定函数(满足为1,否则为0) */
/* 操作结果:返回L中第1个与e满足关系compare()的数据元素的位序。 */
/* 若这样的数据元素不存在,则返回值为0。*/
ElemType *p;
int i=1; /* i的初值为第1个元素的位序 */
p=L.elem; /* p的初值为第1个元素的存储位置 */
while(i<=L.length&&!compare(*p++,e))
++i;
if(i<=L.length)
return i;
else
return 0;
}

Status ListInsert(SqList *L,int i,ElemType e) //插入
{ /* 初始条件:顺序线性表L已存在,1≤i≤ListLength(L)+1 */
/* 操作结果:在L中第i个位置之前插入新的数据元素e,L的长度加1 */
ElemType *newbase,*q,*p;
if(i<1||i>(*L).length+1) /* i值不合法 */
return ERROR;
if((*L).length>=(*L).listsize) /* 当前存储空间已满,增加分配 */
{
newbase=(ElemType *)realloc((*L).elem,((*L).listsize+LISTINCREMENT)*sizeof(ElemType));
if(!newbase)
exit(OVERFLOW); /* 存储分配失败 */
(*L).elem=newbase; /* 新基址 */
(*L).listsize+=LISTINCREMENT; /* 增加存储容量 */
}
q=(*L).elem+i-1; /* q为插入位置 */
for(p=(*L).elem+(*L).length-1;p>=q;--p) /* 插入位置及之后的元素右移 */
*(p+1)=*p;
*q=e; /* 插入e */
++(*L).length; /* 表长增1 */
return OK;
}

Status ListDelete(SqList *L,int i,ElemType *e) //删除
{ /* 初始条件:顺序线性表L已存在,1≤i≤ListLength(L) */
/* 操作结果:删除L的第i个数据元素,并用e返回其值,L的长度减1 */
ElemType *p,*q;
if(i<1||i>(*L).length) /* i值不合法 */
return ERROR;
p=(*L).elem+i-1; /* p为被删除元素的位置 */
*e=*p; /* 被删除元素的值赋给e */
q=(*L).elem+(*L).length-1; /* 表尾元素的位置 */
for(++p;p<=q;++p) /* 被删除元素之后的元素左移 */
*(p-1)=*p;
(*L).length--; /* 表长减1 */
return OK;
}

void main()//主函数自己写
{

}

//想学好编程数据结构还是要多练练的,平时自己也试着写一下

⑵ 数据结构 线性表 用c语言

#define MAXSIZE 100 //表中元素的最大个数

typedef int ElemType;//元素类型

typedef struct list{

ElemType elem[MAXSIZE];//静态线性表

int length; //表的实际长度

}SqList;//顺序表的类型名

⑶ 线性表的基本操作c语言实现

代码如下:

头文件:

2_1.h

#ifndef _2_1_H

#define _2_1_H

typedef void SeqList;

typedef void SeqListNode;

//创建线性表

SeqList * SeqList_Create(int capacity);

//销毁线性表

void SeqList_DesTroy(SeqList * list);

void SeqList_Clear(SeqList* list);

int SeqList_Length(SeqList* list);

int SeqList_Capacity(SeqList* list);

int SeqList_Insert(SeqList* list, SeqListNode* node, int pos);

SeqListNode* SeqList_Get(SeqList* list, int pos);

SeqListNode* SeqList_Delete(SeqList* list, int pos);

#endif

源文件:

// 顺序线性表.cpp : 定义控制台应用程序的入口点。

//

#include "stdafx.h"

#include <malloc.h>

#include <stdlib.h>

#include "2_1.h"

typedef unsigned int TSeqListNode;

typedef struct {

int len; //长度

int capacity;//总长度

TSeqListNode * node;//每个节点的指针

} TSeqList;

int main()

{

SeqList* list = SeqList_Create(5);//创建线性表

int i = 6;//赋值6个变量,已超过线性表最大值 5

int j = 1;

int k = 2;

int x = 3;

int y = 4;

int z = 5;

int index = 0;

SeqList_Insert(list, &i, 7); //将这6个变量插入线性表中

SeqList_Insert(list, &j, 0);

SeqList_Insert(list, &k, 0);

SeqList_Insert(list, &x, 0);

SeqList_Insert(list, &y, 0);

SeqList_Insert(list, &z, 0);

//遍历

for(index=0; index<SeqList_Length(list); index++)

{

int* p = (int*)SeqList_Get(list, index);

printf("%d ", *p);

}

printf(" ");

//删除操作

while( SeqList_Length(list) > 0 )

{

int* p = (int*)SeqList_Delete(list, 0);

printf("删除了: %d ", *p);

}

SeqList_Clear(list);

SeqList_DesTroy(list);

system("pause");

return 0;

}

//创建线性表

SeqList * SeqList_Create(int capacity)

{

TSeqList* ret = NULL ;

if(capacity >= 0)

{

ret = (TSeqList*)malloc(sizeof(TSeqList) + sizeof(TSeqListNode)*capacity); //为线性表分配空间,包含结 //构体和节点的总大小

}

if(NULL != ret)

{

ret->len = 0;

ret->capacity = capacity;

ret->node = (TSeqListNode*)(ret + 1);//将节点指向上述分配到的空间的后部分

}

return ret;

}

//销毁

void SeqList_DesTroy(SeqList * list)

{

free(list);

}

//清空

void SeqList_Clear(SeqList* list)

{

TSeqList * ret = (TSeqList*)list;

if(NULL != ret)

{

ret->len = 0;

}

}

//获得线性表的长度

int SeqList_Length(SeqList* list)

{

TSeqList * ret = (TSeqList*)list;

int len = -1;

if(NULL != ret)

{

len = ret->len;

}

return len;

}

//线性表的总长度

int SeqList_Capacity(SeqList* list)

{

TSeqList * ret = (TSeqList*)list;

int capacity = -1;

if(NULL != ret)

{

ret->capacity = capacity;

}

return capacity;

}

//插入

int SeqList_Insert(SeqList* list, SeqListNode* node, int pos)

{

TSeqList * sList = (TSeqList*)list;

int i,ret = -1;

if((sList != NULL) &&(pos >= 0) && sList->capacity >= sList->len+1)

{

if(pos >= sList->len)

{

pos = sList->len;

}

for(i = sList->len; i > pos; i--)

{

sList->node[i] = sList->node[i-1];

}

sList->node[i] = (TSeqListNode)node;

++sList->len;

ret = 1;

}

return ret;

}

//获得指定位置的节点

SeqListNode* SeqList_Get(SeqList* list, int pos)

{

TSeqList * sList = (TSeqList*)list;

TSeqListNode* node = NULL;

if(NULL != sList && pos>=0 && pos < sList->len)

{

node = (TSeqListNode*)sList->node[pos];

}

return node;

}

//删除

SeqListNode* SeqList_Delete(SeqList* list, int pos)

{

TSeqList * sList = (TSeqList*)list;

SeqListNode * node = SeqList_Get( list, pos);

int i;

if(sList != NULL && pos >= 0 && pos< sList->len)

{

for( i=pos+1; i<sList->len; i++)

{

sList->node[i-1] = sList->node[i];

}

sList->len--;

}

return node;

}

演示:

资料拓展:

线性表是最基本、最简单、也是最常用的一种数据结构。

线性表中数据元素之间的关系是一对一的关系,即除了第一个和最后一个数据元素之外,其它数据元素都是首尾相接的(注意,这句话只适用大部分线性表,而不是全部。比如,循环链表逻辑层次上也是一种线性表(存储层次上属于链式存储),但是把最后一个数据元素的尾指针指向了首位结点)。

我们说“线性”和“非线性”,只在逻辑层次上讨论,而不考虑存储层次,所以双向链表和循环链表依旧是线性表。

在数据结构逻辑层次上细分,线性表可分为一般线性表和受限线性表。一般线性表也就是我们通常所说的“线性表”,可以自由的删除或添加结点。受限线性表主要包括栈和队列,受限表示对结点的操作受限制。

线性表的逻辑结构简单,便于实现和操作。因此,线性表这种数据结构在实际应用中是广泛采用的一种数据结构。

⑷ 数据结构c语言版 使用线性表的顺序储存结构定义(静态)实现线性表的初

直接上源码吧。
/*线性表功能的实现*/
#include<stdio.h>
//定义常量 存储空间的初始化分配
#define MAXSIZE 20
#define TRUE 1
#define ERROR -1
#define FALSE 0
#define OK 1
//用typedef定义类型
typedef int Status;
typedef int ElemType;
//定义一个结构体类型
typedef struct{
ElemType data[MAXSIZE];
int length;
} SqList;
//初始化函数
Status initList(SqList *L){
L->length = 0;
return OK;
}
//返回线性表的长度
Status getListLength(SqList L){
return L.length;
}
//线性表为空返回true,否则返回false
Status listEmpty(SqList L){
if(L.length == 0){
return TRUE;
}
return FALSE;
}
//线性表清空,长度为0
Status clearList(SqList *L){
L->length = 0;
return OK;
}
//获取指定的元素的值,返回下标为i - 1的元素,赋值给e
Status getElem(SqList L, int i, ElemType *e){
//判断元素位置是否合法[i]
if(i > L.length || i < 1){
printf("查找的位置不正确 \n");
return ERROR;
}
//判断线性表是否为空
if(listEmpty(L)){
return ERROR;
}
*e = L.data[i - 1];
return OK;
}
//在线性表中查找指定的e相等的元素,如果查找成功,返回该元素的下标,否则返回ERROR
Status locateElem(SqList L, ElemType e){
int i;
for(i = 0; i < L.length - 1; i++){
if(L.data[i] == e){
return i;
}
}
printf("没有查找到元素 %d 指定的下标\n",e);
return ERROR;
}
//自动创建 MAXSIZE 个元素,并赋值为0
Status createList(SqList *L){
int i;
for(i = 0; i < 10; i++){
L->data[i] = 0;
}
L->length = 10;
return OK;
}
//在线性表中第i个位置前插入新元素e
Status listInsert(SqList *L, int i, ElemType e){
//判断长度是否可以允许插入新的数据
if(L->length >= MAXSIZE){
printf("空间已满,不能再插入数据\n");
return FALSE;
}
//判断插入位置的合法性
if(i < 1 || i > L->length) {
printf("插入位置不正确\n");
return FALSE;
}
int j;
for(j = L->length - 1; j >= i; j--){
L->data[j] = L->data[j - 1];
}
L->data[i - 1] = e;
L->length++;
return TRUE;
}
//删除线性表中第i个元素,成功后表长减1,用e返回其值
Status deleteList(SqList *L, int i, ElemType *e){
//判断线性表是否为空
if(listEmpty(*L)){
return ERROR;
}
//判断删除的位置是否合法
if(i < 1 || i > L->length) {
printf("删除位置不合法\n");
return ERROR;
}
*e = L->data[i - 1];
for(i; i < L->length; i++){
L->data[i - 1] = L->data[i];
}
L->length--;
return TRUE;
}
//遍历线性表
Status listTraverse(SqList L){
int i;
for(i = 0; i < L.length; i++){
printf("%d ",L.data[i]);
}
printf("\n");
return OK;
}
//主程序
int main(void){
SqList L;
ElemType e;
initList(&L);
int option = 1;
int input_number;
int res;
ElemType input_value;
printf("\n1.遍历线性表 \n2.创建线性表 \n3.清空线性表 \n4.线性表插入 \n5.查找表中元素 \n6.判断元素是否在表中 \n7.删除某个元素 \n8.线性表长度\n9.线性表是否为空\n0.退出 \n请选择你的操作:\n");
while(option){
scanf("%d",&option);
switch(option){
case 0:
return OK;
break;
case 1:
listTraverse(L);
break;
case 2:
createList(&L);
listTraverse(L);
break;
case 3:
clearList(&L);
listTraverse(L);
break;
case 4:
printf("请输入插入的位置:");
scanf("%d",&input_number);
printf("\n");
printf("请输入插入的值:");
scanf("%d",&input_value);
printf("\n");
listInsert(&L, input_number, input_value);
listTraverse(L);
break;
case 5:
printf("请输入要查找的位置:");
scanf("%d",&input_number);
printf("\n");
getElem(L, input_number, &input_value);
printf("第%d个元素的值为:%d\n",input_number,input_value);
break;
case 6:
printf("请输入要查找的元素:");
scanf("%d",&input_value);
printf("\n");
res = locateElem(L, input_value);
if(res != ERROR){
printf("值为%d在表中的第%d个位置\n",input_value,input_number);
}
break;
case 7:
printf("要删除第几个元素?");
scanf("%d",&input_number);
printf("\n");
deleteList(&L, input_number, &input_value);
listTraverse(L);
break;
case 8:
res = getListLength(L);
printf("线性表的长度是:%d",res);
break;
case 9:
res = listEmpty(L);
if(res){
printf("线性表的是空的");
}else{
printf("线性表的是不是空的");
}
break;
}
}
return OK;
}

线性表的特征是:
1. 元素之间是有序的,如果元素存在多个,则第一个元素无前驱,最后一个无后继,其它元素都有且只有一个前驱和后继.
2. 元素个数是有限的. 当n=0是,称为空表
线性表实现方式有两种,分别是顺序存储结构和链式存储结构,它们之间各有优缺点 . 根据需求的不同进行选择不同的存储结构.
线性表存储结构的优缺点
优点:
1. 无须为表中元素之前的逻辑关系而增加额外的存储空间
2. 可以快速的存取表中的任一位置的元素
缺点:
1. 插入和删除操作需要移动大量元素
2. 当线性表长度变化较大时,难以确定存储空间的容量.
3. 造成存储空间的”碎片”.

⑸ 谁能给一个简单的线性表操作C语言完整程序

1、线性表有两种:

typedefstruct{

ElemType*elem;

intlength;

intlistsize;

}SqList;//顺序表


voidInitList_Sq(SqList&l){

l.elem=newElemType[LIST_INIT_SIZE];

l.length=0;

l.listsize=LIST_INIT_SIZE;

}//初始化顺序表

然后SqListLa;

InitList_Sq(La);

就可以


typedefstructLnode{

intdata;

structLnode*next;

}Lnode,*LinkList;//线性链表

//单链表可以有效的利用主存的碎片,它的数据域不是连续的


2、例程:

#include"stdio.h"
#include<malloc.h>
typedefcharElemType;
typedefstructLNode
{ElemTypedata;
structLNode*next;
}LinkList;
voidCreatListF(LinkList*&L,ElemTypea[],intn)//头插法建表
{
LinkList*s;inti;
L=(LinkList*)malloc(sizeof(LinkList));
L->next=NULL;
for(i=0;i<n;i++)
{
s=(LinkList*)malloc(sizeof(LinkList));
s->data=a[i];
s->next=L->next;
L->next=s;
}
}
voidCreateListR(LinkList*&L,ElemTypea[],intn)//尾插法建表
{
LinkList*s,*r;inti;
L=(LinkList*)malloc(sizeof(LinkList));
r=L;
for(i=0;i<n;i++)
{
s=(LinkList*)malloc(sizeof(LinkList));
s->data=a[i];
r->next=s;
r=s;
}
r->next=NULL;
}
voidInitList(LinkList*&L)//初始化线性表
{
L=(LinkList*)malloc(sizeof(LinkList));
L->next=NULL;
}
voidDestroyList(LinkList*&L)//销毁线性表
{
LinkList*p=L,*q=p->next;
while(q!=NULL)
{
free(p);
p=q;
q=p->next;
}
free(p);
}
intListEmpty(LinkList*L)//判断线性表是否为空
{
return(L->next==NULL);
}
intListLength(LinkList*L)//求线性表的长度
{
LinkList*p=L;intn=0;
while(p->next!=NULL)
{
n++;p=p->next;
}
return(n);
}
voidDispList(LinkList*L)//输出线性表
{
LinkList*p=L->next;
while(p!=NULL)
{
printf("%c",p->data);
p=p->next;
}
}
intGetElem(LinkList*L,inti,ElemType&e)//求线性表中某个数据元素值
{
intj=0;
LinkList*p=L;
while(j<i&&p!=NULL)
{
j++;p=p->next;
}
if(p==NULL)
return0;
else
{
e=p->data;return1;
}
}
intLocateElem(LinkList*L,ElemTypee)//按元素值查找
{
LinkList*p=L->next;
inti=1;
while(p!=NULL&&p->data!=e)
{
p=p->next;i++;
}
if(p==NULL)return(0);
elsereturn(i);
}
intListInsert(LinkList*&L,inti,ElemTypee)//插入数据元素
{
intj=0;
LinkList*p=L,*s;
while(j<i-1&&p!=NULL)
{
j++;p=p->next;
}
if(p==NULL)return0;
else
{
s=(LinkList*)malloc(sizeof(LinkList));
s->data=e;s->next=p->next;p->next=s;
return1;
}
}
intListDelete(LinkList*&L,inti,ElemType&e)//删除数据元素
{
intj=0;
LinkList*p=L,*q;
while(j<i-1&&p!=NULL)
{
j++;p=p->next;
}
if(p==NULL)
return0;
else
{
q=p->next;
if(q==NULL)return0;
e=q->data;
p->next=q->next;
free(q);
return1;
}
}
intmain()
{
ElemTypee,a[5]={'a','b','c','d','e'};
LinkList*h;
InitList(h);//初始化顺序表h
CreateListR(h,&a[0],5);//依次采用尾插入法插入a,b,c,d,e元素
printf("单链表为:");
DispList(h);printf(" ");//输出顺序表h
printf("该单链表的长度为:");
printf("%d",ListLength(h));printf(" ");//输出顺序表h的长度
if(ListEmpty(h))printf("该单链表为空。 ");
elseprintf("该单链表不为空。 ");//判断顺序表h是否为空
GetElem(h,3,e);printf("该单链表的第3个元素为:");
printf("%c",e);printf(" ");//输出顺序表h的第3个元素
printf("该单链表中a的位置为:");
printf("%d",LocateElem(h,'a'));printf(" ");//输出元素'a'的位置
ListInsert(h,4,'f');//在第4个元素位置插入'f'素
printf("在第4个元素位置上插入'f'后单链表为:");
DispList(h);printf(" ");//输出顺序表h
ListDelete(h,3,e);//删除L的第3个元素
printf("删除第3个元素后单链表为:");
DispList(h);printf(" ");//输出顺序表h
DestroyList(h);//释放顺序表h
return0;
}

⑹ 求一个简单的线性表(链式的,用C语言)

#include<stdio.h>
#include <stdlib.h>
#include <math.h>

/************************************************************************/
/* 常量定义 */
/************************************************************************/
#define ElemType int
#define Status int
#define TRUE 1
#define OK 1
#define FALSE 0
#define ERROR -1

/************************************************************************/
/* 线性表的单链表存储结构*/
/************************************************************************/
typedef struct LNode
{
ElemType data;
struct LNode *next;
}LNode, *LinkList;

//////////////////////////////////////////////////////////////////////////
//
// 带有头结点的单链表的基本操作(13个)
//
//////////////////////////////////////////////////////////////////////////

/************************************************************************/
/* 操作结果:构造一个空的线性表L */
/************************************************************************/
void InitList(LinkList *L)
{
*L = (LinkList)malloc(sizeof(struct LNode)); /* 产生头结点,并使L指向此头结点 */
if( !*L ) /* 存储分配失败 */
exit(OVERFLOW);
(*L)->next = NULL; /* 指针域为空 */
}

/************************************************************************/
/* 初始条件:线性表L已存在。*/
/* 操作结果:销毁线性表L */
/************************************************************************/
void DestroyList(LinkList *L)
{
LinkList q;
while(*L)
{
q = (*L)->next;
free(*L);
*L=q;
}
}
/************************************************************************/
/* 初始条件:线性表L已存在。*/
/* 操作结果:将L重置为空表 */
/************************************************************************/
void ClearList(LinkList L) /* 不改变L */
{
LinkList p, q;
p = L->next; /* p指向第一个结点 */
while(p) /* 没到表尾 */
{
q = p->next;
free(p);
p = q;
}
L->next = NULL; /* 头结点指针域为空 */
}

/************************************************************************/
/* 初始条件:线性表L已存在。*/
/* 操作结果:若L为空表,则返回TRUE,否则返回FALSE */
/************************************************************************/
Status ListEmpty(LinkList L)
{
/* 非空 */
return (L->next) ? FALSE : TRUE;
}

/************************************************************************/
/* 初始条件:线性表L已存在。操作结果:返回L中数据元素个数 */
/************************************************************************/
int ListLength(LinkList L)
{
int i = 0;
LinkList p = L->next; /* p指向第一个结点 */
while(p) /* 没到表尾 */
{
i++;
p = p->next;
}
return i;
}

/************************************************************************/
/* L为带头结点的单链表的头指针。*/
/* 当第i个元素存在时,其值赋给e并返回OK,否则返回ERROR */
/************************************************************************/
Status GetElem(LinkList L, int i, ElemType *e) /* 算法2.8 */
{
int j = 1; /* j为计数器 */
LinkList p = L->next; /* p指向第一个结点 */
while(p && j < i) /* 顺指针向后查找,直到p指向第i个元素或p为空 */
{
p = p->next;
j++;
}
if( !p || j > i) return ERROR; /* 第i个元素不存在 */

*e = p->data; /* 取第i个元素 */
return OK;
}

/************************************************************************/
/* 初始条件: 线性表L已存在,compare()是数据元素判定函数(满足为1,否则为0)*/
/* 操作结果: 返回L中第1个与e满足关系compare()的数据元素的位序。 */
/* 若这样的数据元素不存在,则返回值为0 */
/************************************************************************/
int LocateElem(LinkList L, ElemType e, Status(*compare)(ElemType, ElemType))
{
int i = 0;
LinkList p = L->next;
while(p)
{
i++;
if(compare(p->data,e)) /* 找到这样的数据元素 */
return i;
p=p->next;
}
return 0;
}

/************************************************************************/
/* 初始条件: 线性表L已存在 */
/* 操作结果: 若cur_e是L的数据元素,且不是第一个,则用pre_e返回它的前驱 */
/* 返回OK;否则操作失败,pre_e无定义,返回INFEASIBLE */
/************************************************************************/
Status PriorElem(LinkList L, ElemType cur_e, ElemType *pre_e)
{
LinkList q, p = L->next; /* p指向第一个结点 */
while(p->next) /* p所指结点有后继 */
{
q = p->next; /* q为p的后继 */
if(q->data == cur_e)
{
*pre_e = p->data;
return OK;
}
p = q; /* p向后移 */
}
return ERROR;
}

/*************************************************************************/
/* 初始条件:线性表L已存在 */
/* 操作结果:若cur_e是L的数据元素,且不是最后一个,则用next_e返回它的后继*/
/* 返回OK; 否则操作失败,next_e无定义,返回INFEASIBLE */
/*************************************************************************/
Status NextElem(LinkList L, ElemType cur_e, ElemType *next_e)
{
LinkList p = L->next; /* p指向第一个结点 */
while(p->next) /* p所指结点有后继 */
{
if(p->data == cur_e)
{
*next_e = p->next->data;
return OK;
}
p = p->next;
}
return ERROR;
}

/************************************************************************/
/* 在带头结点的单链线性表L中第i个位置之前插入元素e */
/************************************************************************/
Status ListInsert(LinkList L, int i, ElemType e)
{
int j = 0;
LinkList p = L, s;
while( p && j < i-1) /* 寻找第i-1个结点 */
{
p = p->next;
j++;
}
if( !p|| j > i-1) return ERROR;/* i小于1或者大于表长 */

s = (LinkList)malloc(sizeof(struct LNode)); /* 生成新结点 */
s->data = e; /* 插入L中 */
s->next = p->next;
p->next = s;
return OK;
}

/************************************************************************/
/* 在带头结点的单链线性表L中,删除第i个元素,并由e返回其值 */
/************************************************************************/
Status ListDelete(LinkList L, int i, ElemType *e)
{
int j = 0;
LinkList p = L, q;
while(p->next && j < i-1) /* 寻找第i个结点,并令p指向其前岖 */
{
p = p->next;
j++;
}
if( !p->next || j > i-1) /* 删除位置不合理 */
return ERROR;
q = p->next; /* 删除并释放结点 */
p->next = q->next;
*e = q->data;
free(q);
return OK;
}

/************************************************************************/
/* 初始条件:线性表L已存在。操作结果:依次对L的每个数据元素调用函数vi() */
/************************************************************************/
void ListTraverse(LinkList L, void(*vi)(ElemType))
{
LinkList p = L->next;
while(p)
{
vi(p->data);
p = p->next;
}
printf("\n");
}

/************************************************************************/
/* 初始条件:线性表L已存在。打印链表的data域 */
/************************************************************************/
void ListPrint(LinkList L)
{
LinkList p = L->next;
while(p)
{
printf("%d ", p->data);
p = p->next;
}
printf("\n");
}

void printInt(int data)
{
printf("%d ", data);
}

/************************************************************************/
/* 插入排序 */
/************************************************************************/
void ListSort(LinkList L)
{
LinkList first, p, q; //为原链表剩下用于直接插入排序的节点头指针
LinkList t; //临时指针变量:插入节点

//原链表剩下用于直接插入排序的节点链表
first = L->next;

//只含有一个节点的链表的有序链表
L->next = NULL;

//遍历剩下无序的链表
while (first != NULL)
{
//无序节点在有序链表中找插入的位置
for (t = first, q = L; ((q != NULL) && (q->data < t->data)); p = q, q = q->next);

//退出for循环,就是找到了插入的位置
first = first->next;

p->next = t;

//完成插入动作
t->next = q;
}
}

//排序,指针交换法
void ListSort1(LinkList L)
{
LinkList head = L->next;//head指向除头结点以外的链表
LinkList pre_p; //p的前驱结点
LinkList pre_q; //q的前驱结点
LinkList min; //最小的结点
LinkList p, q, temp;

for(p = head; p->next; pre_p = min, p = min->next)
{
//找出最小的结点
for(min = p, q = p; q->next; q = q->next)
{
if(q->next->data < min->data)
{
pre_q = q;
min = q->next;
}
}

//如果最小是自己 就不需要交换
if(min == p) continue;

//如果p是指向head的结点,则链表直接指向min
if(p == head)
L->next = min;
else
pre_p->next = min;

temp = min->next;
if(p->next == min)
{
min->next = p;
p->next = temp;
}
else
{
min->next = p->next;
pre_q->next = p;
p->next = temp;
}
}
}

//排序,数据选择法排序
void ListSort2(LinkList L)
{
LinkList head = L->next;//head指向除头结点以外的链表
LinkList min; //最小的结点
LinkList p, q; //遍历链表指针
int temp;
for (p = head; p->next; p = p->next)
{
//在p指针后的链表选取最小的结点
for (min = p, q = p->next; q; q = q->next)
{
if (q->data < min->data)
min = q;
}

//两者结点值不相等,数据交换
if (min->data != p->data)
{
temp = min->data;
min->data = p->data;
p->data = temp;
}
}
}

void ListSort3(LinkList L)
{
LinkList first; //指向链表L第一个结点,除头结点
LinkList pre; //指向first的前驱结点
LinkList last; //指向first指向排好序的最后一个结点
LinkList rest; //指向未排好序的第一个结点,即链表第二个结点
LinkList curr; //指向当前结点

first = L->next; //指向第一个结点
if(first == NULL) return;

pre = L ; //pre指向first的前驱结点
last = first; //last指向排好序的最后一个结点
rest = first->next; //指向剩余的结点
first->next = NULL; //first断链

while (rest) //当余下的结点不为空
{
//保存当前结点
curr = rest;

//取下一个结点
rest = rest->next;

//当结点小于第一个结点,则链接到first前面
if( curr->data < first->data )
{
pre->next = curr;
curr->next = first;
pre = curr;
}
//当前结点大于第一个结点,则链接到last后
else if(curr->data > first->data)
{
curr->next = last->next;
last->next = curr;
last = curr;
}
//当前结点与第一个结点相等,则链接到first后面
else
{
curr->next = first->next;
first->next = curr;
}
}
}

void main()
{
LinkList L;
InitList(&L);
ListInsert(L, 1, 6);
ListInsert(L, 2, 3);
ListInsert(L, 3, 67);
ListInsert(L, 4, 2);
ListInsert(L, 5, 15);
ListInsert(L, 6, 13);
ListInsert(L, 7, 10);
ListInsert(L, 8, 6);
ListInsert(L, 9, 4);

ListSort3(L);
ListTraverse(L, printInt);
}

⑺ 急求助高手大虾:C语言数据结构顺序线性表的实现

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<iostream.h>
#define LIST_INIT_SIZE 50
#define LISTINCREMENT 10
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define CANCEL 0
typedef struct{
int *elem;
int length;
int listsize;
}sqlist;
int compare(int X,int Y)
{if(X==Y)
return X;
else return FALSE;
}//compare的关系判断
void visit(int &y)
{
y=2*y;
cout<<y<<" ";
}//将y值增加为原来的2倍
int initlist(sqlist &L)
{
L.elem=(int *)malloc(LIST_INIT_SIZE*sizeof(int));
if(!L.elem)
return ERROR;
else
L.length=0;
L.listsize=LIST_INIT_SIZE;
return OK;
}//构造一个空的线性表L
int destroylist(sqlist &L)
{
free(L.elem);
return OK;
}//销毁线性表L
int clearlist(sqlist &L)
{
L.length=0;
return OK;
}//将L重置为空表
int listempty(sqlist L)
{
if (0==L.length)
return TRUE;
else
return FALSE;
}//求当前表L是否为空
int listlength(sqlist L)
{
return L.length;
}//求当前线性表L的长度
int getelem(sqlist L,int i,int &e)
{
if(i<1||i>L.length)
exit(ERROR);
e=*(L.elem+i-1);
return OK;
}//用e返回L中第i个数据元素的值
int locateelem(sqlist L,int e,int(*compare)(int x1,int x2))
{
int i=1,j=0,*p;
p=L.elem;
while(i<=L.length&&!j)
{
j=compare(*p++,e);
++i;
}
if(i<=L.length)
return i-1;
else
return FALSE;
}//求L中第一个与e满足关系compare()的数据元素的位序,若不存在则返回0
int priorelem(sqlist L,int cur_e,int &pre_e)
{
int i=2,*p;
p=L.elem+1;
while(i<=L.length&&(*p++)!=cur_e)
i++;
if (i>L.length)
return FALSE;
else
{
pre_e=*p-2;
return OK;
}
}//若cur_e是L的数据元素,且不是第一个,则用pre_e返回它的前驱,否则操作失败,pre_e无定义
int nextelem(sqlist L,int cur_e,int &next_e)
{
int i=1,*p;
p=L.elem;
while(i<L.length&&(*p++)!=cur_e)
i++;
if (i>=L.length)
return FALSE;
else
{
next_e=*p;
return OK;
}
}//若cur_e是L的数据元素,且不是最后一个,则用next_e返回它的后继,否则操作失败,next_e无定义
int listinsert(sqlist &L,int i,int e)
{
int *newbase,*p,*q;
if((i<1)||(i>L.length+1))
return ERROR;
if (L.length>=L.listsize)
{
newbase=(int *)realloc(L.elem,(L.listsize+LISTINCREMENT)*sizeof(int));
if(!newbase)
{
exit(0);
}
L.elem=newbase;
L.listsize=L.listsize+LISTINCREMENT;
}
q=L.elem+i-1;
for(p=L.elem+L.length-1;p>=q;--p)
*(p+1)=*p;
*q=e;
++L.length;
return OK;
}//在线性表L中第i个位置插入元素e
int listdelete(sqlist &L,int i,int &e)
{
int *p,*q;
if(i<1||i>L.length)
return ERROR;
else
{
p=L.elem+i-1;
e=*p;
q=L.elem+L.length-1;
for(++p;p<=q;++p)
{
*(p-1)=*p;

}
L.length--;
return OK;
}
}//将线性表中的第i个元素删除并返回其值
int listtraverse(sqlist L,void(*visit)(int &p))
{
int i=1,*p;
p=L.elem;
while(i<=L.length)
{
visit(*p);
p++;
i++;
}
return OK;
}//依次对L中的每一个元素调用函数visit(),一旦visit()失败,则操作失败
void main()
{sqlist L;
int i,j,k,b,n,e,m,a,cur_e,pre_e,next_e;
initlist(L);
cout<<"初始化后的基值地址:"<<L.elem<<" L.length=:"<<L.length<<" L.listsize=:"<<L.listsize<<endl;
cout<<"新建一顺序表."<<endl;
cout<<"当前表是否为空表"<<listempty(L)<<endl;
cout<<"定义该线性表长度:"<<endl;
cin>>a;
cout<<"分别输入线性表的各个元素,按ENTER"<<endl;
for(k=1;k<=a;k++){
cin>>j;
i=listinsert(L,k,j);}
for(b=1;b<=10;b++)
cout<<L.elem[b-1]<<endl;
listlength(L);
cout<<"当前表长:"<<L.length<<endl;
cout<<"输入要取的数的位置n(n<=10)"<<endl;
cin>>n;
getelem(L,n,e);
cout<<L.elem[n-1]<<endl;
cout<<"与该数相等的的一个数的位序为:"<<locateelem(L,e,compare)<<endl;
cout<<"输入要取前驱的数的位置m(<=10)"<<endl;
cin>>m;
getelem(L,m,cur_e);
if(priorelem(L,cur_e,pre_e))
cout<<"cur_e的前驱为:"<<pre_e<<endl;
else
cout<<"该元素没前驱"<<endl;
nextelem(L,cur_e,next_e);
if(nextelem(L,cur_e,next_e))
cout<<"cur_e的后继为:"<<next_e<<endl;
else
cout<<"该元素没后继"<<endl;
cout<<"输入要删元素的位序m(<=10)"<<endl;
cin>>m;
listdelete(L,m,e);
cout<<"被删的元素为:"<<e<<endl;
cout<<"删除元素后表长为"<<L.length<<endl;
listtraverse(L,visit);
cout<<"置为空表"<<clearlist(L)<<endl;
cout<<"销毁线性表"<<destroylist(L)<<endl;
}

⑻ 用c语言写一个程序,初始化一个线性表。跪求

#include <stdio.h>
#include <malloc.h>
# define MaxSize 50
typedef struct{
ElemType data[MaxSize];//存放顺序表元素
int length;//存放顺序表长度
}SqList;//顺序表类型定义
//建立顺序表
void CreateList(SqList *&L,ElemType a[],int n){
int i;
for(i=0;i<n;i++){
L->data [i]=a[i];
}
L->length =n;
}
//顺序表基本运算算法
//初始化线性表InitList(L)
void InitList(SqList *&L){
L=(SqList *)malloc(sizeof(SqList));//分配存放线性表的空间
L->length =0;
}//本算法的时间复杂度为O(1)
//销毁线性表
void DestroyList(SqList *&L){
free(L);
}//本算法的时间复杂度为O(1)
//判断线性表是否为空
int ListEmpty(SqList *L){
return (L->length ==0);
}//本算法的时间复杂度为O(1)
//求线性表的长度
int ListLength(SqList *L){
return (L->length);
}//本算法的时间复杂度为O(1)
//输出线性表
void DispList(SqList *L)
{
int i;
if(ListEmpty(L)) return;
for(i=0;i<L->length;i++){
printf(nn,L->data[i]);
}
printf("\n");
}//本算法的时间复杂度为O(L->length)
//求线性表中某个数据的元素值
int GetElem(SqList *L,int i,ElemType &e)
{
if(i<1||i>L->length)
return 0;
e=L->data[i-1];//这儿体现了数组的优点,可以直接通过下标访问
return 1;
}//本算法的时间复杂度为O(1)
//按元素的值查找
int LocateElem(SqList *L,ElemType e){
int i=0;
while(i<L->length && L->data[i]!=e)i++;
if(i>=L->length)
return 0;
else
return i+1;
}//本算法中基本运算为while循环中的i++语句,故时间复杂度为O(L->length)
//插入数据元素
int ListInsert(SqList *&L,int i,ElemType e){
int j;
if(i<1 || i>L->length+1)
return 0;//参数错误,返回0
i--;//将顺序逻辑位序变为物理位序
for(j=L->length;j>i;j--){
L->data[j]=L->data[j-1];//将data[i]及后面的元素后移一个位置
}
L->data[i]=e;//插入元素e
L->length++;//增加长度
return 1;
}//本算法的平均时间复杂度为O(n)
//删除数据元素
int ListDelete(SqList *&L,int i,ElemType &e){
int j;
if(i<1 || i>L->length)
return 0;
i--;//将顺序逻辑位序变为物理位序
e=L->data[i];
for(j=i;j<L->length-1;j++){
L->data[j]=L->data[j+1];//将data[i]之后的元素前移一个位置,这就是数组中的删除思想
}
L->length--;
return 1;
}//本算法的平均时间复杂度为O(n)

⑼ 用C语言实现线性表的顺序存储(创建,插入,删除和查找)

//C++课程设计---学生成绩管理系统
#include <stdio.h>
#include <string.h>
#include <iostream.h>
#include <stdlib.h>
#include <windows.h>
typedef struct studentinfo //结构体定义
{
int num;//学号
char name[64];//姓名
int sex;//性别,1为男性,0为女性
float math;//数学
float english;//英语
float politic;//政治
float chinese;//语文
float total;//总成绩
struct studentinfo *next;
}STUDENT;

#define FILENAME "D:\\1.txt"
//定义默认的数据库文件
#define DELAYTIME 1500
//显示信息,延时
void create_menu();

STUDENT * new_student();
STUDENT* create_linkbyfile(char *);
STUDENT *del_info(STUDENT *);
int save_info(char *,STUDENT *,int);

int find_infile_printf(char *);
int pri_whole_link(STUDENT *);
STUDENT* printf_sort(STUDENT *);
void free_link(STUDENT *);

void main() //主函数
{
create_menu();
}

STUDENT * reverse(STUDENT *head)
//功能:链表反转顺序
//参数:head链表头结点指针
{
STUDENT *ptemp,*p1;
if(head==NULL)
{
return 0;
}
p1=head;//p1使之永远指向排好序的第一个结点,初值为head,head使之永远是已经排好序的最后一个结点

while(head->next!=NULL)//本次循环使ptemp排好序
{
ptemp=head->next;//ptemp指向未排好序的第一个结点
head->next=ptemp->next;//
ptemp->next=p1;//ptemp也排好序了,ptemp变成排好序的第一个结点了
p1=ptemp;//再次让p1成为第一个排好序的结点
}
return p1;//头结点为第一个结点
}
void create_menu()
//功能:输出功能菜单,提供人-机接口
{
char menu_Num;
STUDENT *head=NULL;
char ch;
char file_name[256];
while(1)
{
system("cls");
cout<<"\t\t学生成绩管理系统\n";
cout<<"##########################################\n";
cout<<"#\t\t 1.新增学生信息\t\t #\n";
cout<<"#\t\t 2.加载数据库\t\t #\n";
cout<<"#\t\t 3.删除学生信息\t\t #\n";
cout<<"#\t\t 4.保存学生信息\t\t #\n";
cout<<"#\t\t 5.数据库查询\t\t #\n";
cout<<"#\t\t 6.原序输出\t\t #\n";
cout<<"#\t\t 7.排序输出\t\t #\n";
cout<<"#\t\t 8.退出\t\t\t #\n";
cout<<"##########################################\n";
cout<<"请输入操作编号:";
cin>>menu_Num;
switch (menu_Num)
{
case '1':
free_link(head);//释放链表空间
head=new_student();//新增学生信息
break;
case '2':
free_link(head);//释放链表空间
cout<<"请输入要加载的数据库文件的路径"<<endl;
cin>>file_name;
head=create_linkbyfile(file_name);//读取数据文件
if(head!=NULL)
{
cout<<"数据库"<<file_name<<"已加载"<<endl;
Sleep(DELAYTIME);
}
break;
case '3':
del_info(head);//删除学生信息

break;
case '4'://保存学生信息
if (head==NULL)
{
cout<<"请先生成学生信息"<<endl;
Sleep(DELAYTIME);
}
else
{

cout<<"想将学生信息保存到哪个数据库文件?";
cin>>file_name;

cout<<"请选择保存方式:0追加到文件末尾 1覆盖文件\n";
cin>>menu_Num;
if(save_info(file_name,head,menu_Num-'0')==0)//0表示追加,1表示覆盖
{
cout<<"信息保存失败\n";
}
else
{
cout<<"数据已保存到"<<file_name<<endl;
Sleep(DELAYTIME);
}
}
break;
case '5':
find_infile_printf(FILENAME);//数据库查询

break;
case '6'://原序输出信息
pri_whole_link(head);
cout<<"返回主菜单? Y/N\t";
do
{
cin>>ch;
}while(ch!='Y'&&ch!='y');

break;
case '7'://排序输出信息
do
{

if((head=printf_sort(head))==NULL)
{
cout<<"数据库未加载"<<endl;
Sleep(DELAYTIME);
break;
}
else
{
cout<<"选择其他方式排序? Y/N\t";
cin>>ch;
}
}while(ch=='Y'||ch=='y');

break;

case '8':
free_link(head);//释放链表空间
exit(0);
break;
default:
cout<<"输入有误!请重新输入!"<<endl;
Sleep(DELAYTIME);
break;
}
}
}

STUDENT * new_student()
//功能:创建学生信息(通过链表)
//返回值:头结点指针
{
STUDENT *pnew,*p,*head;
float *pfloat;
char ch;
head=NULL;

do
{
system("cls");
pnew=(STUDENT *)malloc(sizeof(STUDENT)*1);
cout<<"请输入学生的学号(0表示取消): ";
cin>>pnew->num;
if(0>=pnew->num)
{
break;
}
cout<<"请输入学生的姓名:";
cin>>pnew->name;

while(1)
{

cout<<"请输入学生的性别:0/1\t";
cin>>pnew->sex;
if(pnew->sex&&pnew->sex-1)
{
cout<<"性别输入错误,0表示女性,1表示男性,请重新输入"<<endl;
}
else
{
break;
}
}

cout<<"请依次输入学生的数学、英语、政治、语文成绩:"<<endl;

for(pnew->total=0,pfloat=&pnew->math;pfloat<&pnew->math+4;)
{
cin>>*pfloat;
if(*pfloat<0||*pfloat>150)
{
cout<<"成绩输入错误,只能为0~150"<<endl;
}
else
{
pnew->total+=*pfloat;
pfloat++;
}
}

if(head==NULL)
{
head=pnew;
}
else
{
p->next=pnew;
}
p=pnew;
pnew->next=NULL;
cout<<"##########################该学生信息已生成#########################\n";

cout<<"建立另一个学生的信息? Y/N\t";
cin>>ch;
}while(ch=='Y'||ch=='y');

return head;
}

STUDENT* create_linkbyfile(char *filename)
//功能:读取文件,创建链表
//参数:如果filename不为空,则打开该文件,如果filename为空,要求输入文件位置
//创建的链表的所有结点的next全部修改,指向物理地址上的下一个结点
{
system("cls");
FILE *fp;
STUDENT *head,*ptemp,*pnew;

head=NULL;//初始化head为空
if(filename==NULL)//若filename为空,要求输入文件绝对地址
{
char file_name[256];
cout<<"请输入数据库文件的路径:"<<endl;
cin>>file_name;

if(NULL==(fp=fopen(file_name,"rb")))
{
cout<<"数据库连接失败\n";
return 0;
}
}
else
{
if(NULL==(fp=fopen(filename,"rb")))
{
cout<<"数据库连接失败\n";
return 0;
}
}

for(ptemp=NULL;;)
{
pnew=(STUDENT *)malloc(sizeof(STUDENT)*1);
if(fread(pnew,sizeof(STUDENT),1,fp)!=NULL)
{
if(ptemp!=NULL)
{
ptemp->next=pnew;
}
else
{
head=pnew;
}
ptemp=pnew;
}
else
{
if(ptemp!=NULL)
{
ptemp->next=NULL;
}
else
{
head=NULL;
}
free(pnew);
break;
}
}

fclose(fp);

return head;
}

STUDENT *del_info(STUDENT *head)
//根据学号,删除链表的结点
{
system("cls");
STUDENT *p1,*p2;
int num;
if (head==NULL)
{
cout<<"数据库未加载"<<endl;
Sleep(DELAYTIME);
return 0;
}
cout<<"请输入要删除学生的学号:";
cin>>num;
for(p1=head;p1!=NULL;)
{
if(p1->num==num)//找到
{
if(p1==head)//要删除的结点是头结点
{
head=p1->next;
}
else
{
p2->next=p1->next;
}
cout<<"成功删除!!";
}
p2=p1;
p1=p1->next;
}
return head;
}

int save_info(char *filename,STUDENT *head,int flag)
//功能:将链表按Binary写入文件末尾
//参数:
//1.filename文件名,绝对地址
//2.head指向链表的头结点
//3.flag 0追加或1覆盖数据
//返回值:失败则返回0
{
system("cls");
FILE *fp;
STUDENT *p;
char openmethod[8];
if(flag==0)
{
strcpy(openmethod,"ab+");//追加
}
else
{
strcpy(openmethod,"w");//覆盖
}
if(NULL==(fp=fopen(filename,openmethod)))//
{
cout<<"数据库连接失败"<<endl;
Sleep(DELAYTIME);
return 0;
}
else
{
for(p=head;p;p=p->next)
{
if((fwrite(p,sizeof(STUDENT),1,fp))==NULL)
{
cout<<"数据库创建失败"<<endl;
return 0;
}

}
}
fclose(fp);
return 1;
}

int find_infile_printf(char *filename)
//功能:根据学号和姓名来查询某个学生
//参数:filename数据库文件
//返回值:失败返回0
//直接搜索文件,缺点是速度慢
//也可先根据文件创建链表,再搜索链表,缺点是如果文件较大,占用内存多
{
system("cls");
FILE *fp;
STUDENT stu;
int num;
char stu_name[64];
char ch;
if(filename==NULL)
{
return 0;
}

do
{
memset(stu_name,0,sizeof(stu_name));
cout<<"查询学号或查询姓名? 1查询学号 0查询姓名";
//flag=1根据学号来查询,flag=0根据姓名来查询
cin>>num;
if(num==1)
{
cout<<"输入要查询的学号:";
cin>>num;
cout<<"正在为您查询学号为"<<num<<"的学生……"<<endl;
}
else if(num==0)
{
cout<<"输入要查询的姓名:";
cin>>stu_name;
cout<<"正在为您查询姓名为"<<stu_name<<"的学生……"<<endl;
}
else
{
cout<<"输入有误"<<endl;
return 0;
}

if(NULL==(fp=fopen(filename,"rw")))
{
cout<<"数据库连接失败\n";
return 0;
}
else
{
while(fread(&stu,sizeof(STUDENT),1,fp)!=NULL)
{

if(strcmp(stu.name,stu_name)==0||stu.num==num)
{
cout<<"学号\t姓名\t性别\t数学\t英语\t政治\t语文\t总成绩\n";
//输出该学生的所有信息
cout<<stu.num<<"\t"<<stu.name<<"\t"<<stu.sex<<"\t"<<stu.math<<"\t"<<stu.english<<"\t"<<stu.politic<<"\t"<<stu.chinese<<"\t"<<stu.total<<endl;

//不加break;可支持多个相同数据的索引
}
}
}
cout<<"##########################查询完毕#########################\n";

cout<<"查询另一个学生的信息? Y/N\t";
cin>>ch;
}while(ch=='Y'||ch=='y');

fclose(fp);
return 1;
}

int pri_whole_link(STUDENT *head)
//功能:显示整条链表的学生信息
//参数:head 头结点指针,如果head为空,返回空
{
system("cls");
STUDENT* p;
if (head==NULL)
{
cout<<"数据库未加载"<<endl;
Sleep(DELAYTIME);
return 0;
}
cout<<"学号\t姓名\t性别\t数学\t英语\t政治\t语文\t总成绩\n";
for(p=head;p;p=p->next)
{
cout<<p->num<<"\t"<<p->name<<"\t"<<p->sex<<"\t"<<p->math<<"\t"<<p->english<<"\t"<<p->politic<<"\t"<<p->chinese<<"\t"<<p->total<<endl;
}

return 1;
}

STUDENT* printf_sort(STUDENT *head)
//功能:根据学号|某科目成绩|总成绩对链表进行排序,然后输出
//参数:head链表头指针,如果head为空,返回空
//返回值:返回新的链表的头结点指针
{
system("cls");
STUDENT *p1,*p2,*ptemp,*pfinished=NULL;
char num;
char flag;

if (head==NULL)
{
return 0;
}
cout<<"选择排序依据 0.数学成绩1.英语成绩2.政治成绩3.语文成绩4.总成绩\n";
while(1)
{
cin>>num;
if(num>'4'||num<'0')
{
cout<<"输入有误,请重新输入 0~4"<<endl;
}
else
{
break;
}
}

cout<<"升序/降序输出? 0.降序1.升序";
while(1)
{
cin>>flag;
if(flag>'1'||flag<'0')
{
cout<<"输入有误,请重新输入 0~1"<<endl;
}
else
{
break;
}
}

for(p1=head;p1->next!=pfinished;)//对链表进行从大到小排序(这里用冒泡法)
//p1使之总是指向头结点,pfinished使之总是指向已排序好的最前面的结点
//ptemp作为中介,保存p2的上一个结点
{
for(p2=p1;p2->next!=pfinished;)
{
if(*(&(p2->math)+num-'0')<*(&(p2->next->math)+num-'0'))//p2的值小于p2->next的值,交换 ptemp p2 p2->next
{
if(p2==p1)//头结点要交换
{
p1=p2->next;
p2->next=p1->next;
p1->next=p2;
ptemp=p1;
}
else
{
ptemp->next=p2->next;
ptemp=p2->next;
p2->next=ptemp->next;
ptemp->next=p2;
}
}
else//不需要交换,则p2、ptemp前进1位
{
ptemp=p2;
p2=p2->next;
}
}
pfinished=p2;
}

if(flag=='1')
{
p1=reverse(p1);
}
pri_whole_link(p1);

cout<<"##########################信息显示完毕#########################\n";

return p1;
}

void free_link(STUDENT *head)
//释放链表空间,如果head,什么都不做
{
STUDENT *p1,*p2;
for(p1=head;p1;p1=p2)
{
p2=p1->next;//先保存,否则
free(p1);//free后 p1->next数据丢失
}
}

⑽ 用C语言建线性链表

struct LNode
{
ElemType data;
LNode *next;
};
typedef LNode *LinkList; // 另一种定义LinkList的方法 12种基本操作Status InitList(LinkList &L)
{ // 操作结果:构造一个空的线性表L
L=(LinkList)malloc(sizeof(LNode)); // 产生头结点,并使L指向此头结点
if(!L) // 存储分配失败
exit(OVERFLOW);
L->next=NULL; // 指针域为空
return OK;
} Status DestroyList(LinkList &L)
{ // 初始条件:线性表L已存在。操作结果:销毁线性表L
LinkList q;
while(L)
{
q=L->next;
free(L);
L=q;
}
return OK;
} Status ClearList(LinkList L) // 不改变L
{ // 初始条件:线性表L已存在。操作结果:将L重置为空表
LinkList p,q;
p=L->next; // p指向第一个结点
while(p) // 没到表尾
{
q=p->next;
free(p);
p=q;
}
L->next=NULL; // 头结点指针域为空
return OK;
} Status ListEmpty(LinkList L)
{ // 初始条件:线性表L已存在。操作结果:若L为空表,则返回TRUE,否则返回FALSE
if(L->next) // 非空
return FALSE;
else
return TRUE;
} int ListLength(LinkList L)
{ // 初始条件:线性表L已存在。操作结果:返回L中数据元素个数
int i=0;
LinkList p=L->next; // p指向第一个结点
while(p) // 没到表尾
{
i++;
p=p->next;
}
return i;
} Status GetElem(LinkList L,int i,ElemType &e) // 算法2.8
{ // L为带头结点的单链表的头指针。当第i个元素存在时,其值赋给e并返回OK,否则返回ERROR
int j=1; // j为计数器
LinkList p=L->next; // p指向第一个结点
while(p&&j<i) // 顺指针向后查找,直到p指向第i个元素或p为空
{
p=p->next;
j++;
}
if(!p||j>i) // 第i个元素不存在
return ERROR;
e=p->data; // 取第i个元素
return OK;
} int LocateElem(LinkList L,ElemType e,Status(*compare)(ElemType,ElemType))
{ // 初始条件: 线性表L已存在,compare()是数据元素判定函数(满足为1,否则为0)
// 操作结果: 返回L中第1个与e满足关系compare()的数据元素的位序。
// 若这样的数据元素不存在,则返回值为0
int i=0;
LinkList p=L->next;
while(p)
{
i++;
if(compare(p->data,e)) // 找到这样的数据元素
return i;
p=p->next;
}
return 0;
} Status PriorElem(LinkList L,ElemType cur_e,ElemType &pre_e)
{ // 初始条件: 线性表L已存在
// 操作结果: 若cur_e是L的数据元素,且不是第一个,则用pre_e返回它的前驱,
// 返回OK;否则操作失败,pre_e无定义,返回INFEASIBLE
LinkList q,p=L->next; // p指向第一个结点
while(p->next) // p所指结点有后继
{
q=p->next; // q为p的后继
if(q->data==cur_e)
{
pre_e=p->data;
return OK;
}
p=q; // p向后移
}
return INFEASIBLE;
} Status NextElem(LinkList L,ElemType cur_e,ElemType &next_e)
{ // 初始条件:线性表L已存在
// 操作结果:若cur_e是L的数据元素,且不是最后一个,则用next_e返回它的后继,
// 返回OK;否则操作失败,next_e无定义,返回INFEASIBLE
LinkList p=L->next; // p指向第一个结点
while(p->next) // p所指结点有后继
{
if(p->data==cur_e)
{
next_e=p->next->data;
return OK;
}
p=p->next;
}
return INFEASIBLE;
} Status ListInsert(LinkList L,int i,ElemType e) // 算法2.9。不改变L
{ // 在带头结点的单链线性表L中第i个位置之前插入元素e
int j=0;
LinkList p=L,s;
while(p&&j<i-1) // 寻找第i-1个结点
{
p=p->next;
j++;
}
if(!p||j>i-1) // i小于1或者大于表长
return ERROR;
s=(LinkList)malloc(sizeof(LNode)); // 生成新结点
s->data=e; // 插入L中
s->next=p->next;
p->next=s;
return OK;
} Status ListDelete(LinkList L,int i,ElemType &e) // 算法2.10。不改变L
{ // 在带头结点的单链线性表L中,删除第i个元素,并由e返回其值
int j=0;
LinkList p=L,q;
while(p->next&&j<i-1) // 寻找第i个结点,并令p指向其前趋
{
p=p->next;
j++;
}
if(!p->next||j>i-1) // 删除位置不合理
return ERROR;
q=p->next; // 删除并释放结点
p->next=q->next;
e=q->data;
free(q);
return OK;
} Status ListTraverse(LinkList L,void(*vi)(ElemType))
// vi的形参类型为ElemType,与bo2-1.cpp中相应函数的形参类型ElemType&不同
{ // 初始条件:线性表L已存在
// 操作结果:依次对L的每个数据元素调用函数vi()。一旦vi()失败,则操作失败
LinkList p=L->next;
while(p)
{
vi(p->data);
p=p->next;
}
printf("\n");
return OK;
}