当前位置:首页 » 编程语言 » c语言位域的存储
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

c语言位域的存储

发布时间: 2022-04-21 18:43:03

1. 解释下位域,为什么要用位域,位域的好处

位域是指信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位。例如在存放一个开关量时,只有0和1 两种状态, 用一位二进位即可。为了节省存储空间,并使处理简便,c语言又提供了一种数据结构,称为"位域"或"位段"。所谓"位域"是把一个字节中的二进位划分为几 个不同的区域, 并说明每个区域的位数。每个域有一个域名,允许在程序中按域名进行操作。 这样就可以把几个不同的对象用一个字节的二进制位域来表示。

使用位域的好处是:
1.有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位。例如在存放一个开关量时,只有0和1 两种状态, 用一位二进位即可。这样节省存储空间,而且处理简便。 这样就可以把几个不同的对象用一个字节的二进制位域来表示。
2.可以很方便的利用位域把一个变量给按位分解。比如只需要4个大小在0到3的随即数,就可以只rand()一次,然后每个位域取2个二进制位即可,省时省空间。

2. C语言结构体位域问题

不是的,结构体变量只是整个结构体存储的首地址,每个位域没有具体规定大小,所以整个结构体也没有规定大小,要看你定义的位域的类型。例如8个int型位域和8个double型位域存储空间是不一样的

3. C语言中“位域”与“域宽”有什么区别。

有些信息在存储时,并不需要占用一个完整的字节,而只需占几个或一个二进制位。例如在存放一个开关量时,只有0和1
两种状态,用一位二进位即可。为了节省存储空间,并使处理简便,c语言又提供了一种数据结构,称为“位域”或“位段”。所谓“位域”是把一个字节中的二进位划分为几个不同的区域,并说明每个区域的位数。每个域有一个域名,允许在程序中按域名进行操作。这样就可以把几个不同的对象用一个字节的二进制位域来表示。一、位域的定义和位域变量的说明位域定义与结构定义相仿,其形式为:
struct
位域结构名
{
位域列表
};
其中位域列表的形式为:
类型说明符
位域名:位域长度
例如:
struct
bs
{
int
a:8;
int
b:2;
int
c:6;
};

4. c语言 关于位域的使用

一、位域
有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位。例如在存放一个开关量时,只有0和1 两种状态, 用一位二进位即可。为了节省存储空间,并使处理简便,C语言又提供了一种数据结构,称为“位域”或“位段”。所谓“位域”是把一个字节中的二进位划分为几个不同的区域, 并说明每个区域的位数。每个域有一个域名,允许在程序中按域名进行操作。 这样就可以把几个不同的对象用一个字节的二进制位域来表示。一、位域的定义和位域变量的说明位域定义与结构定义相仿,其形式为:
struct 位域结构名
{ 位域列表 };
其中位域列表的形式为: 类型说明符 位域名:位域长度

struct bs

{
int a:8;
int b:2;
int c:6;
};
位域变量的说明与结构变量说明的方式相同。 可采用先定义后说明,同时定义说明或者直接说明这三种方式。例如:

struct bs
{
int a:8;
int b:2;
int c:6;
}data;
说明data为bs变量,共占两个字节。其中位域a占8位,位域b占2位,位域c占6位。对于位域的定义尚有以下几点说明:
1. 一个位域必须存储在同一个字节中,不能跨两个字节。如一个字节所剩空间不够存放另一位域时,应从下一单元起存放该位域。也可以有意使某位域从下一单元开始。例如:

struct bs
{
unsigned a:4
unsigned :0 /*空域*/
unsigned b:4 /*从下一单元开始存放*/
unsigned c:4
}
在这个位域定义中,a占第一字节的4位,后4位填0表示不使用,b从第二字节开始,占用4位,c占用4位。
2. 由于位域不允许跨两个字节,因此位域的长度不能大于一个字节的长度,也就是说不能超过8位二进位。
3. 位域可以无位域名,这时它只用来作填充或调整位置。无名的位域是不能使用的。例如:

struct k
{
int a:1
int :2 /*该2位不能使用*/
int b:3
int c:2
};
从以上分析可以看出,位域在本质上就是一种结构类型, 不过其成员是按二进位分配的。
二、位域的使用
位域的使用和结构成员的使用相同,其一般形式为: 位域变量名·位域名 位域允许用各种格式输出。

main(){
struct bs
{
unsigned a:1;
unsigned b:3;
unsigned c:4;
} bit,*pbit;
bit.a=1;
bit.b=7;
bit.c=15;
printf("%d,%d,%d\n",bit.a,bit.b,bit.c);
pbit=&bit;
pbit->a=0;
pbit->b&=3;
pbit->c|=1;
printf("%d,%d,%d\n",pbit->a,pbit->b,pbit->c);
}
上例程序中定义了位域结构bs,三个位域为a,b,c。说明了bs类型的变量bit和指向bs类型的指针变量pbit。这表示位域也是可以使用指针的。
程序的9、10、11三行分别给三个位域赋值。( 应注意赋值不能超过该位域的允许范围)程序第12行以整型量格式输出三个域的内容。第13行把位域变量bit的地址送给指针变量pbit。第14行用指针方式给位域a重新赋值,赋为0。第15行使用了复合的位运算符"&=", 该行相当于: pbit->b=pbit->b&3位域b中原有值为7,与3作按位与运算的结果为3(111&011=011,十进制值为3)。同样,程序第16行中使用了复合位运算"|=", 相当于: pbit->c=pbit->c|1其结果为15。程序第17行用指针方式输出了这三个域的值。

5. C语言中关于位域的疑问

unsignedint:0;

宽度为 0 有特殊含义,表示如果前面一个 bit field 没有占满一个存储单元,那么这一个存储单元剩下的位就不使用了。


不够存储就用下一字节。

6. c语言 结构体位域问题

c存在第三个字节

sizeof结构体,这个要看结构体内变量是如何定义的,结构体存放数据有个对齐原则,找到占用最大字节的变量,然后都向它对齐,比如bool和char类型占用一个字节,short占两个字节,int,float为4个字节,double为八个字节。

定义的顺序不同,sizeof的结果不同。我给你举个例子。

structA{
inta;
charb;
charc;
};


sizeof(A)应该为4+1+1,但是需要对齐,所以这个值就是8

图2

这个是struct B的变量存储

7. C语言中位域和结构体得区别是什么

C语言结构体对齐也是老生常谈的话题了。基本上是面试题的必考题。内容虽然很基础,但一不小心就会弄错。写出一个struct,然后sizeof,你会不会经常对结果感到奇怪?sizeof的结果往往都比你声明的变量总长度要大,这是怎么回事呢?

开始学的时候,也被此类问题困扰很久。其实相关的文章很多,感觉说清楚的不多。结构体到底怎样对齐?

有人给对齐原则做过总结,具体在哪里看到现在已记不起来,这里引用一下前人的经验(在没有#pragma pack宏的情况下):

原则1、数据成员对齐规则:结构(struct或联合union)的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员存储的起始位置要从该成员大小的整数倍开始(比如int在32位机为4字节,则要从4的整数倍地址开始存储)。

原则2、结构体作为成员:如果一个结构里有某些结构体成员,则结构体成员要从其内部最大元素大小的整数倍地址开始存储。(struct a里存有struct b,b里有char,int,double等元素,那b应该从8的整数倍开始存储。)

原则3、收尾工作:结构体的总大小,也就是sizeof的结果,必须是其内部最大成员的整数倍,不足的要补齐。

这三个原则具体怎样理解呢?我们看下面几个例子,通过实例来加深理解。

例1:struct {
short a1;
short a2;
short a3;
}A;

struct{
long a1;
short a2;
}B;

sizeof(A) = 6; 这个很好理解,三个short都为2。

sizeof(B) = 8; 这个比是不是比预想的大2个字节?long为4,short为2,整个为8,因为原则3。

例2:struct A{
int a;
char b;
short c;
};

struct B{
char b;
int a;
short c;
};

sizeof(A) = 8; int为4,char为1,short为2,这里用到了原则1和原则3。

sizeof(B) = 12; 是否超出预想范围?char为1,int为4,short为2,怎么会是12?还是原则1和原则3。

深究一下,为什么是这样,我们可以看看内存里的布局情况。

a b c
A的内存布局:1111, 1*, 11

b a c
B的内存布局:1***, 1111, 11**

其中星号*表示填充的字节。A中,b后面为何要补充一个字节?因为c为short,其起始位置要为2的倍数,就是原则1。c的后面没有补充,因为b和c正好占用4个字节,整个A占用空间为4的倍数,也就是最大成员int类型的倍数,所以不用补充。

B中,b是char为1,b后面补充了3个字节,因为a是int为4,根据原则1,起始位置要为4的倍数,所以b后面要补充3个字节。c后面补充两个字节,根据原则3,整个B占用空间要为4的倍数,c后面不补充,整个B的空间为10,不符,所以要补充2个字节。

再看一个结构中含有结构成员的例子:

例3:struct A{
int a;
double b;
float c;
};

struct B{
char e[2];
int f;
double g;
short h;
struct A i;
};

sizeof(A) = 24; 这个比较好理解,int为4,double为8,float为4,总长为8的倍数,补齐,所以整个A为24。

sizeof(B) = 48; 看看B的内存布局。

e f g h i
B的内存布局:11* *, 1111, 11111111, 11 * * * * * *, 1111* * * *, 11111111, 1111 * * * *

i其实就是A的内存布局。i的起始位置要为24的倍数,所以h后面要补齐。把B的内存布局弄清楚,有关结构体的对齐方式基本就算掌握了。

以上讲的都是没有#pragma pack宏的情况,如果有#pragma pack宏,对齐方式按照宏的定义来。比如上面的结构体前加#pragma pack(1),内存的布局就会完全改变。sizeof(A) = 16; sizeof(B) = 32;

有了#pragma pack(1),内存不会再遵循原则1和原则3了,按1字节对齐。没错,这不是理想中的没有内存对齐的世界吗。

a b c
A的内存布局:1111, 11111111, 1111

e f g h i
B的内存布局:11, 1111, 11111111, 11 , 1111, 11111111, 1111

那#pragma pack(2)的结果又是多少呢?#pragma pack(4)呢?留给大家自己思考吧,相信没有问题。

还有一种常见的情况,结构体中含位域字段。位域成员不能单独被取sizeof值。C99规定int、unsigned int和bool可以作为位域类型,但编译器几乎都对此作了扩展,允许其它类型类型的存在。

使用位域的主要目的是压缩存储,其大致规则为:
1) 如果相邻位域字段的类型相同,且其位宽之和小于类型的sizeof大小,则后面的字段将紧邻前一个字段存储,直到不能容纳为止;
2) 如果相邻位域字段的类型相同,但其位宽之和大于类型的sizeof大小,则后面的字段将从新的存储单元开始,其偏移量为其类型大小的整数倍;
3) 如果相邻的位域字段的类型不同,则各编译器的具体实现有差异,VC6采取不压缩方式,Dev-C++采取压缩方式;
4) 如果位域字段之间穿插着非位域字段,则不进行压缩;
5) 整个结构体的总大小为最宽基本类型成员大小的整数倍。

还是让我们来看看例子。

例4:struct A{
char f1 : 3;
char f2 : 4;
char f3 : 5;
};

a b c
A的内存布局:111, 1111 *, 11111 * * *

位域类型为char,第1个字节仅能容纳下f1和f2,所以f2被压缩到第1个字节中,而f3只能从下一个字节开始。因此sizeof(A)的结果为2。

例5:struct B{
char f1 : 3;
short f2 : 4;
char f3 : 5;
};

由于相邻位域类型不同,在VC6中其sizeof为6,在Dev-C++中为2。

例6:struct C{
char f1 : 3;
char f2;
char f3 : 5;
};

非位域字段穿插在其中,不会产生压缩,在VC6和Dev-C++中得到的大小均为3。

考虑一个问题,为什么要设计内存对齐的处理方式呢?如果体系结构是不对齐的,成员将会一个挨一个存储,显然对齐更浪费了空间。那么为什么要使用对齐呢?体系结构的对齐和不对齐,是在时间和空间上的一个权衡。对齐节省了时间。假设一个体系结构的字长为w,那么它同时就假设了在这种体系结构上对宽度为w的数据的处理最频繁也是最重要的。它的设计也是从优先提高对w位数据操作的效率来考虑的。有兴趣的可以google一下,人家就可以跟你解释的,一大堆的道理。

最后顺便提一点,在设计结构体的时候,一般会尊照一个习惯,就是把占用空间小的类型排在前面,占用空间大的类型排在后面,这样可以相对节约一些对齐空间。

本篇文章来源于:开发学院 http://e.codepub.com 原文链接:http://e.codepub.com/2010/0318/21111.php

8. 关于C语言 含位域结构体的内存大小的疑问

因为这里又涉及到了结构体内存对齐的知识,对于VC和GCC下面的对齐模数都是4

存放完short类型的数据后,后面还有2个字节没有使用,内存分布大约是这样的

[ncack_sn:10][e1:1][e2:1][填充:20]
[start:15][end:15][填充:2]

总共占8个字节

typedefstructnack_sn{

unsignedshortncack_sn:10;

unsignedshorte1:1;

unsignedshorte2:1;

unsignedintstart:15;

unsignedintend:15;

}nack_sn_t;

9. 关于c语言的“位域”。

声明是我拷贝过来的,不过说的很好。
位域
有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位。例如在存放一个开关量时,只有0和1 两种状态, 用一位二进位即可。为了节省存储空间,并使处理简便,C语言又提供了一种数据结构,称为“位域”或“位段”。所谓“位域”是把一个字节中的二进位划分为几 个不同的区域, 并说明每个区域的位数。每个域有一个域名,允许在程序中按域名进行操作。 这样就可以把几个不同的对象用一个字节的二进制位域来表示。
一、位域的定义和位域变量的说明位域定义与结构定义相仿,其形式为:
struct 位域结构名
{ 位域列表 };
其中位域列表的形式为: 类型说明符 位域名:位域长度
例如:

struct bs
{
int a:8;
int b:2;
int c:6;
};
位域变量的说明与结构变量说明的方式相同。 可采用先定义后说明,同时定义说明或者直接说明这三种方式。例如:

struct bs
{
int a:8;
int b:2;
int c:6;
}data;
说明data为bs变量,共占两个字节。其中位域a占8位,位域b占2位,位域c占6位。对于位域的定义尚有以下几点说明:
1. 一个位域必须存储在同一个字节中,不能跨两个字节。如一个字节所剩空间不够存放另一位域时,应从下一单元起存放该位域。也可以有意使某位域从下一单元开始。例如:

struct bs
{
unsigned a:4
unsigned :0 /*空域*/
unsigned b:4 /*从下一单元开始存放*/
unsigned c:4
}
在这个位域定义中,a占第一字节的4位,后4位填0表示不使用,b从第二字节开始,占用4位,c占用4位。
2. 由于位域不允许跨两个字节,因此位域的长度不能大于一个字节的长度,也就是说不能超过8位二进位。
3. 位域可以无位域名,这时它只用来作填充或调整位置。无名的位域是不能使用的。例如:

struct k
{
int a:1
int :2 /*该2位不能使用*/
int b:3
int c:2
};
从以上分析可以看出,位域在本质上就是一种结构类型, 不过其成员是按二进位分配的。
二、位域的使用
位域的使用和结构成员的使用相同,其一般形式为: 位域变量名·位域名 位域允许用各种格式输出。

main(){
struct bs
{
unsigned a:1;
unsigned b:3;
unsigned c:4;
} bit,*pbit;
bit.a=1;
bit.b=7;
bit.c=15;
printf("%d,%d,%d\n",bit.a,bit.b,bit.c);
pbit=&bit;
pbit->a=0;
pbit->b&=3;
pbit->c|=1;
printf("%d,%d,%d\n",pbit->a,pbit->b,pbit->c);
}
上例程序中定义了位域结构bs,三个位域为a,b,c。说明了bs类型的变量bit和指向bs类型的指针变量pbit。这表示位域也是可以使用指针的。
程序的9、10、11三行分别给三个位域赋值。( 应注意赋值不能超过该位域的允许范围)程序第12行以整型量格式输出三个域的内容。第13行把位域变量bit的地址送给指针变量pbit。第14行用指针 方式给位域a重新赋值,赋为0。第15行使用了复合的位运算符"&=", 该行相当于: pbit->b=pbit->b&3位域b中原有值为7,与3作按位与运算的结果为3(111&011=011,十进制值为 3)。同样,程序第16行中使用了复合位运算"|=", 相当于: pbit->c=pbit->c|1其结果为15。程序第17行用指针方式输出了这三个域的值。

为了节省空间,可以把几个数据压缩到少数的几个类型空间上,比如需要表示二个3位二进制的数,一个2位二进制的数,则可以用一个8位的字符表示之。
struct
{
char a : 3;
char b : 3;
char c : 2;
} ;
这个结构体所占空间为一个字节,8位。节省了空间。

10. 求C语言位域物理存储形式

ww的结构应该是这样的
[
addr
]
[dd|cc|bb|xx]
通过以下代码可以很清楚看出结构
#include
<stdio.h>
typedef
struct
{
char
addr
:
8;
char
xx
:
4;
char
bb:
1;
char
cc:
2;
char
dd:
1;
}ww;
int
main(void)
{
ww
w;
int
i;
char
*p
=
(char*)&w;
memset(&w,
0,
sizeof(w));
w.dd
=
1;
printf("sizeof(w)
=
%d\n",
sizeof(w));
for(i
=
0;
i
<
sizeof(w);
++i)
printf("%2x\n",
*(p+i));
getchar();
}