A. sql语句问题
这是个sql语句的基本学习手册
你可以自己查一下
SQL语句学习手册实例版
表操作
例 1 对于表的教学管理数据库中的表 STUDENTS ,可以定义如下:
CREATE TABLE STUDENTS
(SNO NUMERIC (6, 0) NOT NULL
SNAME CHAR (8) NOT NULL
AGE NUMERIC(3,0)
SEX CHAR(2)
BPLACE CHAR(20)
PRIMARY KEY(SNO))
例 2 对于表的教学管理数据库中的表 ENROLLS ,可以定义如下:
CREATE TABLE ENROLLS
(SNO NUMERIC(6,0) NOT NULL
CNO CHAR(4) NOT NULL
GRADE INT
PRIMARY KEY(SNO,CNO)
FOREIGN KEY(SNO) REFERENCES STUDENTS(SNO)
FOREIGN KEY(CNO) REFERENCES COURSES(CNO)
CHECK ((GRADE IS NULL) OR (GRADE BETWEEN 0 AND 100)))
例 3 根据表的 STUDENTS 表,建立一个只包含学号、姓名、年龄的女学生表。
CREATE TABLE GIRL
AS SELECT SNO, SNAME, AGE
FROM STUDENTS
WHERE SEX=' 女 ';
例 4 删除教师表 TEACHER 。
DROP TABLE TEACHER
例 5 在教师表中增加住址列。
ALTER TABLE TEACHERS
ADD (ADDR CHAR(50))
例 6 把 STUDENTS 表中的 BPLACE 列删除,并且把引用 BPLACE 列的所有视图和约束也一起删除。
ALTER TABLE STUDENTS
DROP BPLACE CASCADE
例 7 补充定义 ENROLLS 表的主关键字。
ALTER TABLE ENROLLS
ADD PRIMARY KEY (SNO,CNO) ;
视图操作(虚表)
例 9 建立一个只包括教师号、姓名和年龄的视图 FACULTY 。 ( 在视图定义中不能包含 ORDER BY 子句 )
CREATE VIEW FACULTY
AS SELECT TNO, TNAME, AGE
FROM TEACHERS
例 10 从学生表、课程表和选课表中产生一个视图 GRADE_TABLE , 它包括学生姓名、课程名和成绩。
CREATE VIEW GRADE_TABLE
AS SELECT SNAME,CNAME,GRADE
FROM STUDENTS,COURSES,ENROLLS
WHERE STUDENTS.SNO = ENROLLS.SNO AND
COURSES.CNO=ENROLLS.CNO
例 11 删除视图 GRADE_TABLE
DROP VIEW GRADE_TABLE RESTRICT
索引操作
例 12 在学生表中按学号建立索引。
CREATE UNIQUE INDEX ST
ON STUDENTS (SNO,ASC)
例 13 删除按学号所建立的索引。
DROP INDEX ST
数据库模式操作
例 14 创建一个简易教学数据库的数据库模式 TEACHING_DB ,属主为 ZHANG 。
CREATE SCHEMA TEACHING_DB AUTHRIZATION ZHANG
例 15 删除简易教学数据库模式 TEACHING_DB 。(( 1 )选用 CASCADE ,即当删除数据库模式时,则本数据库模式和其下属的基本表、视图、索引等全部被删除。( 2 )选用 RESTRICT ,即本数据库模式下属的基本表、视图、索引等事先已清除,才能删除本数据库模式,否则拒绝删除。)
DROP SCHEMA TEACHING_DB CASCADE
单表操作
例 16 找出 3 个学分的课程号和课程名。
SELECT CNO, CNAME
FROM COURSES
WHERE CREDIT = 3
例 17 查询年龄大于 22 岁的学生情况。
SELECT *
FROM STUDENTS
WHERE AGE > 22
例 18 找出籍贯为河北的男生的姓名和年龄。
SELECT SNAME, AGE
FROM STUDENTS
WHERE BPLACE = ' 河北 ' AND SEX = ' 男 '
例 19 找出年龄在 20 ~ 23 岁之间的学生的学号、姓名和年龄,并按年龄升序排序。 (ASC (升序)或 DESC (降序)声明排序的方式,缺省为升序。 )
SELECT SNO, SNAME, AGE
FROM STUDENTS
WHERE AGE BETWEEN 20 AND 23
ORDER BY AGE
例 20 找出年龄小于 23 岁、籍贯是湖南或湖北的学生的姓名和性别。(条件比较运算符=、< 和逻辑运算符 AND (与),此外还可以使用的运算符有:>(大于)、>=(大于等于)、<=(小于等于)、<>(不等于)、 NOT (非)、 OR (或)等。
谓词 LIKE 只能与字符串联用,常常是 “ <列名> LIKE pattern” 的格式。特殊字符 “_” 和 “%” 作为通配符。
谓词 IN 表示指定的属性应与后面的集合(括号中的值集或某个查询子句的结果)中的某个值相匹配,实际上是一系列的 OR (或)的缩写。谓词 NOT IN 表示指定的属性不与后面的集合中的某个值相匹配。
谓词 BETWEEN 是 “ 包含于 … 之中 ” 的意思。)
SELECT SNAME, SEX
FROM STUDENTS
WHERE AGE < 23 AND BPLACE LIKE' 湖% '
或
SELECT SNAME, SEX
FROM STUDENTS
WHERE AGE < 23 AND BPLACE IN ( ' 湖南 ' , ' 湖北 ' )
例 22 找出学生表中籍贯是空值的学生的姓名和性别。(在 SQL 中不能使用条件:<列名>= NULL 。在 SQL 中只有一个特殊的查询条件允许查询 NULL 值:)
SELECT SNAME, SEX
FROM STUDENTS
WHERE BPLACE IS NULL
多表操作
例 23 找出成绩为 95 分的学生的姓名。(子查询)
SELECT SNAME
FROM STUDENTS
WHERE SNO =
(SELECT SNO
FROM ENROLLS
WHERE GRADE = 95)
例 24 找出成绩在 90 分以上的学生的姓名。
SELECT SNAME
FROM STUDENTS
WHERE SNO IN
(SELECT SNO
FROM ENROLLS
WHERE GRADE > 90)
或
SELECT SNAME
FROM STUDENTS
WHERE SNO = ANY
(SELECT SNO
FROM ENROLLS
WHERE GRADE > 90)
例 25 查询全部学生的学生名和所学课程号及成绩。(连接查询)
SELECT SNAME, CNO, GRADE
FROM STUDENTS, ENROLLS
WHERE STUDENTS.SNO = ENROLLS.SNO
例 26 找出籍贯为山西或河北,成绩为 90 分以上的学生的姓名、籍贯和成绩。(当构造多表连接查询命令时,必须遵循两条规则。第一,连接条件数正好比表数少 1 (若有三个表,就有两个连接条件 ) ;第二,若一个表中的主关键字是由多个列组成,则对此主关键字中的每一个列都要有一个连接条件(也有少数例外情况))
SELECT SNAME, BPLACE, GRADE
FROM STUDENTS, ENROLLS
WHERE BPLACE IN (‘ 山西 ' , ‘ 河北 ') AND GRADE >= 90 AND STUDENTS.SNO=ENROLLS.SNO
例 28 查出课程成绩在 80 分以上的女学生的姓名、课程名和成绩。( FROM 子句中的子查询)
SELECT SNAME,CNAME, GRADE
FROM (SELECT SNAME, CNAME , GRADE
FROM STUDENTS, ENROLLS,COURSES
WHERE SEX = ' 女 ')
AS TEMP (SNAME, CNAME,GRADE)
WHERE GRADE > 80
表达式与函数的使用
例 29 查询各课程的学时数。(算术表达式由算术运算符+、-、 * 、/与列名或数值常量所组成。)
SELECT CNAME,COURSE_TIME = CREDIT*16
FROM COURSES
例 30 找出教师的最小年龄。(内部函数: SQL 标准中只使用 COUNT 、 SUM 、 AVG 、 MAX 、 MIN 函数,称之为聚集函数( Set Function )。 COUNT 函数的结果是该列统计值的总数目, SUM 函数求该列统计值之和, AVG 函数求该列统计值之平均值, MAX 函数求该列最大值, MIN 函数求该列最小值。)
SELECT MIN(AGE)
FROM TEACHERS
例 31 统计年龄小于等于 22 岁的学生人数。(统计)
SELECT COUNT(*)
FROM STUDENTS
WHERE AGE < = 22
例 32 找出学生的平均成绩和所学课程门数。
SELECT SNO, AVG(GRADE), COURSES = COUNT(*)
FROM ENROLLS
GROUP BY SNO
例 34 找出年龄超过平均年龄的学生姓名。
SELECT SNAME
FROM STUDENTS
WHERE AGE >
(SELECT AVG(AGE)
FROM STUDENTS)
例 35 找出各课程的平均成绩,按课程号分组,且只选择学生超过 3 人的课程的成绩。( GROUP BY 与 HAVING
GROUP BY 子句把一个表按某一指定列(或一些列)上的值相等的原则分组,然后再对每组数据进行规定的操作。
GROUP BY 子句总是跟在 WHERE 子句后面,当 WHERE 子句缺省时,它跟在 FROM 子句后面。
HAVING 子句常用于在计算出聚集之后对行的查询进行控制。)
SELECT CNO, AVG(GRADE), STUDENTS = COUNT(*)
FROM ENROLLS
GROUP BY CNO
HAVING COUNT(*) >= 3
相关子查询
例 37 查询没有选任何课程的学生的学号和姓名。(当一个子查询涉及到一个来自外部查询的列时,称为相关子查询( Correlated Subquery) 。相关子查询要用到存在测试谓词 EXISTS 和 NOT EXISTS ,以及 ALL 、 ANY ( SOME )等。)
SELECT SNO, SNAME
FROM STUDENTS
WHERE NOT EXISTS
(SELECT *
FROM ENROLLS
WHERE ENROLLS.SNO=STUDENTS.SNO)
例 38 查询哪些课程只有男生选读。
SELECT DISTINCT CNAME
FROM COURSES C
WHERE ' 男 ' = ALL
(SELECT SEX
FROM ENROLLS , STUDENTS
WHERE ENROLLS.SNO=STUDENTS.SNO AND
ENROLLS.CNO=C.CNO)
例 39 要求给出一张学生、籍贯列表,该表中的学生的籍贯省份,也是其他一些学生的籍贯省份。
SELECT SNAME, BPLACE
FROM STUDENTS A
WHERE EXISTS
(SELECT *
FROM STUDENTS B
WHERE A.BPLACE=B.BPLACE AND
A.SNO < > B.SNO)
例 40 找出选修了全部课程的学生的姓名。
本查询可以改为:查询这样一些学生,没有一门课程是他不选修的。
SELECT SNAME
FROM STUDENTS
WHERE NOT EXISTS
(SELECT *
FROM COURSES
WHERE NOT EXISTS
(SELECT *
FROM ENROLLS
WHERE ENROLLS.SNO = STUDENTS.SNO
AND ENROLLS.CNO = COURSES.CNO))
关系代数运算
例 41 设有某商场工作人员的两张表:营业员表 SP_SUBORD 和营销经理表 SP_MGR ,其关系数据模式如下:
SP_SUBORD (SALPERS_ID, SALPERS_NAME, MANAGER_ID, OFFICE)
SP_MGR (SALPERS_ID, SALPERS_NAME, MANAGER_ID, OFFICE)
其中,属性 SALPERS_ID 为工作人员的编号 , SALPERS_NAME 为工作人员的姓名 , MANAGER_ID 为所在部门经理的编号 , OFFICE 为工作地点。
若查询全部商场工作人员,可以用下面的 SQL 语句:
(SELECT * FROM SP_SUBORD)
UNION
(SELECT * FROM SP_MGR)
或等价地用下面的 SQL 语句:
SELECT *
FROM (TABLE SP_SUBORD UNION TABLE SP_MGR)
( 2 ) INTERSECT
(SELECT * FROM SP_SUBORD)
INTERSECT
(SELECT * FROM SP_MGR)
或等价地用下面的 SQL 语句:
SELECT *
FROM (TABLE SP_SUBORD INTERSECT TABLE SP_MGR)
或用带 ALL 的 SQL 语句:
(SELECT * FROM SP_SUBORD)
INTERSECT ALL
(SELECT * FROM SP_MGR)
或
SELECT *
FROM (TABLE SP_SUBORD INTERSECT ALL TABLE SP_MGR)
( 3 ) EXCEPT
(SELECT * FROM SP_MGR)
EXCEPT
(SELECT * FROM SP_SUBORD)
或等价地用下面的 SQL 语句:
SELECT *
FROM (TABLE SP_MGR EXCEPT TABLE SP_ SUBORD)
或用带 ALL 的 SQL 语句:
(SELECT * FROM SP_MGR)
EXCEPT ALL
(SELECT * FROM SP_SUBORD)
例 42 查询籍贯为四川、课程成绩在 80 分以上的学生信息及其成绩。(自然连接)
(SELECT * FROM STUDENTS
WHERE BPLACE=‘ 四川 ')
NATURAL JOIN
(SELECT * FROM ENROLLS
WHERE GRADE >=80)
例3.43 列出全部教师的姓名及其任课的课程号、班级。
(外连接与外部并外连接允许在结果表中保留非匹配元组,空缺部分填以 NULL 。外连接的作用是在做连接操作时避免丢失信息。
外连接有 3 类:
( 1 )左外连接( Left Outer Join )。连接运算谓词为 LEFT [OUTER] JOIN ,其结果表中保留左关系的所有元组。
( 2 )右外连接( Right Outer Join )。连接运算谓词为 RIGHT [OUTER] JOIN ,其结果表中保留右关系的所有元组。
( 3 )全外连接( Full Outer Join )。连接运算谓词为 FULL [OUTER] JOIN ,其结果表中保留左右两关系的所有元组。)
SELECT TNAME, CNO, CLASS
FROM TEACHERS LEFT OUTER JOIN TEACHING USING (TNO)
SQL 的数据操纵
例 44 把教师李映雪的记录加入到教师表 TEACHERS 中。(插入)
INSERT INTO TEACHERS
VALUES(1476 , ' 李映雪 ' , 44 , ' 副教授 ')
例 45 成绩优秀的学生将留下当教师。
INSERT INTO TEACHERS (TNO , TNAME)
SELECT DISTINCT SNO , SNAME
FROM STUDENTS , ENROLLS
WHERE STUDENTS.SNO = ENROLLS.SNO AND GRADE >= 90
例 47 把所有学生的年龄增加一岁。(修改)
UPDATE STUDENTS
SET AGE = AGE+1
例 48 学生张春明在数据库课考试中作弊,该课成绩应作零分计。
UPDATE ENROLLS
SET GRADE = 0
WHERE CNO = 'C1' AND
' 张春明 ' =
(SELECT SNAME
FROM STUDENTS
WHERE STUDENTS.SNO=ENROLLS.SNO)
例 49 从教师表中删除年龄已到 60 岁的退休教师的数据。(删除)
DELETE FROM TEACHERS
WHERE AGE >= 60
SQL 的数据控制
例 50 授予 LILI 有对表 STUDENTS 的查询权。(表/视图特权的授予
一个 SQL 特权允许一个被授权者在给定的数据库对象上进行特定的操作。授权操作的数据库对象包括:表 / 视图、列、域等。授权的操作包括: INSERT 、 UPDATE 、 DELETE 、 SELECT 、 REFERENCES 、 TRIGGER 、 UNDER 、 USAGE 、 EXECUTE 等。其中 INSERT 、 UPDATE 、 DELETE 、 SELECT 、 REFERENCES 、 TRIGGER 有对表做相应操作的权限,故称为表特权。)
GRANT SELECT ON STUDENTS
TO LILI
WITH GRANT OPTION
例 51 取消 LILI 的存取 STUDENTS 表的特权。
REVOKE ALL
ON STUDENTS
FROM LILI CASCADE
B. 高效地进行sql语句设计遵循哪些方面
1、尽量少用IN操作符,基本上所有的IN操作符都可以用EXISTS代替。不用NOT IN操作符,可以用NOT EXISTS或者外连接+替代。
2、不用“<>”或者“!=”操作符。对不等于操作符的处理会造成全表扫描,可以用“<” or “>”代替。
3、Where子句中出现IS NULL或者IS NOT NULL时,Oracle会停止使用索引而执行全表扫描。可以考虑在设计表时,对索引列设置为NOT NULL。这样就可以用其他操作来取代判断NULL的操作。
4、当通配符“%”或者“_”作为查询字符串的第一个字符时,索引不会被使用。
5、对于有连接的列“||”,最后一个连接列索引会无效。尽量避免连接,可以分开连接或者使用不作用在列上的函数替代。
6、如果索引不是基于函数的,那么当在Where子句中对索引列使用函数时,索引不再起作用。Where子句中避免在索引列上使用计算,否则将导致索引失效而进行全表扫描。
7、对数据类型不同的列进行比较时,会使索引失效。
8、用“>=”替代“>”。
9、UNION操作符会对结果进行筛选,消除重复,数据量大的情况下可能会引起磁盘排序。如果不需要删除重复记录,应该使用UNION ALL。
10、Oracle从下到上处理Where子句中多个查询条件,所以表连接语句应写在其他Where条件前,可以过滤掉最大数量记录的条件必须写在Where子句的末尾。
11、Oracle从右到左处理From子句中的表名,所以在From子句中包含多个表的情况下,将记录最少的表放在最后。(只在采用RBO优化时有效)
12、Order By语句中的非索引列会降低性能,可以通过添加索引的方式处理。严格控制在Order By语句中使用表达式。
13、不同区域出现的相同的Sql语句,要保证查询字符完全相同,以利用SGA共享池,防止相同的Sql语句被多次分析。
14、多利用内部函数提高Sql效率。例如DECODE
15、当在Sql语句中连接多个表时,使用表的别名,并将之作为每列的前缀。这样可以减少解析时间。
需要注意的是,随着Oracle的升级,查询优化器会自动对Sql语句进行优化,某些限制可能在新版本的Oracle下不再是问题。尤其是采用CBO(Cost-Based Optimization,基于代价的优化方式)时。
C. 如何写出高性能sql语句
尽量不要在where中包含子查询;
关于时间的查询,尽量不要写成:where to_char(dif_date,'yyyy-mm-dd')=to_char('2007-07-01','yyyy-mm-dd');
2
在过滤条件中,可以过滤掉最大数量记录的条件必须放在where子句的末尾;
FROM子句中写在最后的表(基础表,driving table)将被最先处理,在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表。如果有三个以上的连接查询,那就需要选择交叉表(intersection table)作为基础表,交叉表是指那个被其他表所引用的表;
3
采用绑定变量
4
在WHERE中尽量不要使用OR
5
用EXISTS替代IN、用NOT EXISTS替代NOT IN;
6
避免在索引列上使用计算:WHERE SAL*12>25000;
7
用IN来替代OR: WHERE LOC_ID=10 OR LOC_ID=15 OR LOC_ID=20
8
避免在索引列上使用IS NULL和IS NOT NULL;
9
总是使用索引的第一个列;
10
用UNION-ALL替代UNION;
11
避免改变索引列的类型:SELECT...FROM EMP WHERE EMPNO='123',由于隐式数据类型转换,to_char(EMPNO)='123',因此,将不采用索引,一般在采用字符串拼凑动态SQL语句出现;
12
'!=' 将不使用索引;
13
优化GROUP BY;
14
避免带有LIKE参数的通配符,LIKE '4YE%'使用索引,但LIKE '%YE'不使用索引
15
避免使用困难的正规表达式,例如select * from customer where zipcode like "98___",即便在zipcode上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改成select * from customer where zipcode>"98000",在执行查询时就会利用索引来查询,显然会大大提高速度;
16
尽量明确的完成SQL语句,尽量少让数据库工作。比如写SELECT语句时,需要把查询的字段明确指出表名。尽量不要使用SELECT *语句。组织SQL语句的时候,尽量按照数据库的习惯进行组织。
D. 如何才可能写出高效的sql语句呢哪位达人能推荐一些相关书籍资料
举个最简单的例子,以查询来说
一张表里有5个字段,如果你只想知道其中2个字段的信息,那么你的select语句中就应该只查询这两个字段,而不应该写上*
比如:select
name,age
from
table;
而不应该写成:select
*
from
table;
E. 怎么写sql语句
不知道理解的对不对,有问题再问我吧
建立测试数据
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
CREATE TABLE button(button_id varchar(10))
go
CREATE TABLE [user](USER_ID varchar(10))
go
create TABLE user_button(USER_ID varchar(10),button_id varchar(10))
go
INSERT INTO dbo.button
( button_id )
SELECT
1001
UNION ALL
SELECT
1002
UNION ALL
SELECT
1003
UNION ALL
SELECT
1004
F. 玩转SQL:如何写出好的SQL语句
1.选择最有效率的表名顺序(只在基于规则的优化器中有效):
ORALCE的解析器按照从右到左的顺序处理FROM子句中的表名,FROM子句中写在最后的表(基础表 driving table)将被最先处理,在FROM子句中包含多个表的情况下,你必须选择记录条数最少的表作为基础表。如果有3个以上的表连接查询, 那就需要选择交叉表(intersection table)作为基础表, 交叉表是指那个被其他表所引用的表.
2.WHERE子句中的连接顺序:
ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前, 那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾.
3.SELECT子句中避免使用 * :
ORACLE在解析的过程中, 会将’*’ 依次转换成所有的列名, 这个工作是通过查询数据字典完成的, 这意味着将耗费更多的时间.
4.使用DECODE函数来减少处理时间:
使用DECODE函数可以避免重复扫描相同记录或重复连接相同的表.
5.用Where子句替换HAVING子句:
避免使用HAVING子句, HAVING 只会在检索出所有记录之后才对结果集进行过滤. 这个处理需要排序,总计等操作. 如果能通过WHERE子句限制记录的数目,那就能减少这方面的开销. on、where、having这三个都可以加条件的子句中,on是最先执行,where次之,having最后,因为on是先把不符合条件的记录过滤后才进行统计,它就可以减少中间运算要处理的数据,按理说应该速度是最快的,where也应该比having快点的,因为它过滤数据后才进行sum,在两个表联接时才用on的.在多表联接查询时,on比where更早起作用。系统首先根据各个表之间的联接条件,把多个表合成一个临时表后,再由where进行过滤,然后再计算,计算完后再由having进行过滤。
6.减少对表的查询:
在含有子查询的SQL语句中,要特别注意减少对表的查询.例子:
SELECT TAB_NAME FROM TABLES WHERE (TAB_NAME,DB_VER) = (SELECT TAB_NAME,DB_VER FROM TAB_COLUMNS WHERE VERSION = 604)
7.使用表的别名(Alias):
当在SQL语句中连接多个表时, 请使用表的别名并把别名前缀于每个Column上.这样一来,就可以减少解析的时间并减少那些由Column歧义引起的语法错误.
8.用EXISTS替代IN、用NOT EXISTS替代NOT IN:
在许多基于基础表的查询中,为了满足一个条件,往往需要对另一个表进行联接.在这种情况下, 使用EXISTS(或NOT EXISTS)通常将提高查询的效率. 在子查询中,NOT IN子句将执行一个内部的排序和合并. 无论在哪种情况下,NOT IN都是最低效的 (因为它对子查询中的表执行了一个全表遍历). 为了避免使用NOT IN ,我们可以把它改写成外连接(Outer Joins)或NOT EXISTS.
例子:
(高效)SELECT * FROM EMP (基础表) WHERE EMPNO > 0 AND EXISTS (SELECT ‘X’ FROM DEPT WHERE DEPT.DEPTNO = EMP.DEPTNO AND LOC = ‘MELB’)
(低效)SELECT * FROM EMP (基础表) WHERE EMPNO > 0 AND DEPTNO IN(SELECT DEPTNO FROM DEPT WHERE LOC = ‘MELB’)
9. 识别’低效执行’的SQL语句:
SELECT EXECUTIONS , DISK_READS, BUFFER_GETS,
ROUND((BUFFER_GETS-DISK_READS)/BUFFER_GETS,2) Hit_radio,
ROUND(DISK_READS/EXECUTIONS,2) Reads_per_run,
SQL_TEXT
FROM V$SQLAREA
WHERE EXECUTIONS>0
AND BUFFER_GETS > 0
AND (BUFFER_GETS-DISK_READS)/BUFFER_GETS < 0.8
ORDER BY 4 DESC;
10.用索引提高效率:
索引是表的一个概念部分,用来提高检索数据的效率,ORACLE使用了一个复杂的自平衡B-tree结构. 通常,通过索引查询数据比全表扫描要快. 当ORACLE找出执行查询和Update语句的最佳路径时, ORACLE优化器将使用索引. 同样在联结多个表时使用索引也可以提高效率. 另一个使用索引的好处是,它提供了主键(primary key)的唯一性验证.。那些LONG或LONG RAW数据类型, 你可以索引几乎所有的列. 通常, 在大型表中使用索引特别有效. 当然,你也会发现, 在扫描小表时,使用索引同样能提高效率. 虽然使用索引能得到查询效率的提高,但是我们也必须注意到它的代价. 索引需要空间来存储,也需要定期维护, 每当有记录在表中增减或索引列被修改时, 索引本身也会被修改. 这意味着每条记录的INSERT , DELETE , UPDATE将为此多付出4 , 5 次的磁盘I/O . 因为索引需要额外的存储空间和处理,那些不必要的索引反而会使查询反应时间变慢.
11.用EXISTS替换DISTINCT:
当提交一个包含一对多表信息(比如部门表和雇员表)的查询时,避免在SELECT子句中使用DISTINCT. 一般可以考虑用EXIST替换, EXISTS 使查询更为迅速,因为RDBMS核心模块将在子查询的条件一旦满足后,立刻返回结果. 例子:
(低效):
SELECT DISTINCT DEPT_NO,DEPT_NAME FROM DEPT D , EMP E
WHERE D.DEPT_NO = E.DEPT_NO
(高效):
SELECT DEPT_NO,DEPT_NAME FROM DEPT D WHERE EXISTS ( SELECT ‘X’
FROM EMP E WHERE E.DEPT_NO = D.DEPT_NO);
12.sql语句用大写的:
因为oracle总是先解析sql语句,把小写的字母转换成大写的再执行
13.避免在索引列上使用NOT
我们要避免在索引列上使用NOT, NOT会产生在和在索引列上使用函数相同的影响. 当ORACLE”遇到”NOT,他就会停止使用索引转而执行全表扫描.
14.避免在索引列上使用计算.
WHERE子句中,如果索引列是函数的一部分.优化器将不使用索引而使用全表扫描.
举例:
低效:
SELECT … FROM DEPT WHERE SAL * 12 > 25000;
高效:
SELECT … FROM DEPT WHERE SAL > 25000/12;
15.用>=替代>
高效:
SELECT * FROM EMP WHERE DEPTNO >=4
低效:
SELECT * FROM EMP WHERE DEPTNO >3
两者的区别在于, 前者DBMS将直接跳到第一个DEPT等于4的记录而后者将首先定位到DEPTNO=3的记录并且向前扫描到第一个DEPT大于3的记录
16.用UNION替换OR (适用于索引列)
通常情况下, 用UNION替换WHERE子句中的OR将会起到较好的效果. 对索引列使用OR将造成全表扫描. 注意, 以上规则只针对多个索引列有效. 如果有column没有被索引, 查询效率可能会因为你没有选择OR而降低. 在下面的例子中, LOC_ID 和REGION上都建有索引.
高效:
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE LOC_ID = 10
UNION
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE REGION = “MELBOURNE”
低效:
SELECT LOC_ID , LOC_DESC , REGION
FROM LOCATION
WHERE LOC_ID = 10 OR REGION = “MELBOURNE”
如果你坚持要用OR, 那就需要返回记录最少的索引列写在最前面.
17.用IN来替换OR
这是一条简单易记的规则,但是实际的执行效果还须检验,在ORACLE8i下,两者的执行路径似乎是相同的.
低效:
SELECT…. FROM LOCATION WHERE LOC_ID = 10 OR LOC_ID = 20 OR LOC_ID = 30
高效
SELECT… FROM LOCATION WHERE LOC_IN IN (10,20,30);
18.避免在索引列上使用IS NULL和IS NOT NULL
避免在索引中使用任何可以为空的列,ORACLE将无法使用该索引.对于单列索引,如果列包含空值,索引中将不存在此记录. 对于复合索引,如果每个列都为空,索引中同样不存在此记录.如果至少有一个列不为空,则记录存在于索引中.举例: 如果唯一性索引建立在表的A列和B列上, 并且表中存在一条记录的A,B值为(123,null) , ORACLE将不接受下一条具有相同A,B值(123,null)的记录(插入). 然而如果所有的索引列都为空,ORACLE将认为整个键值为空而空不等于空. 因此你可以插入1000 条具有相同键值的记录,当然它们都是空! 因为空值不存在于索引列中,所以WHERE子句中对索引列进行空值比较将使ORACLE停用该索引.
低效: (索引失效)
SELECT … FROM DEPARTMENT WHERE DEPT_CODE IS NOT NULL;
高效: (索引有效)
SELECT … FROM DEPARTMENT WHERE DEPT_CODE >=0;
19.总是使用索引的第一个列:
如果索引是建立在多个列上, 只有在它的第一个列(leading column)被where子句引用时,优化器才会选择使用该索引. 这也是一条简单而重要的规则,当仅引用索引的第二个列时,优化器使用了全表扫描而忽略了索引
20.用UNION-ALL 替换UNION ( 如果有可能的话):
当SQL 语句需要UNION两个查询结果集合时,这两个结果集合会以UNION-ALL的方式被合并, 然后在输出最终结果前进行排序. 如果用UNION ALL替代UNION, 这样排序就不是必要了. 效率就会因此得到提高. 需要注意的是,UNION ALL 将重复输出两个结果集合中相同记录. 因此各位还是要从业务需求分析使用UNION ALL的可行性. UNION 将对结果集合排序,这个操作会使用到SORT_AREA_SIZE这块内存. 对于这块内存的优化也是相当重要的. 下面的SQL可以用来查询排序的消耗量
低效:
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = ’31-DEC-95’
UNION
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = ’31-DEC-95’
高效:
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = ’31-DEC-95’
UNION ALL
SELECT ACCT_NUM, BALANCE_AMT
FROM DEBIT_TRANSACTIONS
WHERE TRAN_DATE = ’31-DEC-95’
21.ORDER BY:
ORDER BY中所有的列必须包含在相同的索引中并保持在索引中的排列顺序.
ORDER BY中所有的列必须定义为非空.
WHERE子句使用的索引和ORDER BY子句中所使用的索引不能并列.
22.需要当心的WHERE子句:
某些SELECT 语句中的WHERE子句不使用索引. 这里有一些例子.
在下面的例子里, (1)‘!=’ 将不使用索引. 记住, 索引只能告诉你什么存在于表中, 而不能告诉你什么不存在于表中. (2) ‘||’是字符连接函数. 就象其他函数那样, 停用了索引. (3) ‘+’是数学函数. 就象其他数学函数那样, 停用了索引. (4)相同的索引列不能互相比较,这将会启用全表扫描.
23.优化GROUP BY:
提高GROUP BY 语句的效率, 可以通过将不需要的记录在GROUP BY 之前过滤掉.下面两个查询返回相同结果但第二个明显就快了许多.
低效:
SELECT JOB , AVG(SAL)
FROM EMP
GROUP by JOB
HAVING JOB = ‘PRESIDENT’
OR JOB = ‘MANAGER’
高效:
SELECT JOB , AVG(SAL)
FROM EMP
WHERE JOB = ‘PRESIDENT’
OR JOB = ‘MANAGER’
GROUP by JOB
24.视图中不要有ORDER BY
视图里面有 order by 会干扰执行计划
G. 求一高效率sql语句,高手进,菜鸟就来学习吧
写思路吧:亿级的肯定是生产用的服务器,个人电脑跑不动。那就这样:看你好像是任意前三条
insert into temp(新建一个临时表,不然全靠内存排序)
select name,row_number() over(partition by name order by name) as rank from tb_1;
insert into tb_2
select * from temp where rank<=3
H. 如何提高sql语句的执行效率
1、使用ordered提示
Oracle必须花费大量的时间来剖析多表的合并,用以确定表合并的最佳顺序。SQL表达式涉及七个乃至更多的表合并,那么有时就会需要超过30分钟的时间来剖析,Ordered这个提示(hint)和其他的提示一起使用能够产生合适的合并顺序。
2、使用ordered_predicates
ordered_predicates提示在查询的WHERE子句里指定的,并被用来指定布尔判断(Booleanpredicate)被评估的顺序。在没有ordered_predicates的情况下,Oracle会使用下面这些步骤来评估SQL判断的顺序:子查询的评估先于外层WHERE子句里的Boolean条件。
所有没有内置函数或者子查询的布尔条件都按照其在WHERE子句里相反的顺序进行评估,即最后一条判断最先被评估。每个判断都带有内置函数的布尔判断都依据其预计的评估值按递增排列。
3、限制表格合并评估的数量
提高SQL剖析性能的最后一种方法是强制取代Oracle的一个参数,这个参数控制着在评估一个查询的时候,基于消耗的优化器所评估的可能合并数量。
(8)写一个你认为最高效sql语句扩展阅读:
1、表设计的优化,数据行的长度不要超过8020字节,如果超过这个长度的话在物理页中这条数据会占用两行从而造成存储碎片,降低查询效率。
2、语句的查询优化,保证在实现功能的基础上,尽量减少对数据库的访问次数;
3、建立高效的索引创建索引一般有以下两个目的:维护被索引列的唯一性和提供快速访问表中数据的策略。
大型数据库有两种索引即簇索引和非簇索引,一个没有簇索引的表是按堆结构存储数据,所有的数据均添加在表的尾部,而建立了簇索引的表,其数据在物理上会按照簇索引键的顺序存储。个表只允许有一个簇索引。
4、强制查询转换,有时候oracle 的优化器未必能走正确的查询路线,这个时候就需要添加一些hint 之类的来规定他的执行路线。当然了,这个未必是最好的处理方案。因为虽然现在走这个路线是对的,以为因为数据的变化到这这个HINT 变得不可取。
I. 如何书写高效的SQL语句
优化SQL查询:如何写出高性能SQL语句
1、首先要搞明白什么叫执行计划?
执行计划是数据库根据SQL语句和相关表的统计信息作出的一个查询方案,这个方案是由查询优化器自动分析产生欀如一条SQL语句如果用来从一个10万条记录的表中查1条记录,那查询优化器会选择“索引查找”方式,如果该表进行了归档,当前只剩下5000条记录了,那查询优化器就会改变方案,采用 “全表扫描”方式。
可见,执行计划并不是固定的,它是“个性化的”。产生一个正确的“执行计划”有两点很重要:
(1) SQL语句是否清晰地告诉查询优化器它想干什么?
(2) 查询优化器得到的数据库统计信息是否是最新的、正确的?
2、统一SQL语句的写法
对于以下两句SQL语句,程序员认为是相同的,数据库查询优化器认为是不同的。
select * from al
select * From al
其实就是大小写不同,查询分析器就认为是两句不同的SQL语句,必须进行两次解析。生成2个执行计划。
所以作为程序员,应该保证相同的查询语句在任何地方都一致,多一个空格都不行!
3、不要把SQL语句写得太复杂
我经常看到,从数据库中捕捉到的一条SQL语句打印出来有2张A4纸这么长。一般来说这么复杂的语句通常都是有问题的。我拿着这2页长的SQL语句去请教原作者,结果他说时间太长,他一时也看不懂了。可想而知,连原作者都有可能看糊涂的SQL语句,数据库也一样会看糊涂。
一般,将一个Select语句的结果作为子集,然后从该子集中再进行查询,这种一层嵌套语句还是比较常见的,但是根据经验,超过3层嵌套,查询优化器就很容易给出错误的执行计划。因为它被绕晕了。像这种类似人工智能的东西,终究比人的分辨力要差些,如果人都看晕了,我可以保证数据库也会晕的。
另外,执行计划是可以被重用的,越简单的SQL语句被重用的可能性越高。而复杂的SQL语句只要有一个字符发生变化就必须重新解析,然后再把这一大堆垃圾塞在内存里。可想而知,数据库的效率会何等低下。
4、使用“临时表”暂存中间结果
简化SQL语句的重要方法就是采用临时表暂存中间结果,但是,临时表的好处远远不止这些,将临时结果暂存在临时表,后面的查询就在tempdb中了,这可以避免程序中多次扫描主表,也大大减少了程序执行中“共享锁”阻塞“更新锁”,减少了阻塞,提高了并发性能。
J. 如何编写一个高效的sql语句
少用一些敏感的函数,少连接表,连接表的时候使用exists代替in,not exists代替not in。sql要大写。在条件中能够处理掉较多数据的放最后面。等等。