当前位置:首页 » 编程语言 » sparksqlscala例子
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

sparksqlscala例子

发布时间: 2023-03-25 20:32:08

⑴ Spark sql怎么创建编程创建DataFrame

创建 SQLContext
Spark SQL 中所有相关功能的入口点是 SQLContext 类或者它的子类, 创建一个 SQLContext 的所有需要仅仅是一个 SparkContext。
使用 Scala 创建方式如下:
val sc: SparkContext // An existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc)

// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.implicits._

使用团返 Java 创建方式如下:
JavaSparkContext sc = ...; // An existing JavaSparkContext.
SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc);

使用 Python 创建方式如下:
from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)

除了一个基本的 SQLContext,你也能够创建一个 HiveContext,它支持基本 SQLContext 所支持功能的一个超集。它的额外的功能包括用更完整的 HiveQL 分析器写查询去访问 HiveUDFs 的能力、 从 Hive 表读取数据的能力。用 HiveContext 你不需要一个已经存在的 Hive 开启,SQLContext 可用的数据源对 HiveContext 也可用。HiveContext 分开打包是为了避免在 Spark 构建时包含了所有 的 Hive 依赖。如果对你的应用程序来说,这些依赖不存在问题,Spark 1.3 推荐使用 HiveContext。以后的稳定版本将专注于为 SQLContext 提供与 HiveContext 等价的功能。
用来解析查询语句的特定 SQL 变种语陆型言可以通过 spark.sql.dialect 选项来选择。这个参数可以通过两种方式改变,一种方式是通过 setConf 方法设定,另一种方式是在 SQL 命令中通过 SET key=value 来设定。对于 SQLContext,唯一可用的方言是 “sql”,它是 Spark SQL 提供的一个简单的 SQL 解析器。在 HiveContext 中,虽塌悉饥然也支持”sql”,但默认的方言是 “hiveql”,这是因为 HiveQL 解析器更完整。

⑵ sparksql仅包含英文字母的数据

Spark SQL是铅悔一种用于处理大型数据集的分布式计算引擎,它可以处理各种数据源,包括英文字母。它可以提供高性能的SQL查询,以及丰富的数据挖掘功能,可以帮助用户快速解决复杂的数据分析问题。Spark SQL支持多种数据源,包括文件、数据库、NoSQL存储和流式数据处理系统。它可以支持多种数据格式,包括JSON、Parquet、Avro和ORC等。Spark SQL可以支持多种查询槐早正语言,包括SQL、HiveQL和Scala等,可以帮助用户快速构建复杂的数据睁伏分析应用程序。

⑶ scala可以使用sparksql查询吗

试试看看spark\sql\catalyst\src\main\scala\org\apache\spark\sql\catalyst\SQLParser.scala
scala语言不是很容易懂,但咐碰是里面有解析SQL的方法,可以看出支持的SQL语句,至少关键词是很明确的。

protected val ALL = Keyword("ALL")
protected val AND = Keyword("AND")
protected val APPROXIMATE = Keyword("APPROXIMATE"耐简枣)
protected val AS = Keyword("AS")
protected val ASC = Keyword("ASC")
protected val BETWEEN = Keyword("BETWEEN")
protected val BY = Keyword("BY")
protected val CASE = Keyword("CASE")
protected val CAST = Keyword("昌拆CAST")
protected val DESC = Keyword("DESC")
protected val DISTINCT = Keyword("DISTINCT")
protected val ELSE = Keyword("ELSE")
protected val END = Keyword("END")
protected val EXCEPT = Keyword("EXCEPT")
protected val FALSE = Keyword("FALSE")
protected val FROM = Keyword("FROM")
protected val FULL = Keyword("FULL")
protected val GROUP = Keyword("GROUP")
protected val HAVING = Keyword("HAVING")
protected val IN = Keyword("IN")
protected val INNER = Keyword("INNER")
protected val INSERT = Keyword("INSERT")
protected val INTERSECT = Keyword("INTERSECT")
protected val INTO = Keyword("INTO")
protected val IS = Keyword("IS")
protected val JOIN = Keyword("JOIN")
protected val LEFT = Keyword("LEFT")
protected val LIKE = Keyword("LIKE")
protected val LIMIT = Keyword("LIMIT")
protected val NOT = Keyword("NOT")
protected val NULL = Keyword("NULL")
protected val ON = Keyword("ON")
protected val OR = Keyword("OR")
protected val ORDER = Keyword("ORDER")
protected val SORT = Keyword("SORT")
protected val OUTER = Keyword("OUTER")
protected val OVERWRITE = Keyword("OVERWRITE")
protected val REGEXP = Keyword("REGEXP")
protected val RIGHT = Keyword("RIGHT")
protected val RLIKE = Keyword("RLIKE")
protected val SELECT = Keyword("SELECT")
protected val SEMI = Keyword("SEMI")
protected val TABLE = Keyword("TABLE")
protected val THEN = Keyword("THEN")
protected val TRUE = Keyword("TRUE")
protected val UNION = Keyword("UNION")
protected val WHEN = Keyword("WHEN")
protected val WHERE = Keyword("WHERE")
protected val WITH = Keyword("WITH")

⑷ Ku:Spark SQL操作Ku

摘要: Spark SQL , Ku

参考 https://github.com/xieenze/SparkOnKu/blob/master/src/main/scala/com/spark/test/KuCRUD.scala

引入 spark-core_2.11 , spark-sql_2.11 , ku-spark2_2.11 , hadoop-client 依赖包

指定 ku.master" , ku.table ,如果读取超时加入 ku.operation.timeout.ms 参数

或者

写入数据可以使用dataframe的 write 方法,也可以使用 kuContext 的 updateRows , insertRows , upsertRows , insertIgnoreRows 方法

直接调用dataframe的write方法指定 ku.master , ku.table ,只支持 append 模式,对已有key的数据自动更新

调用kuContext的 upsertRows 方法,效果和dataframe调用write append模式一样

调用kuContext insertRows , insertIgnoreRows 方法,如果插入的数据key已存在insertRows直接报错,insertIgnoreRows忽略已存在的key,只插入不存在的key

调用kuContext updateRows 方法,对已经存在的key数据做更新,如果key不存在直接报错

使用已有dataframe的schema建表

使用 StructType 自定义schema

删除表和判断表是否存在

⑸ 科普Spark,Spark是什么,如何使用Spark

科普Spark,Spark是什么,如何使用Spark


1.Spark基于什么算法的分布式计算(很简单)

2.Spark与MapRece不同在什么地方

3.Spark为什么比Hadoop灵活

4.Spark局限是什么

5.什么情况下适合使用Spark

Spark与Hadoop的对比

Spark的中间数据放到内存中,对于迭代运算效率更高。

Spark更适合于迭代运算比较多的ML和DM运算。因为在Spark里面,有RDD的抽象概念。

Spark比Hadoop更通用

Spark提供的数据集操作类型有很多种,不像Hadoop只提供了Map和Rece两种操作。比如map, filter, flatMap, sample, groupByKey, receByKey, union, join, cogroup, mapValues, sort,partionBy等多种操作类型,Spark把这些操作称为Transformations。同时还提供Count, collect, rece, lookup, save等多种actions操作。

这些多种多样的数据集操作类型,给给开发上层应用的用户提供了方便。各个处理节点之间的通信模型不再像Hadoop那样就是唯一的Data Shuffle一种模式。用户可以命名,物化,控制中间结果的存储、分区等。可以说编程模型比Hadoop更灵活。

不过由于RDD的特性,Spark不适用那种异步细粒度更新状态的应用,例如web服务的存储或者是增量的web爬虫和索引。就是对于那种增量修改的应用模型不适合。

容错性

在分布式数据集计算时通过checkpoint来实现容错,而checkpoint有两种方式,一个是checkpoint data,一个是logging the updates。用户可以控制采用哪种方式来实现容错。

可用性

Spark通过提供丰富的Scala, Java,Python API及交互式Shell来提高可用性。

Spark与Hadoop的结合

Spark可以直接对HDFS进行数据的读写,同样支持Spark on YARN。Spark可以与MapRece运行于同集群中,共享存储资源与计算,数据仓库Shark实现上借用Hive,几乎与Hive完全兼容。

Spark的适用场景

Spark是基于内存的迭代计算框架,适用于需要多次操作特定数据集的应用场合。需要反复操作的次数越多,所需读取的数据量越大,受益越大,数据量小但是计算密集度较大的场合,受益就相对较小(大数据库架构中这是是否考虑使用Spark的重要因素)

由于RDD的特性,Spark不适用那种异步细粒度更新状态的应用,例如web服务的存储或者是增量的web爬虫和索引。就是对于那种增量修改的应用模型不适合。总的来说Spark的适用面比较广泛且比较通用。

运行模式

本地模式

Standalone模式

Mesoes模式

yarn模式

Spark生态系统

Shark ( Hive on Spark): Shark基本上就是在Spark的框架基础上提供和Hive一样的H iveQL命令接口,为了最大程度的保持和Hive的兼容性,Shark使用了Hive的API来实现query Parsing和 Logic Plan generation,最后的PhysicalPlan execution阶段用Spark代替Hadoop MapRece。通过配置Shark参数,Shark可以自动在内存中缓存特定的RDD,实现数据重用,进而加快特定数据集的检索。同时,Shark通过UDF用户自定义函数实现特定的数据分析学习算法,使得SQL数据查询和运算分析能结合在一起,最大化RDD的重复使用。

Spark streaming: 构建在Spark上处理Stream数据的框架,基本的原理是将Stream数据分成小的时间片断(几秒),以类似batch批量处理的方式来处理这小部分数据。Spark Streaming构建在Spark上,一方面是因为Spark的低延迟执行引擎(100ms+)可以用于实时计算,另一方面相比基于Record的其它处理框架(如Storm),RDD数据集更容易做高效的容错处理。此外小批量处理的方式使得它可以同时兼容批量和实时数据处理的逻辑和算法。方便了一些需要历史数据和实时数据联合分析的特定应用场合。

Bagel: Pregel on Spark,可以用Spark进行图计算,这是个非常有用的小项目。Bagel自带了一个例子,实现了Google的PageRank算法。

End.

⑹ sparksql缓存表能做广播变量吗

共享变量
通常情况下,当向Spark操作(如map,rece)传递一个函数时,它会在一个远程集群节点上执行,它会使用函数中所有变量的副本。这些变量被复制到所有的机器上,远程机器上并没有被更新的变量会向驱动程序回传。在任务之间使用通用的,支持读写的共享变量是低效的。尽管如此,Spark提供了两种有限类型的共享变量,广播变量和累加器。

广播变量
广播变量允许程序员将一个只读的变量缓存在每台机器上,而不用在任务之间传递变量。广播变量可被用于有效地给每个节点一个大输入数据集的副本。Spark还尝试使用高效地广播算法来分发变量,进而减少通信的开销。
Spark的动作通过一系列的步骤执行,这些步骤由分布式的洗牌操作分开。Spark自动地广播每个步骤每个任务需要的通用数据。这些广播数据被序列化地缓存,在运行任务之前被反序列化出来。这意味着当我们需要在多个阶段的任务之间使用相同的数据,或者以反序列化形式缓存数据是十分重要的时候,显式地创建广播变量才有用。

通过在一个变量v上调用SparkContext.broadcast(v)可以创建广播变量。广播变量是围绕着v的封装,可以通过value方法访问这个变量。举例如下:

scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))
broadcastVar: org.apache.spark.broadcast.Broadcast[Array[Int]] = Broadcast(0)

scala> broadcastVar.value
res0: Array[Int] = Array(1, 2, 3)

在创建了广播变量之后,在集群上的所有函数中应该使用它来替代使用v.这样v就不会不止一次地在节点之间传输了。另外,为了确保所有的节点获得相同的变量,对象v在被广播之后就不应该再修改。

累加器
累加器是仅仅被相关操作累加的变量,因此可以在并行中被有效地支持。它可以被用来实现计数器和总和。Spark原生地只支持数字类型的累加器,编程者可以添加新类型的支持。如果创建累加器时指定了名字,可以在Spark的UI界面看到。这有利于理解每个执行阶段的进程。(对于python还不支持)
累加器通过对一个初始化了的变量v调用SparkContext.accumulator(v)来创建。在集群上运行的任务可以通过add或者"+="方法在累加器上进行累加操作。但是,它们不能读取它的值。只有驱动程序能够读取它的值,通过累加器的value方法。
下面的代码展示了如何把一个数组中的所有元素累加到累加器上:

scala> val accum = sc.accumulator(0, "My Accumulator")
accum: spark.Accumulator[Int] = 0

scala> sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum += x)
...
10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.317106 s

scala> accum.value
res2: Int = 10

尽管上面的例子使用了内置支持的累加器类型Int,但是开发人员也可以通过继承AccumulatorParam类来创建它们自己的累加器类型。AccumulatorParam接口有两个方法:
zero方法为你的类型提供一个0值。
addInPlace方法将两个值相加。
假设我们有一个代表数学vector的Vector类。我们可以向下面这样实现:

object VectorAccumulatorParam extends AccumulatorParam[Vector] {
def zero(initialValue: Vector): Vector = {
Vector.zeros(initialValue.size)
}
def addInPlace(v1: Vector, v2: Vector): Vector = {
v1 += v2
}
}

// Then, create an Accumulator of this type:
val vecAccum = sc.accumulator(new Vector(...))(VectorAccumulatorParam)
在Scala里,Spark提供更通用的累加接口来累加数据,尽管结果的类型和累加的数据类型可能不一致(例如,通过收集在一起的元素来创建一个列表)。同时,SparkContext..accumulableCollection方法来累加通用的Scala的集合类型。

累加器仅仅在动作操作内部被更新,Spark保证每个任务在累加器上的更新操作只被执行一次,也就是说,重启任务也不会更新。在转换操作中,用户必须意识到每个任务对累加器的更新操作可能被不只一次执行,如果重新执行了任务和作业的阶段。
累加器并没有改变Spark的惰性求值模型。如果它们被RDD上的操作更新,它们的值只有当RDD因为动作操作被计算时才被更新。因此,当执行一个惰性的转换操作,比如map时,不能保证对累加器值的更新被实际执行了。下面的代码片段演示了此特性:

val accum = sc.accumulator(0)
data.map { x => accum += x; f(x) }
//在这里,accum的值仍然是0,因为没有动作操作引起map被实际的计算.

⑺ 大数据中的Spark指的是什么

Spark是一种通用的大数据计算框架,和传统的大数据技术MapRece有本质区别。前者是基于内存并行计算的框架,而maprece侧重磁盘计算。Spark是加州大学伯克利分校AMP实验室开发的通用内存并行计算框架,用于构建大型的、低延迟的数据分析应用程序。
Spark同样支持离线计算和实时计算两种模式。Spark离线计算速度要比Maprece快10-100倍。而实时计算方面,则依赖于SparkStreaming的批处理能力,吞吐量大。不过相比Storm,SparkStreaming并不能做到真正的实时。
Spark使用强大的函数式语言Scala开发,方便简单。同时,它还提供了对Python、Java和R语言的支持。
作为大数据计算框架MapRece的继任者,Spark具备以下优势特性。
1,高效性
不同于MapRece将中间计算结果放入磁盘中,Spark采用内存存储中间计算结果,减少了迭代运算的磁盘IO,并通过并行计算DAG图的优化,减少了不同任务之间的依赖,降低了延迟等待时间。内存计算下,Spark 比 MapRece 快100倍。
2,易用性
不同于MapRece仅支持Map和Rece两种编程算子,Spark提供了超过80种不同的Transformation和Action算子,如map,rece,filter,groupByKey,sortByKey,foreach等,并且采用函数式编程风格,实现相同的功能需要的代码量极大缩小。
3,通用性
Spark提供了统一的解决方案。Spark可以用于批处理、交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和图计算(GraphX)。
4,兼容性
Spark能够跟很多开源工程兼容使用。如Spark可以使用Hadoop的YARN和Apache Mesos作为它的资源管理和调度器,并且Spark可以读取多种数据源,如HDFS、HBase、MySQL等。

⑻ spark编程 mysql得不到数据

“这里说明一点:本文提到的解决 Spark insertIntoJDBC找不到Mysql驱动的方法是针对单机模式(也就是local模式)。在集群环境下,下面的方法是不行的。


编程是编定程序的中文简称,就是让计算机代码解决某个问题,对某个计算体系规定一定的运算方式,使计算体系按照该计算方式运行,并最终得到相应结果的过程。

为了使计算机能够理解人的意图,人类就必须将需解决的问题的思路、方法和手段通过计算机能够理解的形式告诉计算机,使得计算机能够根据人的指令一步一步去工作,完成某种特定的任务。这种人和计算体系之间交流的过程就是编程。

在计算机系统中,一条机器指令规定了计算机系统的一个特定动作。

一个系列的计算机在硬件设计制造时就用了若干指令规定了该系列计算机能够进行的基本操作,这些指令一起构成了该系列计算机的指令系统。在计算机应用的初期,程序员使用机器的指令系统来编写计算机应用程序,这种程序称为机器语言程序。

以上内容参考:网络-编程

⑼ Spark SQL到底支持什么SQL语句

试试看看spark\sql\catalyst\src\main\scala\org\apache\spark\sql\catalyst\SQLParser.scala
scala语言不是很容易懂,但是里面有解析SQL的方法,可以看出支持的SQL语句,至少关键词是很明确的。

protected val ALL = Keyword("ALL")
protected val AND = Keyword("AND")
protected val APPROXIMATE = Keyword("APPROXIMATE")
protected val AS = Keyword("AS")
protected val ASC = Keyword("ASC")
protected val BETWEEN = Keyword("BETWEEN")
protected val BY = Keyword("BY")
protected val CASE = Keyword("CASE")
protected val CAST = Keyword("CAST")
protected val DESC = Keyword("DESC")
protected val DISTINCT = Keyword("DISTINCT")
protected val ELSE = Keyword("ELSE")
protected val END = Keyword("END")
protected val EXCEPT = Keyword("EXCEPT")
protected val FALSE = Keyword("FALSE")
protected val FROM = Keyword("FROM")
protected val FULL = Keyword("FULL")
protected val GROUP = Keyword("GROUP")
protected val HAVING = Keyword("HAVING")
protected val IN = Keyword("IN")
protected val INNER = Keyword("INNER")
protected val INSERT = Keyword("INSERT")
protected val INTERSECT = Keyword("INTERSECT")
protected val INTO = Keyword("INTO")
protected val IS = Keyword("IS")
protected val JOIN = Keyword("JOIN")
protected val LEFT = Keyword("LEFT")
protected val LIKE = Keyword("LIKE")
protected val LIMIT = Keyword("LIMIT")
protected val NOT = Keyword("NOT")
protected val NULL = Keyword("NULL")
protected val ON = Keyword("ON")
protected val OR = Keyword("OR")
protected val ORDER = Keyword("ORDER")
protected val SORT = Keyword("SORT")
protected val OUTER = Keyword("OUTER")
protected val OVERWRITE = Keyword("OVERWRITE")
protected val REGEXP = Keyword("REGEXP")
protected val RIGHT = Keyword("RIGHT")
protected val RLIKE = Keyword("RLIKE")
protected val SELECT = Keyword("SELECT")
protected val SEMI = Keyword("SEMI")
protected val TABLE = Keyword("TABLE")
protected val THEN = Keyword("THEN")
protected val TRUE = Keyword("TRUE")
protected val UNION = Keyword("UNION")
protected val WHEN = Keyword("WHEN")
protected val WHERE = Keyword("WHERE")
protected val WITH = Keyword("WITH")