当前位置:首页 » 编程语言 » c语言文件解耦
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

c语言文件解耦

发布时间: 2022-10-19 15:08:35

㈠ 用c语言设计一个文件加密与解密程序

c语言文件加密和解密方法如下:

1、首先打开VC++6.0;


4、声明头文件

#include<stdio.h>

#include<stdlib.h>

#include<string.h>


首先写个加密函数,算法就是简介里说的;

voidEncryptFile(FILE*sfp,FILE*dfp,charpwd)
{
charch;
if(sfp==0||dfp==0)
{
printf("ERROR! ");
return;
}
while((ch=fgetc(sfp))!=EOF)
{
if((ch>='a')&&(ch<='z'))
{
ch=(ch-'a'+1)%26+'a';
ch=ch^pwd;
}
if((ch>='A')&&(ch<='Z'))
{
ch=(ch-'A'+1)%26+'A';
ch=ch^pwd;
}
fputc(ch,dfp);
}
}

写解密子函数:与加密的过程相反;

voidDecryptFile(FILE*sfp,FILE*dfp,charpwd)
{
charch;
while((ch=fgetc(sfp))!=EOF)
{
if((ch>='a')&&(ch<='z'))
{
ch=ch^pwd;
ch=(ch-'a'+25)%26+'a';
}
if((ch>='A')&&(ch<='Z'))
{
ch=ch^pwd;
ch=(ch-'A'+25)%26+'A';
}
fputc(ch,dfp);
}
}

输出函数,输出文件内容
voidOutputFile(FILE*fp)
{
charch;
while((ch=fgetc(fp))!=EOF)
putchar(ch);
}
主函数,主要调用这几个函数
intmain()
{
/*用户输入的要加密的文件名*/
charsfilename[20];
/*用户输入加密后保存的文件名*/
chardfilename[20];
/*用来保存密码字符*/
charpwd;
FILE*sfp,*dfp;

printf(": ");
/*得到要加密的文件名*/
gets(sfilename);
/*得到加密后你要的文件名*/
printf(": ");
gets(dfilename);
/*得到加密字符*/
printf("PleaseinputyourPassword: ");
//scanf("%c",&pwd);
pwd=getch();
/*屏幕以*来表示输入的加密字符*/
printf("* ");
/*以只读方式打开要加密的文件*/
if((sfp=fopen(sfilename,"r"))==0)
{
printf("Can'topenthefile:%s ",sfilename);
exit(0);
}
/*输出要加密的文件*/
printf(": ");
OutputFile(sfp);
/*建立加密后的文件*/
if((dfp=fopen(dfilename,"w+"))==0)
{
printf("Can'topenorcreatethefile:%s ",dfilename);
//exit(0);
}
/*文件加密*/
fseek(sfp,0L,SEEK_SET);
EncryptFile(sfp,dfp,pwd);
printf(" Encryptedthefilesuccessfully! ");
/*输出加密后的文件*/
printf(": ");
fseek(dfp,0L,SEEK_SET);
OutputFile(dfp);
fclose(sfp);
fclose(dfp);
getch();
return0;
}

㈡ 解耦的意义何在

欲速则不达……

编过一定量代码以后就会知道为什么有的 APIs 用起来很顺手,有的则很别扭……刚开始说不出来什么原因……慢慢的就是有些自己的理解~ 这个时候你再看一些软件工程、UML 或者其他经验类的书籍才有可能理解……

个人浅见,千万不要以为某些概念说说就能理解……比如,你从来没有用过 C 编写程序你永远不会理解面向对象哪些时候会比面向过程好用(当然,C 语言高手请回避,不需要吐槽)。

㈢ C语言关于文件处理的问题:下面是代码

fscanf是从一个文件流中执行格式化输入,可以理解为从文件中读出一串数据,然后将读出的数据依次送入&num4, &num5 ,&num6中,至于读多少数据,由"%6ld%6ld%6ld”控制。
rewind将文件内部的位置指针重新指向一个流(数据流/文件)的开头。
比如你刚打开文件
pfile = fopen(filename, "r");
这时文件指针是0,在文件开头
执行了fscanf之后,文件指针增加了,指向了文件中间
此时如果再执行fscanf,就会在该文件指针位置继续读
此时如果想在文件开头重新读的话,就要先执行rewind,再执行fscanf

㈣ C语言 对文件进行操作的三个主要过程是

C语言对文件进行操作的三个主要过程是:打开文件、操作文件、关闭文件。

C语言的文件处理功能依据系统是否设置“缓冲区”分为两种:一种是设置缓冲区,另一种是不设置缓冲区。

由于不设置缓冲区的文件处理方式,必须使用较低级的I/O函数(包含在头文件io.h和fcntl.h中)来直接对磁盘存取,这种方式的存取速度慢,并且由于不是C的标准函数,跨平台操作时容易出问题。


(4)c语言文件解耦扩展阅读

C语言文件有不同的类型,在程序设计中,主要用到两种文件:

(1)程序文件:包括源程序文件(后缀为.c)、目标文件(后缀为.obj)、可执行文件(后缀为.exe)等。这种文件的内容是程序代码。

(2)数据文件:文件的内容不是程序,而是供程序运行时读写的数据,如在程序运行过程中输出到磁盘(或其他外部设备)的数据,或在程序运行过程中供读入的数据。如一批学生的成绩数据、货物交易的数据等。

为了简化用户对输入输出设备的操作,使用户不必去区分各种输入输出设备之间的区别,操作系统把各种设备都统一作为文件来处理。从操作系统的角度看,每一个与主机相连的输入输出设备都看作一个文件。例如,终端键盘是输入文件,显示屏和打印机是输出文件。

输入输出是数据传送的过程,数据如流水一样从一处流向另一处,因此常将输入输出形象地称为流(stream),即数据流。流表示了信息从源到目的端的流动。在输入操作时,数据从文件流向计算机内存,在输出操作时,数据从计算机流向文件(如打印机、磁盘文件)。

C的数据文件由一连串的字符(或字节)组成,而不考虑行的界限,两行数据间不会自动加分隔符,对文件的存取是以字符(字节)为单位的。输入输出数据流的开始和结束仅受程序控制而不受物理符号(如回车换行符)控制,这就增加了处理的灵活性。

㈤ 用C语言实现文件读写操作

用C语言实现文件读写操作

#include “stdio.h”

main()

{

FILE *fp;

char ch,filename[10];

scanf(“%s”,filename);

if((fp=fopen(filename,”w”)==NULL)

{

printf(“cann’t open file ”);

exit(0);

}

ch=getchar();

while(ch!=’#')

{

fputc(ch,fp);

putchar(ch);

ch=getchar();

}

fclose(fp);

}

拓展阅读:

基于C的文件操作

在ANSI C中,对文件的操作分为两种方式,即流式文件操作和I/O文件操作,下面就分别介绍之。

一、流式文件操作

这种方式的文件操作有一个重要的结构FILE,FILE在stdio.h中定义如下:

typedef struct {

int level; /* fill/empty level of buffer */

unsigned flags; /* File status flags */

char fd; /* File descriptor */

unsigned char hold; /* Ungetc char if no buffer */

int bsize; /* Buffer size */

unsigned char _FAR *buffer; /* Data transfer buffer */

unsigned char _FAR *curp; /* Current active pointer */

unsigned istemp; /* Temporary file indicator */

short token; /* Used for validity checking */

} FILE; /* This is the FILE object */

FILE这个结构包含了文件操作的基本属性,对文件的操作都要通过这个结构的指针来进行,此种文件操作常用的函数见下表 函数 功能

fopen() 打开流

fclose() 关闭流

fputc() 写一个字符到流中

fgetc() 从流中读一个字符

fseek() 在流中定位到指定的字符

fputs() 写字符串到流

fgets() 从流中读一行或指定个字符

fprintf() 按格式输出到流

fscanf() 从流中按格式读取

feof() 到达文件尾时返回真值

ferror() 发生错误时返回其值

rewind() 复位文件定位器到文件开始处

remove() 删除文件

fread() 从流中读指定个数的字符

fwrite() 向流中写指定个数的字符

tmpfile() 生成一个临时文件流

tmpnam() 生成一个唯一的文件名

下面就介绍一下这些函数

1.fopen()

fopen的原型是:FILE *fopen(const char *filename,const char *mode),fopen实现三个功能

为使用而打开一个流

把一个文件和此流相连接

给此流返回一个FILR指针

参数filename指向要打开的文件名,mode表示打开状态的字符串,其取值如下表

字符串 含义

"r" 以只读方式打开文件

"w" 以只写方式打开文件

"a" 以追加方式打开文件

"r+" 以读/写方式打开文件,如无文件出错

"w+" 以读/写方式打开文件,如无文件生成新文件

一个文件可以以文本模式或二进制模式打开,这两种的区别是:在文本模式中回车被当成一个字符'' '',而二进制模式认为它是两个字符 0x0D,0x0A;如果在文件中读到0x1B,文本模式会认为这是文件结束符,也就是二进制模型不会对文件进行处理,而文本方式会按一定的方式对数据作相应的转换。

系统默认的是以文本模式打开,可以修改全部变量_fmode的值来修改这个设置,例如_fmode=O_TEXT;就设置默认打开方式为文本模式;而_fmode=O_BINARY;则设置默认打开方式是二进制模式。

我们也可以在模式字符串中指定打开的模式,如"rb"表示以二进制模式打开只读文件,"w+t"或"wt+"表示以文本模式打开读/写文件。

此函数返回一个FILE指针,所以申明一个FILE指针后不用初始化,而是用fopen()来返回一个指针并与一个特定的文件相连,如果成败,返回NULL。

例:

FILE *fp;

if(fp=fopen("123.456","wb"))

puts("打开文件成功");

else

puts("打开文件成败");

2.fclose()

fclose()的功能就是关闭用fopen()打开的文件,其原型是:int fclose(FILE *fp);如果成功,返回0,失败返回EOF。

在程序结束时一定要记得关闭打开的文件,不然可能会造成数据丢失的情况,我以前就经常犯这样的毛病。

例:fclose(fp);

3.fputc()

向流写一个字符,原型是int fputc(int c, FILE *stream); 成功返回这个字符,失败返回EOF。

例:fputc(''X'',fp);

4.fgetc()

从流中读一个字符,原型是int fputc(FILE *stream); 成功返回这个字符,失败返回EOF。

例:char ch1=fgetc(fp);

5. fseek()

此函数一般用于二进制模式打开的文件中,功能是定位到流中指定的位置,原型是int fseek(FILE *stream, long offset, int whence);如果成功返回0,参数offset是移动的字符数,whence是移动的基准,取值是

符号常量 值 基准位置

SEEK_SET 0 文件开头

SEEK_CUR 1 当前读写的位置

SEEK_END 2 文件尾部

例:fseek(fp,1234L,SEEK_CUR);//把读写位置从当前位置向后移动1234字节(L后缀表示长整数)

fseek(fp,0L,2);//把读写位置移动到文件尾

6.fputs()

写一个字符串到流中,原型int fputs(const char *s, FILE *stream);

例:fputs("I Love You",fp);

7.fgets()

从流中读一行或指定个字符,原型是char *fgets(char *s, int n, FILE *stream); 从流中读取n-1个字符,除非读完一行,参数s是来接收字符串,如果成功则返回s的指针,否则返回NULL。

例:如果一个文件的当前位置的文本如下

Love ,I Have

But ……..

如果用

fgets(str1,4,file1);

则执行后str1="Lov",读取了4-1=3个字符,而如果用

fgets(str1,23,file1);

则执行str="Love ,I Have",读取了一行(不包括行尾的'' '')。

8.fprintf()

按格式输入到流,其原型是int fprintf(FILE *stream, const char *format[, argument, …]);其用法和printf()相同,不过不是写到控制台,而是写到流罢了

例:fprintf(fp,"%2d%s",4,"Hahaha");

9.fscanf()

从流中按格式读取,其原型是int fscanf(FILE *stream, const char *format[, address, …]);其用法和scanf()相同,不过不是从控制台读取,而是从流读取罢了。

例:fscanf(fp,"%d%d" ,&x,&y);

10.feof()

检测是否已到文件尾,是返回真,否则返回0,其原型是int feof(FILE *stream);

例:if(feof(fp))printf("已到文件尾");

11.ferror()

原型是int ferror(FILE *stream);返回流最近的错误代码,可用clearerr()来清除它,clearerr()的原型是void clearerr(FILE *stream);

例:printf("%d",ferror(fp));

12.rewind()

把当前的读写位置回到文件开始,原型是void rewind(FILE *stream);其实本函数相当于fseek(fp,0L,SEEK_SET);

例:rewind(fp);

12.remove()

删除文件,原型是int remove(const char *filename); 参数就是要删除的文件名,成功返回0。

例:remove("c:\io.sys");

13.fread()

从流中读指定个数的字符,原型是size_t fread(void *ptr, size_t size, size_t n, FILE *stream);参数ptr是保存读取的数据,void*的指针可用任何类型的指针来替换,如char*、int *等等来替换;size是每块的字节数;n是读取的块数,如果成功,返回实际读取的块数(不是字节数),本函数一般用于二进制模式打开的文件中。

例:

char x[4230];

FILE *file1=fopen("c:\msdos.sys","r");

fread(x,200,12 ,file1);//共读取200*12=2400个字节

14.fwrite()

与fread对应,向流中写指定的数据,原型是size_t fwrite(const void *ptr, size_t size, size_t n, FILE *stream);参数ptr是要写入的数据指针,void*的指针可用任何类型的指针来替换,如char*、int *等等来替换;size是每块的字节数;n是要写的块数,如果成功,返回实际写入的块数(不是字节数),本函数一般用于二进制模式打开的文件中。

例:

char x[]="I Love You";

fwire(x, 6,12,fp);//写入6*12=72字节

将把"I Love"写到流fp中12次,共72字节

15.tmpfile()

其原型是FILE *tmpfile(void); 生成一个临时文件,以"w+b"的模式打开,并返回这个临时流的指针,如果失败返回NULL。在程序结束时,这个文件会被自动删除。

例:FILE *fp=tmpfile();

16.tmpnam();

其原型为char *tmpnam(char *s); 生成一个唯一的文件名,其实tmpfile()就调用了此函数,参数s用来保存得到的'文件名,并返回这个指针,如果失败,返回NULL。

例:tmpnam(str1);

二、直接I/O文件操作

这是C提供的另一种文件操作,它是通过直接存/取文件来完成对文件的处理,而上篇所说流式文件操作是通过缓冲区来进行;流式文件操作是围绕一个 FILE指针来进行,而此类文件操作是围绕一个文件的“句柄”来进行,什么是句柄呢?它是一个整数,是系统用来标识一个文件(在WINDOWS中,句柄的概念扩展到所有设备资源的标识)的唯一的记号。此类文件操作常用的函数如下表,这些函数及其所用的一些符号在io.h和fcntl.h中定义,在使用时要加入相应的头文件。

函数 说明

open() 打开一个文件并返回它的句柄

close() 关闭一个句柄

lseek() 定位到文件的指定位置

read() 块读文件

write() 块写文件

eof() 测试文件是否结束

filelength() 取得文件长度

rename() 重命名文件

chsize() 改变文件长度

下面就对这些函数一一说明:

1.open()

打开一个文件并返回它的句柄,如果失败,将返回一个小于0的值,原型是int open(const char *path, int access [, unsigned mode]); 参数path是要打开的文件名,access是打开的模式,mode是可选项。表示文件的属性,主要用于UNIX系统中,在DOS/WINDOWS这个参数没有意义。其中文件的打开模式如下表。

符号 含义 符号 含义 符号 含义

O_RDONLY 只读方式 O_WRONLY 只写方式 O_RDWR 读/写方式

O_NDELAY 用于UNIX系统 O_APPEND 追加方式 O_CREAT 如果文件不存在就创建

O_TRUNC 把文件长度截为0 O_EXCL 和O_CREAT连用,如果文件存在返回错误 O_BINARY 二进制方式

O_TEXT 文本方式

对于多个要求,可以用"|"运算符来连接,如O_APPEND|O_TEXT表示以文本模式和追加方式打开文件。

例:int handle=open("c:\msdos.sys",O_BINARY|O_CREAT|O_WRITE)

2.close()

关闭一个句柄,原型是int close(int handle);如果成功返回0

例:close(handle)

3.lseek()

定位到指定的位置,原型是:long lseek(int handle, long offset, int fromwhere);参数offset是移动的量,fromwhere是移动的基准位置,取值和前面讲的fseek()一样,SEEK_SET:文件首部;SEEK_CUR:文件当前位置;SEEK_END:文件尾。此函数返回执行后文件新的存取位置。

例:

lseek(handle,-1234L,SEEK_CUR);//把存取位置从当前位置向前移动1234个字节。

x=lseek(hnd1,0L,SEEK_END);//把存取位置移动到文件尾,x=文件尾的位置即文件长度

4.read()

从文件读取一块,原型是int read(int handle, void *buf, unsigned len);参数buf保存读出的数据,len是读取的字节。函数返回实际读出的字节。

例:char x[200];read(hnd1,x,200);

5.write()

写一块数据到文件中,原型是int write(int handle, void *buf, unsigned len);参数的含义同read(),返回实际写入的字节。

例:char x[]="I Love You";write(handle,x,strlen(x));

7.eof()

类似feof(),测试文件是否结束,是返回1,否则返回0;原型是:int eof(int handle);

例:while(!eof(handle1)){……};

8.filelength()

返回文件长度,原型是long filelength(int handle);相当于lseek(handle,0L,SEEK_END)

例:long x=filelength(handle);

9.rename()

重命名文件,原型是int rename(const char *oldname, const char *newname); 参数oldname是旧文件名,newname是新文件名。成功返回0

例:rename("c:\config.sys","c:\config.w40");

10.chsize();

改变文件长度,原型是int chsize(int handle, long size);参数size表示文件新的长度,成功返回0,否则返回-1,如果指定的长度小于文件长度,则文件被截短;如果指定的长度大于文件长度,则在文件后面补''''。

例:chsize(handle,0x12345);

;

㈥ 如何用C语言对文件进行加密和解密急求......................

文件分为文本文件和二进制文件。加密方法也略有不同。
1、文本文件
加密的主要是文本的内容,最简单的方法就是修改文档的内容,比如1.txt中的文件内容:
abcd
只要给每一个字符+1,就可以实现加密。文件内容即会变为
bcde

2、二进制文件加密
二进制文件加密也就是对应用程序加密,需要理解可执行文件格式,比如Windows平台的Exe文件它是PE结构,Linux上的可执行文件是ELF结构,要对这样的程序进行加密,实际上是开发一种叫做“壳”的程序,这种程序的开发,需要将扎实的底层基础,同时也需要对软件加密解密有细致的理解,比如流行的vmprotect、z壳以及早些年的upx壳、aspack等等。

3、无论哪种加密都牵涉到文件操作的问题,使用C语言进行文件操作时,极少使用C标准库中的I/O函数,大多数使用操作系统提供的内存文件映射相关的API函数,有兴趣,可以搜索相关的资料。

㈦ 常用的解耦设计方法有哪几种

C)(见线性系统理论),往往使系统难于控制,C化成为解耦规范形,取di=n-1。[1] [编辑本段]相关解法 选择适当的控制规律将一个多变量系统化为多个独立的单变量系统的控制问题,i=1,x为状态向量,C戁AB=0时.吉尔伯特比较深入和系统地加以解决,就称系统实现了完全解耦,2,这是上述方法的主要缺陷。这种基于精确对消的解耦方法,C戁AB=0…,使构成的多变量控制系统的每个输出变量仅由一个输入变量完全控制。解耦控制是多变量系统控制的有效手段。利用结构指数可组成解耦性判别矩阵,B,基本目标是设计一个控制装置。其一是围绕Morgan问题的一系列状态空间方法,每一个输出又只受到一个控制的作用:首先,静态解耦控制要比完全解耦控制优越,将输出矩阵C表示为 C戁为C的第i个行向量,这就构成了“耦合”系统。在解耦控制问题中。随后、B,基于特征结构配置的解耦控制和基于H_∞的解耦控制理论。给定n维多输入多输出线性定常系统(A。由于耦合关系。 在过去的几十年中,…。在对系统参数变动的敏感方面:基于Morgan问题的解耦控制,但直到1969年才由E。解耦控制是一个既古老又极富生命力的话题,N=0,其闭环控制系统的传递函数矩阵G(s)当s=0时为非奇异对角矩阵,di取为使CiAB≠0的最小正整数 N。这里,m为输出向量的维数,并且它的闭环传递函数矩阵G(s)当s=0时即等于D,其设计目标是被控对象的对角优势化而非对角化,都会导致解耦性的破坏,m;但当s≠0时,早在30年代末就已提出,不确定性是工程实际中普遍存在的棘手现象,系统可用状态反馈和输入变换、性能很差:当C戁B=0、C满足关于秩的关系式,G(s)不是对角矩阵,…,L为输入变换矩阵,式中D为非奇异对角矩阵。由这样选取的K和L所构成的控制系统必定是稳定的,即互不影响的控制,u为输入向量,通过将它的系数矩阵A,这是一种近似解耦方法。其二是以Rosenbrock为代表的现代频域法。再规定一组结构指数di(i=1,这种方法属于全解耦方法,也可采用输出反馈结合补偿装置的形式,其各对角线上元的值可根据其他性能指标来选取,B;否则、锅炉调节等工业控制系统中,C),不断出现一些较复杂的设备或装置,使控制系统的传递函数矩阵为非奇异对角矩阵: 已证明,有两大系列的解耦方法占据了主导地位,n-1。[3] [编辑本段]工程背景 在现代化的工业生产中,选取输入变换矩阵 。在实现解耦以后,如果系统可用状态反馈来稳定,已经应用在发动机控制,一个多输入多输出控制系统就解除了输入,选择K使闭环系统矩阵(A-BK)的特征值均具有负实部。互不影响的控制方式,这些设备或装置的本身所要求的被控制参数往往较多,它对系统参数的变动很敏感,且不同的输出由不同的输入控制,使其实现静态解耦的状态反馈矩阵K和输入变换矩阵L可按如下方式选择。使多变量系统实现完全解耦的控制器,系统参数的不准确或者在运行中的某种漂移都会破坏完全解耦,因此,从而实现自治控制。对于满足可解耦性条件的多变量系统,也即系统中每一个控制回路的输入信号对所有回路的输出都会有影响,则系统可通过引入状态反馈和输入变换来实现静态解耦,K为状态反馈矩阵,如果引入适当的控制规律,…,既可采用状态反馈结合输入变换的形式。对于满足解耦条件的系统,必须设置多个控制回路对该种设备进行控制,v为参考输入向量。多变量系统在实现了静态解耦后。 完全解耦控制 对于输出和输入变量个数相同的系统。由于控制回路的增加,2。 静态解耦控制 一个多变量系统在单位阶跃函数(见过渡过程) 输入作用下能通过引入控制装置实现稳态解耦时,且系数矩阵A,往往会在它们之间造成相互影响的耦合作用,1,B,而每一个回路的输出又会受到所有输入的作用、输出变量间的交叉耦合。完全解耦控制方式的主要缺点是。对于线性定常系统(A,因而更适宜于工程应用。要想一个输入只去控制一个输出几乎不可能,便可容易地求得所要求的状态反馈矩阵K和输入变换矩阵L。 [编辑本段]主要分类 三种解耦理论分别是.G,遇到被控对象的任何一点摄动,实现完全解耦的充分必要条件是矩阵E为非奇异,即通过引入控制规律u=-Kx+Lv,m),从而可以在很大程度上避免全解耦方法的缺陷。多变量系统的解耦控制问题,2,使每一个输入只控制相应的一个输出基本解释 所谓解耦控制系统,就称实现了静态解耦控制,就是采用某种结构,寻找合适的控制规律来消除系统种各控制回路之间的相互耦合关系

㈧ C语言对文件字符串进行解码

#include<stdio.h>
main(){
FILE*fp1,*fp2;
chara[100];
charsecret[]="Kirschsaft!";
inti,j;
fp1=fopen("source.txt","r");
fp2=fopen("result.txt","w");
if(fp1==NULL||fp2==NULL)
return;
while(fgets(a,100,fp1)!=NULL){
for(i=0,j=0;a[i]!=' ';i++,j++){
if(j==11)
j=0;
if((int)a[i]>=32){
a[i]=a[i]^secret[j];
if((int)a[i]<32){
a[i]=a[i]+32;
}
}
}
for(;j>0&&j<11;j++,i++){
a[i]=secret[j];
}
a[i++]=' ';
a[i]='';
fprintf(fp2,"%s",a);
}
}

应该是限制高3位,使得每个字符的ASCII码大于0010 0000,即32。

我的策略是如果做完异或之后的ASCII码小于32就给他加32.

㈨ 解耦的相关解法

选择适当的控制规律将一个多变量系统化为多个独立的单变量系统的控制问题。在解耦控制问题中,基本目标是设计一个控制装置,使构成的多变量控制系统的每个输出变量仅由一个输入变量完全控制,且不同的输出由不同的输入控制。在实现解耦以后,一个多输入多输出控制系统就解除了输入、输出变量间的交叉耦合,从而实现自治控制,即互不影响的控制。互不影响的控制方式,已经应用在发动机控制、锅炉调节等工业控制系统中。多变量系统的解耦控制问题,早在30年代末就已提出,但直到1969年才由E.G.吉尔伯特比较深入和系统地加以解决。 对于输出和输入变量个数相同的系统,如果引入适当的控制规律,使控制系统的传递函数矩阵为非奇异对角矩阵,就称系统实现了完全解耦。使多变量系统实现完全解耦的控制器,既可采用状态反馈结合输入变换的形式,也可采用输出反馈结合补偿装置的形式。给定n维多输入多输出线性定常系统(A,B,C)(见线性系统理论),将输出矩阵C表示为
C戁为C的第i个行向量,i=1,2,…,m,m为输出向量的维数。再规定一组结构指数di(i=1,2,…,m):当C戁B=0,C戁AB=0…,C戁AB=0时,取di=n-1;否则,di取为使CiAB≠0的最小正整数N,N=0,1,2,…,n-1。利用结构指数可组成解耦性判别矩阵:
已证明,系统可用状态反馈和输入变换,即通过引入控制规律u=-Kx+Lv,实现完全解耦的充分必要条件是矩阵E为非奇异。这里,u为输入向量,x为状态向量,v为参考输入向量,K为状态反馈矩阵,L为输入变换矩阵。对于满足可解耦性条件的多变量系统,通过将它的系数矩阵A,B,C化成为解耦规范形,便可容易地求得所要求的状态反馈矩阵K和输入变换矩阵L。完全解耦控制方式的主要缺点是,它对系统参数的变动很敏感,系统参数的不准确或者在运行中的某种漂移都会破坏完全解耦。 一个多变量系统在单位阶跃函数(见过渡过程) 输入作用下能通过引入控制装置实现稳态解耦时,就称实现了静态解耦控制。对于线性定常系统(A,B,C),如果系统可用状态反馈来稳定,且系数矩阵A、B、C满足关于秩的关系式,则系统可通过引入状态反馈和输入变换来实现静态解耦。多变量系统在实现了静态解耦后,其闭环控制系统的传递函数矩阵G(s)当s=0时为非奇异对角矩阵;但当s≠0时,G(s)不是对角矩阵。对于满足解耦条件的系统,使其实现静态解耦的状态反馈矩阵K和输入变换矩阵L可按如下方式选择:首先,选择K使闭环系统矩阵(A-BK)的特征值均具有负实部。随后,选取输入变换矩阵
,式中D为非奇异对角矩阵,其各对角线上元的值可根据其他性能指标来选取。由这样选取的K和L所构成的控制系统必定是稳定的,并且它的闭环传递函数矩阵G(s)当s=0时即等于D。在对系统参数变动的敏感方面,静态解耦控制要比完全解耦控制优越,因而更适宜于工程应用。 说起软件的解耦必然需要谈论耦合度,降低耦合度即可以理解为解耦,模块间有依赖关系必然存在耦合,理论上的绝对零耦合是做不到的,但可以通过一些现有的方法将耦合度降至最低。
做事情要想事半功倍,就要高处着眼,触摸到事情的脉络。当今流行着各种眼花缭乱的软件框架,不管是struts,还是spring,hibernate,还是.net,还是各种前端UI框架,其设计的核心思想是:
尽可能减少代码耦合,如果发现代码耦合,就要采取解耦技术;
解耦方法有但不限有如下几种:
(a)采用现有设计模式实现解耦,如事件驱动模式、观察者模式、责任链模式等都可以达到解耦的目的;
(b)采用面向接口的方式编程,而不是用直接的类型引用,除非在最小内聚单元内部。但使用该方法解耦需要注意不要滥用接口。
(c)高内聚,往往会带来一定程度的低耦合度。高内聚决定了内部自行依赖,对外只提供必须的接口或消息对象,那么由此即可达成较低的耦合度。