当前位置:首页 » 编程语言 » c语言中的ra表
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

c语言中的ra表

发布时间: 2022-10-01 22:28:02

c语言中的 形参表与实参表,是什么意思

文字不好描述啊,举例说明如下:
void fun(int n,int m,int l){其中的int n,int m,int l(或更多项)这一列叫形参表。
……
}
void main(void){
fun(1,2,3);中的1,2,3(或更多项)这一列叫实参表。
}

② 何为引用操作在C语言中如何实现

引用就是&操作符,用来将变量地址赋予指针。
操作是(假设type是一种变量类型,比如int double等)
type a;普通变量
type * p; 定义指针
p = &a;引用操作
注意,&只能跟变量,不能是表达式,常量,register修饰的变量

③ C语言中的常量有哪些呢

1、C语言对二进制并没有并没有规定具体的格式。不过在部分编译器中厂家会自行扩展一些二进制格式,比如0b0100表示10进制4。设计良好的C语言代码能够让编译器编译出预期的机器指令,并且在目标机器上被正确执行。

3、C语言中具有特殊含义的英文单词,通常用于构成语句,存储数据,定义数据类型等。C中有某些字符代表特殊含义,例如前缀为反斜杠,换行符( n)或制表符( t)。

④ 请问c语言中引用怎样理解

1、引用的理解

引用是引入了对象的一个同义词。定义引用的表示方法与定义指针相似,只是用&代替了*。

例如: Point pt1(10,10);

Point &pt2=pt1; 定义了pt2为pt1的引用。通过这样的定义,pt1和pt2表示同一对象。

需要特别强调的是引用并不产生对象的副本,仅仅是对象的同义词。因此,当下面的语句执行后:

pt1.offset(2,2);

pt1和pt2都具有(12,12)的值。

引用必须在定义时马上被初始化,因为它必须是某个东西的同义词。你不能先定义一个引用后才

初始化它。例如下面语句是非法的:

Point &pt3;

pt3=pt1;

2、引用的两个主要用途

作为函数参数以及从函数中返回左值。

(1)引用参数

a、传递可变参数

传统的c中,函数在调用时参数是通过值来传递的,这就是说函数的参数不具备返回值的能力。所以在传统的c中,如果需要函数的参数具有返回值的能力,往往是通过指针来实现的。比如,实现两整数变量值交换的c程序如下:

void swapint(int *a,int *b)

{

int temp;

temp=*a;

a=*b;

*b=temp;

}

使用引用机制后,以上程序的c++版本为:

void swapint(int &a,int &b)

{

int temp;

temp=a;

a=b;

b=temp;

}

调用该函数的c++方法为:swapint(x,y); c++自动把x,y的地址作为参数传递给swapint函数。

b、给函数传递大型对象

当大型对象被传递给函数时,使用引用参数可使参数传递效率得到提高,因为引用并不产生对象的副本,也就是参数传递时,对象无须复制。下面的例子定义了一个有限整数集合的类:

const maxCard=100;

Class Set

{

int elems[maxCard]; // 集和中的元素,maxCard 表示集合中元素个数的最大值。

int card; // 集合中元素的个数。

public:

Set () {card=0;} //构造函数

friend Set operator * (Set ,Set ) ; //重载运算符号*,用于计算集合的交集 用对象作为传值参数

// friend Set operator * (Set & ,Set & ) 重载运算符号*,用于计算集合的交集 用对象的引用作为传值参数

...

}

先考虑集合交集的实现

Set operator *( Set Set1,Set Set2)

{

Set res;

for(int i=0;i<Set1.card;++i)

for(int j=0;j>Set2.card;++j)

if(Set1.elems[i]==Set2.elems[j])

{

res.elems[res.card++]=Set1.elems[i];

break;

}

return res;

}

由于重载运算符不能对指针单独操作,我们必须把运算数声明为 Set 类型而不是 Set * 。每次使用*做交集运算时,整个集合都被复制,这样效率很低。我们可以用引用来避免这种情况。

Set operator *( Set &Set1,Set &Set2)

{ Set res;

for(int i=0;i<Set1.card;++i)

for(int j=0;j>Set2.card;++j)

if(Set1.elems[i]==Set2.elems[j])

{

res.elems[res.card++]=Set1.elems[i];

break;

}

return res;

}

2、引用返回值

如果一个函数返回了引用,那么该函数的调用也可以被赋值。这里有一函数,它拥有两个引用参数并返回一个双精度数的引用:

double &max(double &d1,double &d2)

{

return d1>d2?d1:d2;

}

由于max()函数返回一个对双精度数的引用,那么我们就可以用max() 来对其中较大的双精度数加1:

max(x,y)+=1.0;

(4)c语言中的ra表扩展阅读

使用c语言中引用的原因

程序按功能划分可分为数值运算、符号处理和I/O操作三类,符号处理程序占相当大的比例,符号处理程序无处不在,编译器、浏览器、Office套件等程序的主要功能都是符号处理。

在程序中通过对函数的调用来执行函数体,其过程与其它语言的子程序调用相似。

C语言中,函数调用的一般形式为:

函数名(实际参数表)

对无参函数调用时则无实际参数表。实际参数表中的参数可以是常数、变量或其它构造类型数据及表达式。各实参之间用逗号分隔。字符函数引用即对引用有关库函数或自定义函数函数。

⑤ c语言中取地址符和*有什么区别

区别如下:

(1)两者根本意义不同。*是指针的意思,而&是去地址的意思,这两个相辅相成。

(2)用法不同。高级的c语言都是动态开辟内存,是使用malloc和free,这时就不用&了,因为取引用都是对于栈上的数据,在数据结构中,都是在堆上开辟数据容量。

(3)语言规则不同,变量类型加*就是一个指向该变量类型的指针,通俗点说,指针就是可以通过地址修改和获取该变量的值,而&符号只是获取该变量的地址!

指针中的“取地址符”

(5)c语言中的ra表扩展阅读:

引用的声明符放置在变量名的前面,和*操作符的用法一样。

引用声明完毕后,相当于目标变量名有两个名称,即该目标原名称和引用名,且不能再把该引用名作为其他变量名的别名。ra=1; 等价于 a=1;

声明一个引用,不是新定义了一个变量,它只表示该引用名是目标变量名的一个别名,它本身不是一种数据类型,因此引用本身不占存储单元,系统也不给引用分配存储单元。

故:对引用求地址,就是对目标变量求地址。&ra与&a相等。

#include<iostream>using namespace std;int main()

{ int m[10]={1,2,3,4,5,6,7,8,9,10}; int (&n)[10]=m; for(int i=0;i<10;i++) cout<<m[i]<<' ' ;

cout<<endl; for( i=0;i<10;i++) cout<<n[i]<<' ' ; cout<<endl; return 0;}

例如:

int*pointer;//建立一个指针

int*&p1=pointer;/*

正确,编译系统把"int*"看成一体,把"&p1"看成一体,即建立指针pointer的引用,就是给指针pointer起别名p1。

int&*p2=pointer;//错误,这就变成了引用的指针。

⑥ c语言中的链表是什么

就是一连续内存空间,类似于数组,不过数组的内存空间一旦初始化就是不变的。
链表开始是一个“头指针”,定义了链表开始的位置,下面是像链条一样的一串节点,每个节点包含数据部分和指针部分。前一节点的指针指向后一节点,最后一个节点是数据和空地址,表示结束。
好处在于空间是动态分配的,需要多长可以一直链下去。

⑦ 在C语言中,什么是链表呀

链表
链表链表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成。每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。 相比于线性表顺序结构,链表比较方便插入和删除操作。

概况
链表(Linked list)是一种常见的基础数据结构,是一种线性表,但是并不会按线性的顺序存储数据,而是在每一个节点里存到下一个节点的指针(Pointer)。由于不必须按顺序存储,链表在插入的时候可以达到O(1)的复杂度,比另一种线性表:顺序表快得多,但是查找一个节点或者访问特定编号的节点则需要O(n)的时间,而顺序表相应的时间复杂度分别是O(logn)和O(1)。使用链表结构可以克服数组链表需要预先知道数据大小的缺点,链表结构可以充分利用计算机内存空间,实现灵活的内存动态管理。但是链表失去了数组随机读取的优点,同时链表由于增加了结点的指针域,空间开销比较大。在计算机科学中,链表作为一种基础的数据结构可以用来生成其它类型的数据结构。链表通常由一连串节点组成,每个节点包含任意的实例数据(data fields)和一或两个用来指向明上一个/或下一个节点的位置的链接("links")。链表最明显的好处就是,常规数组排列关联项目的方式可能不同于这些数据项目在记忆体或磁盘上顺序,数据的存取往往要在不同的排列顺序中转换。而链表是一种自我指示数据类型,因为它包含指向另一个相同类型的数据的指针(链接)。链表允许插入和移除表上任意位置上的节点,[1]但是不允许随机存取。链表有很多种不同的类型:单向链表,双向链表以及循环链表。链表可以在多种编程语言中实现。像Lisp和Scheme这样的语言的内建数据类型中就包含了链表的存取和操作。程序语言或面向对象语言,如C,C++和Java依靠易变工具来生成链表。
编辑本段特点
线性表的链式存储表示的特点是用一组任意的存储单元存储线性表的数据元素(这组存储单元可以是连续的,也可以是不连续的)。因此,为了表示每个数据元素 与其直接后继数据元素 之间的逻辑关系,对数据元素 来说,除了存储其本身的信息之外,还需存储一个指示其直接后继的信息(即直接后继的存储位置)。由这两部分信息组成一个"结点"(如概述旁的图所示),表示线性表中一个数据元素 。
编辑本段扩展
根据情况,也可以自己设计链表的其它扩展。但是一般不会在边上附加数据,因为链表的点和边基本上是一一对应的(除了第一个或者最后一个节点,但是也不会产生特殊情况)。不过有一个特例是如果链表支持在链表的一段中把前和后指针反向,反向标记加在边上可能会更方便。 对于非线性的链表,可以参见相关的其他数据结构,例如树、图。另外有一种基于多个线性链表的数据结构:跳表,插入、删除和查找等基本操作的速度可以达到O(nlogn),和平衡二叉树一样。 其中存储数据元素信息的域称作数据域(设域名为data),存储直接后继存储位置的域称为指针域(设域名为next)。指针域中存储的信息又称做指针或链。 由分别表示,,…, 的N 个结点依次相链构成的链表,称为线性表的链式存储表示,由于此类链表的每个结点中只包含一个指针域,故又称单链表或线性链表.
编辑本段三个链表函数(C语言描述)
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
struct Node{
int data;//数据域
struct Node * next;//指针域
}; /************************************************************************************** *函数名称:insert
*函数功能:在链表中插入元素. *输入:head 链表头指针,p新元素插入位置,x 新元素中的数据域内容 *输出:无 *************************************************************************************/ void insert(Node * head,int p,int x)
{ Node * tmp = head; //for循环是为了防止插入位置超出了链表长度 for(int i = 0;i<p;i++)
{
if(tmp == NULL)
return ;
if(i<p-1)
tmp = tmp->next;
}
Node * tmp2 = new Node;
tmp2->data = x;
tmp2->next = tmp->next;
tmp->next = tmp2;
} /************************************************************************************** *函数名称:del *函数功能:删除链表中的元素 *输入:head 链表头指针,p 被删除元素位置 输出:被删除元素中的数据域.如果删除失败返回-1 **************************************************************************************/
int del(Node * head,int p)
{
Node * tmp = head;
for(int i = 0;i<p;i++)
{
if(tmp == NULL)
return -1;
if(i<p-1)
tmp = tmp->next;
}
int ret = tmp->next->data;
tmp->next = tmp->next->next;
return ret;
}
void print(Node *head)
{
for(Node *tmp = head;
tmp!=NULL; tmp = tmp->next)
printf("%d ",tmp->data);
printf("\n");
}
int main()
{
Node * head;
head = new Node;
head->data = -1;
head->next=NULL;
return 0;
}
编辑本段结语
C语言是学习数据结构的很好的学习工具。理解了C中用结构体描述数据结构,那么对于理解其C++描述,Java描述都就轻而易举了!

编辑本段两种链表形式
一、循环链表 循环链表是与单链表一样,是一种链式的存储结构,所不同的是,循环链表的最后一个结点的指针是指向该循环链表的第一个结点或者表头结点,从而构成一个环形的链。 循环链表的运算与单链表的运算基本一致。所不同的有以下几点: 1、在建立一个循环链表时,必须使其最后一个结点的指针指向表头结点,而不是象单链表那样置为NULL。此种情况还使用于在最后一个结点后插入一个新的结点。 2、在判断是否到表尾时,是判断该结点链域的值是否是表头结点,当链域值等于表头指针时,说明已到表尾。而非象单链表那样判断链域值是否为NULL。
二、双向链表 双向链表其实是单链表的改进。 当我们对单链表进行操作时,有时你要对某个结点的直接前驱进行操作时,又必须从表头开始查找。这是由单链表结点的结构所限制的。因为单链表每个结点只有一个存储直接后继结点地址的链域,那么能不能定义一个既有存储直接后继结点地址的链域,又有存储直接前驱结点地址的链域的这样一个双链域结点结构呢?这就是双向链表。 在双向链表中,结点除含有数据域外,还有两个链域,一个存储直接后继结点地址,一般称之为右链域;一个存储直接前驱结点地址,一般称之为左链域。

⑧ c语言 图形函数

图形函数 1. 图形模式的初始化
不同的显示器适配器有不同的图形分辨率。即是同一显示器适配器, 在不同
模式下也有不同分辨率。因此, 在屏幕作图之前, 必须根据显示器适配器种类将
显示器设置成为某种图形模式, 在未设置图形模式之前, 微机系统默认屏幕为文
本模式(80列, 25行字符模式), 此时所有图形函数均不能工作。设置屏幕为图形
模式, 可用下列图形初始化函数:
void far initgraph(int far *gdriver, int far *gmode, char *path);
其中gdriver和gmode分别表示图形驱动器和模式, path是指图形驱动程序所
在的目录路径。有关图形驱动器、图形模式的符号常数及对应的分辨率见表2。
图形驱动程序由Turbo C出版商提供, 文件扩展名为.BGI。根据不同的图形
适配器有不同的图形驱动程序。例如对于EGA、 VGA 图形适配器就调用驱动程序
EGAVGA.BGI。 例4. 使用图形初始化函数设置VGA高分辨率图形模式
#include <graphics.h>
int main()
{
int gdriver, gmode;
gdriver=VGA;
gmode=VGAHI;
initgraph(&gdriver, &gmode, "c:\\tc");
bar3d(100, 100, 300, 250, 50, 1); /*画一长方体*/
getch();
closegraph();
return 0;
}
有时编程者并不知道所用的图形显示器适配器种类, 或者需要将编写的程序
用于不同图形驱动器, Turbo C提供了一个自动检测显示器硬件的函数, 其调用
格式为:
void far detectgraph(int *gdriver, *gmode);
其中gdriver和gmode的意义与上面相同。

例5. 自动进行硬件测试后进行图形初始化
#include <graphics.h>
int main()
{
int gdriver, gmode;
detectgraph(&gdriver, &gmode); /*自动测试硬件*/
printf("the graphics driver is %d, mode is %d\n", gdriver,
gmode); /*输出测试结果*/
getch();
initgraph(&gdriver, &gmode, "c:\\tc");
/* 根据测试结果初始化图形*/
bar3d(10, 10, 130, 250, 20, 1);
getch();
closegraph();
return 0;
}

上例程序中先对图形显示器自动检测, 然后再用图形初始化函数进行初始化
设置, 但Turbo C提供了一种更简单的方法, 即用gdriver= DETECT 语句后再跟
initgraph()函数就行了。采用这种方法后, 上例可改为:

例6.
#include <graphics.h>
int main()
{
int gdriver=DETECT, gmode;
initgraph(&gdriver, &gmode, "c:\\tc");
bar3d(50, 50, 150, 30, 1);
getch();
closegraph();
return 0;
}
另外, Turbo C提供了退出图形状态的函数closegraph(), 其调用格式为:
void far closegraph(void);
调用该函数后可退出图形状态而进入文本方式(Turbo C 默认方式), 并释放
用于保存图形驱动程序和字体的系统内存。

2. 独立图形运行程序的建立
Turbo C对于用initgraph()函数直接进行的图形初始化程序, 在编译和链接
时并没有将相应的驱动程序(*.BGI)装入到执行程序, 当程序进行到intitgraph()
语句时, 再从该函数中第三个形式参数char *path中所规定的路径中去找相应的
驱动程序。若没有驱动程序, 则在C:\TC中去找, 如C:\TC中仍没有或TC不存在,
将会出现错误:
BGI Error: Graphics not initialized (use 'initgraph')
因此, 为了使用方便, 应该建立一个不需要驱动程序就能独立运行的可执行
图形程序,Turbo C中规定用下述步骤(这里以EGA、VGA显示器为例):
1. 在C:\TC子目录下输入命令:BGIOBJ EGAVGA
此命令将驱动程序EGAVGA.BGI转换成EGAVGA.OBJ的目标文件。
2. 在C:\TC子目录下输入命令:TLIB LIB\GRAPHICS.LIB+EGAVGA
此命令的意思是将EGAVGA.OBJ的目标模块装到GRAPHICS.LIB库文件中。
3. 在程序中initgraph()函数调用之前加上一句:
registerbgidriver(EGAVGA_driver):
该函数告诉连接程序在连接时把EGAVGA的驱动程序装入到用户的执行程序中。
经过上面处理,编译链接后的执行程序可在任何目录或其它兼容机上运行。
假设已作了前两个步骤,若再向例6中加 registerbgidriver()函数则变成:
例7:
#include<stdio.h>
#include<graphics.h>
int main()
{
int gdriver=DETECT,gmode;
registerbgidriver(EGAVGA_driver): / *建立独立图形运行程序 */
initgraph( gdriver, gmode,"c:\\tc");
bar3d(50,50,250,150,20,1);
getch();
closegraph();
return 0;
}
上例编译链接后产生的执行程序可独立运行。
如不初始化成EGA或CGA分辨率, 而想初始化为CGA分辨率, 则只需要将上述
步骤中有EGAVGA的地方用CGA代替即可。

3.屏幕颜色的设置和清屏函数
对于图形模式的屏幕颜色设置, 同样分为背景色的设置和前景色的设置。在
Turbo C中分别用下面两个函数。
设置背景色: void far setbkcolor( int color);
设置作图色: void far setcolor(int color);
其中color 为图形方式下颜色的规定数值, 对EGA, VGA显示器适配器, 有关
颜色的符号常数及数值见下表所示。
表3 有关屏幕颜色的符号常数表
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
符号常数 数值 含义 符号常数 数值 含义
———————————————————————————————————
BLACK 0 黑色 DARKGRAY 8 深灰
BLUE 1 兰色 LIGHTBLUE 9 深兰
GREEN 2 绿色 LIGHTGREEN 10 淡绿
CYAN 3 青色 LIGHTCYAN 11 淡青
RED 4 红色 LIGHTRED 12 淡红
MAGENTA 5 洋红 LIGHTMAGENTA 13 淡洋红
BROWN 6 棕色 YELLOW 14 黄色
LIGHTGRAY 7 淡灰 WHITE 15 白色
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
对于CGA适配器, 背景色可以为表3中16种颜色的一种, 但前景色依赖于不同
的调色板。共有四种调色板, 每种调色板上有四种颜色可供选择。不同调色板所
对应的原色见表4。
表4 CGA调色板与颜色值表
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
调色板 颜色值
——————————— ——————————————————
符号常数 数值 0 1 2 3
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
C0 0 背景 绿 红 黄
C1 1 背景 青 洋红 白
C2 2 背景 淡绿 淡红 黄
C3 3 背景 淡青 淡洋红 白
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

清除图形屏幕内容使用清屏函数, 其调用格式如下:
voide far cleardevice(void);
另外, TURBO C也提供了几个获得现行颜色设置情况的函数。
int far getbkcolor(void); 返回现行背景颜色值。
int far getcolor(void); 返回现行作图颜色值。
int far getmaxcolor(void); 返回最高可用的颜色值。

4. 基本图形函数
基本图形函数包括画点, 线以及其它一些基本图形的函数。本节对这些函数
作一全面的介绍。

一、画点
1. 画点函数
void far putpixel(int x, int y, int color);
该函数表示有指定的象元画一个按color所确定颜色的点。对于颜色color的
值可从表3中获得而对x, y是指图形象元的坐标。
在图形模式下, 是按象元来定义坐标的。对VGA适配器, 它的最高分辨率为
640x480, 其中640为整个屏幕从左到右所有象元的个数, 480 为整个屏幕从上到
下所有象元的个数。屏幕的左上角坐标为(0, 0), 右下角坐标为(639, 479), 水
平方向从左到右为x轴正向, 垂直方向从上到下为y轴正向。TURBO C 的图形函数
都是相对于图形屏幕坐标, 即象元来说的。
关于点的另外一个函数是:
int far getpixel(int x, int y);
它获得当前点(x, y)的颜色值。

2. 有关坐标位置的函数

int far getmaxx(void);
返回x轴的最大值。

int far getmaxy(void);
返回y轴的最大值。

int far getx(void);
返回游标在x轴的位置。

void far gety(void);
返回游标有y轴的位置。

void far moveto(int x, int y);
移动游标到(x, y)点, 不是画点, 在移动过程中亦画点。

void far moverel(int dx, int dy);
移动游标从现行位置(x, y)移动到(x+dx, y+dy)的位置, 移动过程中不画点。

二、画线
1. 画线函数
TURBO C提供了一系列画线函数, 下面分别叙述:

void far line(int x0, int y0, int x1, int y1);
画一条从点(x0, y0)到(x1, y1)的直线。

void far lineto(int x, int y);
画一作从现行游标到点(x, y)的直线。

void far linerel(int dx, int dy);
画一条从现行游标(x, y)到按相对增量确定的点(x+dx, y+dy)的直线。

void far circle(int x, int y, int radius);
以(x, y)为圆心, radius为半径, 画一个圆。

void far arc(int x, int y, int stangle, int endangle, int radius);
以(x, y)为圆心, radius为半径, 从stangle开始到endangle结束(用度表示)
画一段圆弧线。在TURBO C中规定x轴正向为0度, 逆时针方向旋转一周, 依次为
90, 180, 270和360度(其它有关函数也按此规定, 不再重述)。

void ellipse(int x, int y, int stangle, int endangle, int xradius,
int yradius);
以(x, y)为中心, xradius, yradius为x轴和y轴半径, 从角stangle 开始到
endangle结束画一段椭圆线, 当stangle=0, endangle=360时, 画出一个完整的
椭圆。

void far rectangle(int x1, int y1, int x2, inty2);
以(x1, y1)为左上角, (x2, y2)为右下角画一个矩形框。

void far drawpoly(int numpoints, int far *polypoints);
画一个顶点数为numpoints, 各顶点坐标由polypoints 给出的多边形。
polypoints整型数组必须至少有2倍顶点数个无素。每一个顶点的坐标都定义为x,
y, 并且x在前。值得注意的是当画一个封闭的多边形时, numpoints 的值取实际
多边形的顶点数加一, 并且数组polypoints中第一个和最后一个点的坐标相同。
下面举一个用drawpoly()函数画箭头的例子。
例9:
#include<stdlib.h>
#include<graphics.h>
int main()
{
int gdriver, gmode, i;
int arw[16]={200, 102, 300, 102, 300, 107, 330,
100, 300, 93, 300, 98, 200, 98, 200, 102};
gdriver=DETECT;
registerbgidriver(EGAVGA_driver);
initgraph(&gdriver, &gmode, "");
setbkcolor(BLUE);
cleardevice();
setcolor(12); /*设置作图颜色*/
drawpoly(8, arw); /*画一箭头*/
getch();
closegraph();
return 0;
}

2. 设定线型函数
在没有对线的特性进行设定之前, TURBO C用其默认值, 即一点宽的实线,
但TURBO C也提供了可以改变线型的函数。线型包括:宽度和形状。其中宽度只有
两种选择: 一点宽和三点宽。而线的形状则有五种。下面介绍有关线型的设置函
数。

void far setlinestyle(int linestyle, unsigned upattern, int
thickness);
该函数用来设置线的有关信息, 其中linestyle是线形状的规定, 见表5。
表5. 有关线的形状(linestyle)
━━━━━━━━━━━━━━━━━━━━━━━━━
符号常数 数值 含义
—————————————————————————
SOLID_LINE 0 实线
DOTTED_LINE 1 点线
CENTER_LINE 2 中心线
DASHED_LINE 3 点画线
USERBIT_LINE 4 用户定义线
━━━━━━━━━━━━━━━━━━━━━━━━━
thickness是线的宽度, 见表6。

表6. 有关线宽(thickness)
━━━━━━━━━━━━━━━━━━━━━━━━━
符号常数 数值 含义
—————————————————————————
NORM_WIDTH 1 一点宽
THIC_WIDTH 3 三点宽
━━━━━━━━━━━━━━━━━━━━━━━━━
对于upattern, 只有linestyle选USERBIT_LINE 时才有意义( 选其它线型,
uppattern取0即可)。此进uppattern的16位二进制数的每一位代表一个象元, 如
果那位为1, 则该象元打开, 否则该象元关闭。

void far getlinesettings(struct linesettingstype far *lineinfo);
该函数将有关线的信息存放到由lineinfo 指向的结构中, 表中
linesettingstype的结构如下:
struct linesettingstype{
int linestyle;
unsigned upattern;
int thickness;
}
例如下面两句程序可以读出当前线的特性
struct linesettingstype *info;
getlinesettings(info);

void far setwritemode(int mode);
该函数规定画线的方式。如果mode=0, 则表示画线时将所画位置的原来信息
覆盖了(这是TURBO C的默认方式)。如果mode=1, 则表示画线时用现在特性的线
与所画之处原有的线进行异或(XOR)操作, 实际上画出的线是原有线与现在规定
的线进行异或后的结果。因此, 当线的特性不变, 进行两次画线操作相当于没有
画线。
有关线型设定和画线函数的例子如下所示。
例10.
#include<stdlib.h>
#include<graphics.h>
int main()
{
int gdriver, gmode, i;
gdriver=DETECT;
registerbgidriver(EGAVGA_driver);
initgraph(&gdriver, &gmode, "");
setbkcolor(BLUE);
cleardevice();
setcolor(GREEN);
circle(320, 240, 98);
setlinestyle(0, 0, 3); /*设置三点宽实线*/
setcolor(2);
rectangle(220, 140, 420, 340);
setcolor(WHITE);
setlinestyle(4, 0xaaaa, 1); /*设置一点宽用户定义线*/
line(220, 240, 420, 240);
line(320, 140, 320, 340);
getch();
closegraph();
return 0;
}

5. 封闭图形的填充
填充就是用规定的颜色和图模填满一个封闭图形。

一、先画轮廓再填充
TURBO C提供了一些先画出基本图形轮廓, 再按规定图模和颜色填充整个封
闭图形的函数。在没有改变填充方式时, TURBO C以默认方式填充。 下面介绍这
些函数。

void far bar(int x1, int y1, int x2, int y2);
确定一个以(x1, y1)为左上角, (x2, y2)为右下角的矩形窗口, 再按规定图
模和颜色填充。
说明: 此函数不画出边框, 所以填充色为边框。

void far bar3d(int x1, int y1, int x2, int y2, int depth, int
topflag);
当topflag为非0时, 画出一个三维的长方体。当topflag为0时, 三维图形不
封顶, 实际上很少这样使用。
说明: bar3d()函数中, 长方体第三维的方向不随任何参数而变, 即始终为
45度的方向。

void far pieslice(int x, int y, int stangle, int endangle, int
radius);
画一个以(x, y)为圆心, radius为半径, stangle为起始角度, endangle 为
终止角度的扇形, 再按规定方式填充。当stangle=0, endangle=360 时变成一个
实心圆, 并在圆内从圆点沿X轴正向画一条半径。

void far sector(int x, int y, int stanle, intendangle, int
xradius, int yradius);
画一个以(x, y)为圆心分别以xradius, yradius为x轴和y轴半径, stangle
为起始角, endangle为终止角的椭圆扇形, 再按规定方式填充。

二、设定填充方式
TURBO C有四个与填充方式有关的函数。下面分别介绍:
void far setfillstyle(int pattern, int color);
color的值是当前屏幕图形模式时颜色的有效值。pattern的值及与其等价的
符号常数 除USER_FILL(用户定义填充式样)以外, 其它填充式样均可由setfillstyle()
函数设置。当选用USER_FILL时, 该函数对填充图模和颜色不作任何改变。 之所
以定义USER_FILL主要因为在获得有关填充信息时用到此项。
void far setfillpattern(char * upattern,int color);
设置用户定义的填充图模的颜色以供对封闭图形填充。
其中upattern是一个指向8个字节的指针。这8个字节定义了8x8点阵的图形。
每个字节的8位二进制数表示水平8点, 8个字节表示8行, 然后以此为模型向个封
闭区域填充。
void far getfillpattern(char * upattern);
该函数将用户定义的填充图模存入upattern指针指向的内存区域。
void far getfillsetings(struct fillsettingstype far * fillinfo);
获得现行图模的颜色并将存入结构指针变量fillinfo中。其中fillsettingstype
结构定义如下:
struct fillsettingstype{
int pattern; /* 现行填充模式 * /
int color; /* 现行填充模式 * /
};
三、任意封闭图形的填充
截止目前为止, 我们只能对一些特定形状的封闭图形进行填充, 但还不能对
任意封闭图形进行填充。为此, TURBO C 提供了一个可对任意封闭图形填充的函
数, 其调用格式如下:
void far floodfill(int x, int y, int border);
其中: x, y为封闭图形内的任意一点。border为边界的颜色, 也就是封闭图
形轮廓的颜色。调用了该函数后, 将用规定的颜色和图模填满整个封闭图形。例12:
#include<stdlib.h>
#include<graphics.h>
main()
{
int gdriver, gmode;
strct fillsettingstype save;
gdriver=DETECT;
initgraph(&gdriver, &gmode, "");
setbkcolor(BLUE);
cleardevice();
setcolor(LIGHTRED);
setlinestyle(0,0,3);
setfillstyle(1,14); /*设置填充方式*/
bar3d(100,200,400,350,200,1); /*画长方体并填充*/
floodfill(450,300,LIGHTRED); /*填充长方体另外两个面*/
floodfill(250,150, LIGHTRED);
rectanle(450,400,500,450); /*画一矩形*/
floodfill(470,420, LIGHTRED); /*填充矩形*/
getch();
closegraph();
}
6. 有关图形窗口和图形屏幕操作函数
一、图形窗口操作
象文本方式下可以设定屏幕窗口一样, 图形方式下也可以在屏幕上某一区域
设定窗口, 只是设定的为图形窗口而已, 其后的有关图形操作都将以这个窗口的
左上角(0,0)作为坐标原点, 而且可为通过设置使窗口之外的区域为不可接触。
这样, 所有的图形操作就被限定在窗口内进行。
void far setviewport(int xl,int yl,int x2, int y2,int clipflag);
设定一个以(xl,yl)象元点为左上角, (x2,y2)象元为右下角的图形窗口, 其
中x1,y1,x2,y2是相对于整个屏幕的坐标。若clipflag为非0, 则设定的图形以外
部分不可接触, 若clipflag为0, 则图形窗口以外可以接触。
void far clearviewport(void);
清除现行图形窗口的内容。
void far getviewsettings(struct viewporttype far * viewport);
获得关于现行窗口的信息,并将其存于viewporttype定义的结构变量viewport
中, 其中viewporttype的结构说明如下:
struct viewporttype{
int left, top, right, bottom;
int cliplag;
};
二、屏幕操作
除了清屏函数以外, 关于屏幕操作还有以下函数:
void far setactivepage(int pagenum);
void far setvisualpage(int pagenum);
这两个函数只用于EGA,VGA 以及HERCULES图形适配器。setctivepage() 函数
是为图形输出选择激活页。 所谓激活页是指后续图形的输出被写到函数选定的
pagenum页面, 该页面并不一定可见。setvisualpage()函数才使pagenum 所指定
的页面变成可见页。页面从0开始(Turbo C默认页)。如果先用setactivepage()
函数在不同页面上画出一幅幅图像,再用setvisualpage()函数交替显示, 就可以
实现一些动画的效果。
void far getimage(int xl,int yl, int x2,int y2, void far *mapbuf);
void far putimge(int x,int,y,void * mapbuf, int op);
unsined far imagesize(int xl,int yl,int x2,int y2);
这三个函数用于将屏幕上的图像复制到内存,然后再将内存中的图像送回到
屏幕上。首先通过函数imagesize()测试要保存左上角为(xl,yl), 右上角为(x2,
y2)的图形屏幕区域内的全部内容需多少个字节, 然后再给mapbuf 分配一个所测
数字节内存空间的指针。通过调用getimage()函数就可将该区域内的图像保存在
内存中, 需要时可用putimage()函数将该图像输出到左上角为点(x, y)的位置上,
其中getimage()函数中的参数op规定如何释放内存中图像。
对于imagesize()函数, 只能返回字节数小于64K字节的图像区域, 否则将会
出错, 出错时返回-1。
本节介绍的函数在图像动画处理、菜单设计技巧中非常有用。

例13: 下面程序模拟两个小球动态碰撞过程。
7. 图形模式下的文本输出
在图形模式下, 只能用标准输出函数, 如printf(), puts(), putchar() 函
数输出文本到屏幕。除此之外, 其它输出函数(如窗口输出函数)不能使用, 即是
可以输出的标准函数, 也只以前景色为白色, 按80列, 25行的文本方式输出。
Turbo C2.0也提供了一些专门用于在图形显示模式下的文本输出函数。下面
将分别进行介绍。
一、文本输出函数
void far outtext(char far *textstring);
该函数输出字符串指针textstring所指的文本在现行位置。
void far outtextxy(int x, int y, char far *textstring);
该函数输出字符串指针textstring所指的文本在规定的(x, y)位置。 其中x
和y为象元坐标。
说明:
这两个函数都是输出字符串, 但经常会遇到输出数值或其它类型的数据,
此时就必须使用格式化输出函数sprintf()。
sprintf()函数的调用格式为:
int sprintf(char *str, char *format, variable-list);
它与printf()函数不同之处是将按格式化规定的内容写入str 指向的字符串
中, 返回值等于写入的字符个数。
例如:
sprintf(s, "your TOEFL score is %d", mark);
这里s应是字符串指针或数组, mark为整型变量。

⑨ 谁帮我解释c语言各变量类型什么意思

int 整数; float 浮点数(小数); char 字符; string 字符串

⑩ C语言编程,生成行列 A (rA x cA)和 B (rB x cB),并计算两个行列的乘积。

#include <stdio.h>
#include <stdlib.h>
#inlcude <string.h>
#inlcude <time.h>
#include <iostream>
using namespace std;
void MultiplyMatrix(int **iA, int **iB , int rowA, int colA, int colB, int **out);
int main(void)
{
srand((unsigned)(time(NULL)));
int i,j, n;
int **A, **B, **C;
int rA, rB, cA, cB;
while( scanf("%d%d%d%d",&rA,&cA,&rB,&cB) && cA==rB && rA>0 && cA > 0 && rB > 0 && cB > 0 )
{
A = (int **) calloc(rA, sizeof(int));
for (i=0; i<rB; i++)
A[i] = (int *) calloc(cA, sizeof(int));

B = (int **) calloc(rB, sizeof(int));
for (i=0; i<rB; i++)
B[i] = (int *) calloc(cB, sizeof(int));

C = (int **) calloc(rA, sizeof(int));
for (i=0; i<cB; i++)
B[i] = (int *) calloc(cB, sizeof(int));

for( i = 0 ; i < rA ; i++)
{
for( j = 0 ; j < cA ; j ++ )
{
A[i][j] = rand()%100 + 1;
}
}
for( i = 0 ; i < rB ; i++)
{
for( j = 0 ; j < cB ; j ++ )
{
B[i][j] = rand()%100 + 1;
}
}
MultiplyMatrix(A, B, rA, cA, cB, C);
return 0;
}

void MultiplyMatrix(int **iA, int **iB , int rowA, int colA, int colB, int **out)
{
int i=0,j=0,k=0;
for( i = 0 ; i < rowA ; i++)
{
for( j = 0 ; j < colB ; j ++ )
{
out[i][j] = 0;
for( k = 0 ; k < colA ; k ++ )
{
C[i][j] += (iA[i][k])*(iB[k][j]);
}
}
}
}