当前位置:首页 » 编程语言 » 泛函数c语言
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

泛函数c语言

发布时间: 2022-09-27 00:48:39

1. 泛函数的介绍

通常的函数在 R或C(n是自然数)中的集合上定义。泛函数常在函数空间甚至抽象空间中的集合上定义,对集合中每个元素取对应值(实数或复数)。通俗地说,泛函数是以函数作为变元的函数。泛函数概念的产生与变分学问题的研究发展有密切关系。传统上,泛函通常是指一种定义域为函数,而值域为实数的“函数”。换句话说,就是从函数组成的一个向量空间到实数的一个映射。也就是说它的输入为函数,而输出为实数。泛函的应用可以追溯到变分法,那里通常需要寻找一个函数用来最小化某个特定泛函。在物理学上,寻找某个能量泛函的最小系统状态是泛函的一个重要应用。

2. 泛函的定义

简单的说, 泛函就是定义域是一个函数集,而值域是实数集或者实数集的一个子集,推广开来, 泛函就是从任意的向量空间到标量的映射。也就是说,它是从函数空间到数域的映射。
设{y(x)}是给定的函数集,如果对于这个函数集中任一函数y(x) 恒有某个确定的数与之对应,记为П(y(x)),则П(y(x))是定义于集合{y(x)}上的一个泛函。
泛函定义域内的函数为可取函数或容许函数, y(x) 称为泛函П的变量函数。
泛函П(y(x))与可取函数y(x)有明确的对应关系。泛函的值是由一条可取曲线的整体性质决定的。
泛函也是一种“函数”,它的独立变量一般不是通常函数的“自变量”,而是通常函数本身。泛函是函数的函数。由于函数的值是由自变量的选取而确定的,而泛函的值是由自变量函数确定的,故也可以将其理解为函数的函数
泛函的自变量是函数,泛函的自变量称为宗量。
简言之,泛函就是函数的函数。

3. y等于根号三。像x减一。求。泛函数。

书上说的是这不是一个一次函数,但并没说不是一个函数,LZ这个概念混淆了.如上面仁兄所说,函数有好多种,诸如反比例函数、指数函数、对数函数等,你以后会慢慢的逐一学到的.
希望对你有帮助~~~~

4. 泛函数的对偶性

观察映射

是一个函数,在这里,x0是函数f的自变量。
同时,将函数映射至一个点的函数值

是一个泛函,在此是一个参数
只要是一个从向量空间至一个布于实数的体的线性转换,上述的线性映射彼此对偶,那么在泛函分析上,这两者都称作线性泛函。

5. 什么叫泛函

泛函泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。它是20世纪30年代形成的。从变分法、微分方程、积分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法研究分析学的课题,可看作无限维的分析学。
泛函分析的产生
十九世纪以来,数学的发展进入了一个新的阶段。这就是,由于对欧几里得第五公设的研究,引出了非欧几何这门新的学科;对于代数方程求解的一般思考,最后建立并发展了群论;对数学分析的研究又建立了集合论。这些新的理论都为用统一的观点把古典分析的基本概念和方法一般化准备了条件。
本世纪初,瑞典数学家弗列特荷姆和法国数学家阿达玛发表的着作中,出现了把分析学一般化的萌芽。随后,希尔伯特和海令哲来创了希尔伯特空间的研究。到了二十年代,在数学界已经逐渐形成了一般分析学,也就是泛函分析的基本概念。
由于分析学中许多新部门的形成,揭示出分析、代数、集合的许多概念和方法常常存在相似的地方。比如,代数方程求根和微分方程求解都可以应用逐次逼近法,并且解的存在和唯一性条件也极其相似。这种相似在积分方程论中表现得就更为突出了。泛函分析的产生正是和这种情况有关,有些乍看起来很不相干的东西,都存在着类似的地方。因此它启发人们从这些类似的东西中探寻一般的真正属于本质的东西。
非欧几何的确立拓广了人们对空间的认知,n维空间几何的产生允许我们把多变函数用几何学的语言解释成多维空间的影响。这样,就显示出了分析和几何之间的相似的地方,同时存在着把分析几何化的一种可能性。这种可能性要求把几何概念进一步推广,以至最后把欧氏空间扩充成无穷维数的空间。
这时候,函数概念被赋予了更为一般的意义,古典分析中的函数概念是指两个数集之间所建立的一种对应关系。现代数学的发展却是要求建立两个任意集合之间的某种对应关系。
这里我们先介绍一下算子的概念。算子也叫算符,在数学上,把无限维空间到无限维空间的变换叫做算子。
研究无限维线性空间上的泛函数和算子理论,就产生了一门新的分析数学,叫做泛函分析。在二十世纪三十年代,泛函分析就已经成为数学中一门独立的学科了。
泛函分析的特点和内容
泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了。比如,不同类型的函数可以看作是函数空间的点或矢量,这样最后得到了抽象空间这个一般的概念。它既包含了以前讨论过的几何对象,也包括了不同的函数空间。
泛函分析对于研究现代物理学是一个有力的工具。n维空间可以用来描述具有n个自由度的力学系统的运动,实际上需要有新的数学工具来描述具有无穷多自由度的力学系统。比如梁的震动问题就是无穷多自由度力学系统的例子。一般来说,从质点力学过渡到连续介质力学,就要由有穷自由度系统过渡到无穷自由度系统。现代物理学中的量子场理论就属于无穷自由度系统。
正如研究有穷自由度系统要求 n维空间的几何学和微积分学作为工具一样,研究无穷自由度的系统需要无穷维空间的几何学和分析学,这正是泛函分析的基本内容。因袭,泛函分析也可以通俗的叫做无穷维空间的几何学和微积分学。古典分析中的基本方法,也就是用线性的对象去逼近非线性的对象,完全可以运用到泛函分析这门学科中。泛函分析是分析数学中最年轻的分支,它是古典分析观点的推广,它综合函数论、

6. 求泛函数极值时,改变被控泛函数,其他始端跟末端条件不变,怎么比较求出的控制输入u(t)

泛函数
泛函数又称泛函,通常实(复)值函数概念的发展。通常的函数在 Rn或Cn(n是自然数)中的集合上定义。泛函数常在函数空间甚至抽象空间中的集合上定义,对集合中每个元素取对应值(实数或复数)。

通俗地说,泛函数是以函数作为变元的函数。泛函数概念的产生与变分学问题的研究发展有密切关系。设Ω为Rn中的区域,Г1表示边界嬠Ω的片断,表示一函数集合。考虑对应,式中F为具有2n+1个自变数的函数:为寻求J(u)的局部极值,在一定条件下取J(u)的加托变分

如果在u=u0达到局部极值,则u0适合欧拉方程δJ(u)=0。在应用中,常以数学或物理的某个微分方程为背景产生一定泛函数,使原问题化成泛函数极值问题。当代分析学中,变分方法有广泛应用。一般把问题化成Tx=0的形式,即对应于某泛函数φ的欧拉方程,其中φ定义在一巴拿赫空间X中的开集S上且加托可微:算子T 称为梯度算子,φ称为T 的场位。人们常遇到二阶微分系统,由此产生二次泛函数极值问题,是当代变分法常见的研究对象。
泛函数φ:S嶅X→R(X 为拓扑空间)称为在x∈S处下半连续,如果对每个实数r<φx,有x的邻域U(x),使得r<φz,凬z∈U(x)∩S。称φ在x∈S处下半序列连续,如果对每个序列 。其连续性及有界性如同对算子相应的性质所做的规定。
设φ是定义在线性集合S上的实(复)值泛函数。如果φ(x+y)=φ(x)+φ(y),φ 称为加性的;如果φ(λx)=λφ(x),λ∈R(C)称为齐性的;如果同时有加性及齐性称为线性的。当φ取实值时,加性得放松为次加性,其定义为:φ(x+y)≤φ(x)+φ(y);齐性得放松为正齐性,其定义为:ƒ(λx)=λƒ(x)(λ≥0);如果同时有次加性及齐性,则称φ具有次线性;如果对于λ∈(0,1),有φ(λx+(1-λ)y)≤λφ(x)+(1-λ)φ(y),则称φ为凸的;如果当x≠y时上式中的≤必为<,则称φ为严格凸的。在一些问题中,容许凸泛函数φ取值+∞,但φ扝+∞,这时称φ为真凸的。此外,还有所谓凸集S上的拟凸泛函数φ:S嶅K→R(K为线性空间),使φ(tx+(1-t)y)≤max{φx,φy},x,y∈S, t∈(0,1)。在赋范空间K中无界集S上定义的泛函数φ称为强制的,如果有函数с:(0,+∞)→R,с(t)→+∞(t→+∞)使得φ(z)≥с(‖z‖),凬z∈S。
线性泛函数是线性算子理论研究的对象之一,也是研究空间性质及结构的工具。例如,局部凸拓扑线性空间K有对偶空间K,K的元素就是定义在K上的连续线性泛函数。对K可赋予简单收敛拓扑或有界收敛拓扑。偶K、K间的关系对认识空间的性质和研究算子的性质都有基本意义。
相应于多重线性算子有多重线性泛函数。例如,设K1、K2是同一数域上的线性空间,定义在积空间K1×K2上的映射φ:K1×K2→R(或C)称为双线性泛函数,如果K2(K1)中元素固定时φ成为K1(K2)上的线性泛函数。当K1=K2=K,K1及K2中取等同的x∈K,则得φ(x,x),称为二次泛函数。对希尔伯特空间中线性算子谱理论的研究,双线性泛函数形式作为表示工具是方便的。二次泛函数在变分法中的应用更是为人熟知的。
拟赋范空间、局部凸拓扑线性空间、赋范空间等的表征主要在于分别在各空间上定义的次加性泛函数,即拟范数、半范数族、范数等。测度空间中的测度,即对应于某种集合的值也可理解为泛函数。对于给定函数的不定积分也可类似地看待。

泛函数 - 相关连接
泛函数-数学网络知识http://www.chinake.com/article/316/shuxue/2008/200801011121769.html
boost 泛函数比较问题 - http://topic.csdn.net/t/20060715/11/4882102.html

7. 泛函分析求助

1、泛函分析的主要研究对象是什么?泛函分析(Functional Analysis)是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。泛函分析是由对变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。
2、什么是泛函数?
又称泛函,通常实(复)值函数概念的发展。通常的函数在 R或C(n是自然数)中的集合上定义。泛函数常在函数空间甚至抽象空间中的集合上定义,对集合中每个元素取对应值(实数或复数)。通俗地说,泛函数是以函数作为变元的函数。泛函数概念的产生与变分学问题的研究发展有密切关系。
3.泛函分析的四大基本定理及其特征?泛函分析的主要定理包括:
1. 一致有界定理(亦称共鸣定理),该定理描述一族有界算子的性质。
2. 谱定理包括一系列结果,其中最常用的结果给出了希尔伯特空间上正规算子的一个积分表达,该结果在量子力学的数学描述中起到了核心作用。
3. 罕-巴拿赫定理(Hahn-Banach Theorem)研究了如何将一个算子保范数地从一个子空间延拓到整个空间。另一个相关结果是对偶空间的非平凡性。
4. 开映射定理和闭图像定理。