㈠ 求JPEG格式的详细介绍。以及JPEG图像DC系数提取的c语言实现代码
JPEG格式
JPEG也是常见的一种图像格式,它由联合照片专家组(Joint Photographic Experts Group)开发并以命名为%26quot;ISO 10918-1%26quot;,JPEG仅仅是一种俗称而已。JPEG文件的扩展名为.jpg或.jpeg,其压缩技术十分先进,它用有损压缩方式去除冗余的图像和彩色数据,获取得极高的压缩率的同时能展现十分丰富生动的图像,换句话说,就是可以用最少的磁盘空间得到较好的图像质量。
同时JPEG还是一种很灵活的格式,具有调节图像质量的功能,允许你用不同的压缩比例对这种文件压缩,比如我们最高可以把1.37MB的BMP位图文件压缩至20.3KB。当然我们完全可以在图像质量和文件尺寸之间找到平衡点。
由于JPEG优异的品质和杰出的表现,它的应用也非常广泛,特别是在网络和光盘读物上,肯定都能找到它的影子。目前各类浏览器均支持JPEG这种图像格式,因为JPEG格式的文件尺寸较小,下载速度快,使得Web页有可能以较短的下载时间提供大量美观的图像,JPEG同时也就顺理成章地成为网络上最受欢迎的图像格式。
四、JPEG2000格式
JPEG 2000同样是由JPEG 组织负责制定的,它有一个正式名称叫做%26quot;ISO 15444%26quot;,与JPEG相比,它具备更高压缩率以及更多新功能的新一代静态影像压缩技术。
JPEG2000 作为JPEG的升级版,其压缩率比JPEG高约30%左右。与JPEG不同的是,JPEG2000 同时支持有损和无损压缩,而 JPEG 只能支持有损压缩。无损压缩对保存一些重要图片是十分有用的。JPEG2000的一个极其重要的特征在于它能实现渐进传输,这一点与GIF的%26quot;渐显%26quot;有异曲同工之妙,即先传输图像的轮廓,然后逐步传输数据,不断提高图像质量,让图象由朦胧到清晰显示,而不必是像现在的 JPEG 一样,由上到下慢慢显示。
此外,JPEG2000还支持所谓的%26quot;感兴趣区域%26quot;特性,你可以任意指定影像上你感兴趣区域的压缩质量,还可以选择指定的部份先解压缩。 JPEG 2000 和 JPEG 相比优势明显,且向下兼容,因此取代传统的JPEG格式指日可待。
JPEG2000可应用于传统的JPEG市场,如扫描仪、数码相机等,亦可应用于新兴领域,如网路传输、无线通讯等等。
-------
JPEG(Joint Photographic Experts Group) 是一个由 ISO和IEC两个组织机构联合组成的一个专家组,负责制定静态的数字图像数据压缩编码标准,这个专家组开发的算法称为JPEG算法,并且成为国际上通用的标准,因此又称为JPEG标准。JPEG是一个适用范围很广的静态图像数据压缩标准,既可用于灰度图像又可用于彩色图像。
JPEG专家组开发了两种基本的压缩算法,一种是采用以离散余弦变换(Discrete Cosine Transform,DCT)为基础的有损压缩算法,另一种是采用以预测技术为基础的无损压缩算法。使用有损压缩算法时,在压缩比为25:1的情况下,压缩后还原得到的图像与原始图像相比较,非图像专家难于找出它们之间的区别,因此得到了广泛的应用。例如,在V-CD和DVD-Video电视图像压缩技术中,就使用JPEG的有损压缩算法来取消空间方向上的冗余数据。为了在保证图像质量的前提下进一步提高压缩比,近年来JPEG专家组正在制定JPEG 2000(简称JP 2000)标准,这个标准中将采用小波变换(wavelet)算法。
JPEG压缩是有损压缩,它利用了人的视角系统的特性,使用量化和无损压缩编码相结合来去掉视角的冗余信息和数据本身的冗余信息。压缩编码大致分成三个步骤:
1.使用正向离散余弦变换(forward discrete cosine transform,FDCT)把空间域表示的图变换成频率域表示的图。
2.使用加权函数对DCT系数进行量化,这个加权函数对于人的视觉系统是最佳的。
3.使用霍夫曼可变字长编码器对量化系数进行编码。
译码或者叫做解压缩的过程与压缩编码过程正好相反。
JPEG算法与彩色空间无关,因此“RGB到YUV变换”和“YUV到RGB变换”不包含在JPEG算法中。JPEG算法处理的彩色图像是单独的彩色分量图像,因此它可以压缩来自不同彩色空间的数据,如RGB, YCbCr和CMYK。
JPEG压缩编码算法的主要计算步骤如下:
1.正向离散余弦变换(FDCT)。
2.量化(quantization)。
3.Z字形编码(zigzag scan)。
4.使用差分脉冲编码调制(differential pulse code molation,DPCM)对直流系数(DC)进行编码。
5.使用行程长度编码(run-length encoding,RLE)对交流系数(AC)进行编码。
6.熵编码(entropy coding)。
2. 量化
量化是对经过FDCT变换后的频率系数进行量化。量化的目的是减小非“0”系数的幅度以及增加“0”值系数的数目。量化是图像质量下降的最主要原因。
对于有损压缩算法,JPEG算法使用均匀量化器进行量化,量化步距是按照系数所在的位置和每种颜色分量的色调值来确定。因为人眼对亮度信号比对色差信号更敏感,因此使用了两种量化表:亮度量化值和色差量化值。此外,由于人眼对低频分量的图像比对高频分量的图像更敏感,因此图中的左上角的量化步距要比右下角的量化步距小。
3. Z字形编排
量化后的系数要重新编排,目的是为了增加连续的“0”系数的个数,就是“0”的游程长度,方法是按照Z字形的式样编排,如图5-17所示。这样就把一个8 ? 8的矩阵变成一个1 ? 64的矢量,频率较低的系数放在矢量的顶部。
4. 直流系数的编码
8 ? 8图像块经过DCT变换之后得到的DC直流系数有两个特点,一是系数的数值比较大,二是相邻8 ? 8图像块的DC系数值变化不大。根据这个特点,JPEG算法使用了差分脉冲调制编码(DPCM)技术,对相邻图像块之间量化DC系数的差值(Delta)进行编码,
Delta=DC(0, 0)k-DC(0, 0)k-1 ........ (5-5)
5. 交流系数的编码
量化AC系数的特点是1 ? 64矢量中包含有许多“0”系数,并且许多“0”是连续的,因此使用非常简单和直观的游程长度编码(RLE)对它们进行编码。
JPEG使用了1个字节的高4位来表示连续“0”的个数,而使用它的低4位来表示编码下一个非“0”系数所需要的位数,跟在它后面的是量化AC系数的数值。
6. 熵编码
使用熵编码还可以对DPCM编码后的直流DC系数和RLE编码后的交流AC系数作进一步的压缩。
在JPEG有损压缩算法中,使用霍夫曼编码器来减少熵。使用霍夫曼编码器的理由是可以使用很简单的查表(lookup table)方法进行编码。压缩数据符号时,霍夫曼编码器对出现频度比较高的符号分配比较短的代码,而对出现频度较低的符号分配比较长的代码。这种可变长度的霍夫曼码表可以事先进行定义。
㈡ C语言打开图像文件后读取像素
C语言打开图像文件后运用以下代码就可以读取像素,具体如下:
#ifndef IMAGE_H
#define IMAGE_H
void image_info(FILE* file);
void image_save(FILE *file);
void image_gray();
void image_binarization();
void image_opposite();
void image_channel(); //抽取RGB通道
void image_bright();//改变图像亮度
typedef struct BMP
{
//14字节
unsigned short bfType; //文件标识 2字节 必须为BM
unsigned int bfSize; //文件大小 4字节
unsigned short bfReserved1; //保留,每字节以"00"填写 2字节
unsigned short bfReserved2; //同上 2字节
unsigned int bfOffBits; //记录图像数据区的起始位置(图象数据相对于文件头字节的偏移量)。 4字节
//40字节
unsigned int biSize; //表示本结构的大小 4字节
int biWidth; //位图的宽度 4字节
int biHeight; //位图的高度 4字节
unsigned short biPlanes; //永远为1 , 2字节
unsigned short biBitCount; //位图的位数 分为1 4 8 16 24 32 2字节
unsigned int biCompression; //压缩说明 4字节
unsigned int biSizeImage; //表示位图数据区域的大小以字节为单位 4字节
int biXPelsPerMeter; //用象素/米表示的水平分辨率 4字节
int biYPelsPerMeter; //用象素/米表示的垂直分辨率 4字节
unsigned int biClrUsed; //位图使用的颜色索引数 4字节
unsigned int biClrImportant; //对图象显示有重要影响的颜色索引的数目 4字节
} BMP;
int line_byte;
unsigned char *imagedata;
extern BMP bmp;
extern int line_byte;
extern unsigned char *imagedata;
#endif
//image_rw.c文件
#include<stdio.h>
#include<stdlib.h>
#include"image.h"
void image_info(FILE *file)
{
int times=3; //输入文件名次数。
char bmp_name[10]; //文件名
printf("\nplease enter a file name for reading:");
do
{
if (times<3)
{
printf("\nplease enter a file name for reading again:");
}
fflush(stdin);
gets(bmp_name);
//printf("\n%s",bmp_name);
file=fopen(bmp_name,"rb+"); //打开一个文件进行读写操作。
--times;
if (file==NULL)
{
printf("\nerror opening %s for reading! ",bmp_name);
}
else
{
break;
}
}
while(times!=0);
if (times==0)
{
printf("\nsorry, shutdown!");
exit(1);
}
//读取图像信息
fseek(file,0L,0); //读取图像文件类型
fread(&bmp,sizeof(BMP),1,file);
printf("\n bmp tpye: %u",bmp.bfType);
printf("\n bmp size: %u",bmp.bfSize);
printf("\n bmp reserved1: %u",bmp.bfReserved1);
printf("\n bmp reserved2: %u",bmp.bfReserved2);
printf("\n bmp offBits: %u",bmp.bfOffBits);
printf("\n bmp bisize: %u",bmp.biSize);
printf("\n bmp biWidth: %d",bmp.biWidth);
printf("\n bmp biHeight: %d",bmp.biHeight);
printf("\n bmp biplans: %u",bmp.biPlanes);
printf("\n bmp biBitCount: %u",bmp.biBitCount);
printf("\n bmp biCompression: %u",bmp.biCompression);
printf("\n bmp biSizeImage: %u",bmp.biSizeImage);
printf("\n bmp biXPelsPerMeter: %d",bmp.biXPelsPerMeter);
printf("\n bmp biYPelsPerMeter: %d",bmp.biYPelsPerMeter);
printf("\n bmp biClrUsed: %u",bmp.biClrUsed);
printf("\n bmp biClrImportant: %u\n",bmp.biClrImportant);
line_byte=(bmp.biWidth*bmp.biBitCount/8+3)/4*4; //获得图像数据每行的数据个数
//printf("dfsa%u",bmp.line_byte);
//bmp.imagedata=NULL;
imagedata=(unsigned char*)malloc(bmp.biSizeImage);
fseek(file,(long)bmp.bfOffBits,0);
fread(imagedata,sizeof(unsigned char),bmp.biSizeImage,file);
fclose(file);
}
//保存图像
void image_save(FILE *file)
{
int times=3; //输入文件名次数。
char bmp_name[10]; //文件名
//int i; //记录数据区个数
printf("\nplease enter a file name for writeing:");
do
{
if (times<3)
{
printf("\nplease enter a file name for writeing again:");
}
fflush(stdin);
gets(bmp_name);
printf("\n%s",bmp_name);
file=fopen(bmp_name,"wb+"); //打开一个文件进行读写操作。
--times;
if (file==NULL)
{
printf("\nerror opening %s for writing",bmp_name);
}
else
{
break;
}
}
while(times!=0);
if (times==0)
{
printf("\nsorry, shutdown!");
exit(1);
}
//写文件头
printf("\n%s",bmp_name);
fseek(file,0L,0); //图像文件类型
fwrite(&(bmp.bfType),sizeof(short),1,file);
printf("\n bmp tpye: %d",bmp.bfType);
fseek(file,2L,0); //图像文件大小
fwrite(&(bmp.bfSize),sizeof(int),1,file);
printf("\n bmp size: %d",bmp.bfSize);
fseek(file,6L,0); //图像文件保留字1
fwrite(&(bmp.bfReserved1),sizeof(short),1,file);
printf("\n bmp reserved1: %d",bmp.bfReserved1);
fseek(file,8L,0); //图像文件保留字2
fwrite(&(bmp.bfReserved2),sizeof(short),1,file);
printf("\n bmp reserved2: %d",bmp.bfReserved2);
fseek(file,10L,0);//数据区的偏移量
fwrite(&(bmp.bfOffBits),sizeof(short),1,file);
printf("\n bmp offBits: %d",bmp.bfOffBits);
fseek(file,14L,0);//文件头结构大小
fwrite(&(bmp.biSize),sizeof(int),1,file);
printf("\n bmp bisize: %d",bmp.biSize);
fseek(file,18L,0);//图像的宽度
fwrite(&(bmp.biWidth),sizeof(int),1,file);
printf("\n bmp biWidth: %d",bmp.biWidth);
fseek(file,22L,0);//图像的高度
fwrite(&(bmp.biHeight),sizeof(int),1,file);
printf("\n bmp biHeight: %d",bmp.biHeight);
fseek(file,24L,0);//图像的面数
fwrite(&(bmp.biPlanes),sizeof(short),1,file);
printf("\n bmp biplans: %d",bmp.biPlanes);
fseek(file,28L,0);//图像一个像素的字节数
fwrite(&(bmp.biBitCount),sizeof(short),1,file);
printf("\n bmp biBitCount: %d",bmp.biBitCount);
fseek(file,30L,0);//图像压缩信息
fwrite(&(bmp.biCompression),sizeof(short),1,file);
printf("\n bmp biCompression: %d",bmp.biCompression);
fseek(file,34L,0);//图像数据区的大小
fwrite(&(bmp.biSizeImage),sizeof(int),1,file);
printf("\n bmp biSizeImage: %d",bmp.biSizeImage);
fseek(file,38L,0);//水平分辨率
fwrite(&(bmp.biXPelsPerMeter),sizeof(int),1,file);
printf("\n bmp biXPelsPerMeter: %d",bmp.biXPelsPerMeter);
fseek(file,42L,0);//垂直分辨率
fwrite(&(bmp.biYPelsPerMeter),sizeof(int),1,file);
printf("\n bmp biYPelsPerMeter: %d",bmp.biYPelsPerMeter);
fseek(file,46L,0);//颜色索引数
fwrite(&(bmp.biClrUsed),sizeof(int),1,file);
printf("\n bmp biClrUsed: %d",bmp.biClrUsed);
fseek(file,50L,0);//重要颜色索引数
fwrite(&(bmp.biClrImportant),sizeof(int),1,file);
printf("\n bmp biClrImportant: %d\n",bmp.biClrImportant);
fseek(file,(long)(bmp.bfOffBits),0);
fwrite(imagedata,sizeof(unsigned char),bmp.biSizeImage,file);
fclose(file);
}
//pixProcess.c文件
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include"image.h"
//灰度化
void image_gray()
{
int i,j;
unsigned char tmp;
for (i=0;i<bmp.biHeight;i++)
{
for (j=0;j<line_byte/3;j++)
{
tmp=0.11*(*(imagedata+i*line_byte+j*3+0))+0.59*(*(imagedata+i*line_byte+j*3+1))+0.3*(*(imagedata+i*line_byte+j*3+2));
imagedata[i*line_byte+j*3+0]=tmp;
imagedata[i*line_byte+j*3+1]=tmp;
imagedata[i*line_byte+j*3+2]=tmp;
//printf("\nnidsfh%d %d",i,j);
}
}
}
//二值化
void image_binarization()
{
int i,j;
for (i=0;i<bmp.biHeight;i++)
{
for (j=0;j<line_byte;j++)
{
if ((*(imagedata+i*line_byte+j))<128)
{
imagedata[i*line_byte+j]=0;
}
else
{
imagedata[i*line_byte+j]=255;
}
}
}
}
void image_opposite() //反相
{
int i,j;
for (i=0;i<bmp.biHeight;i++)
{
for (j=0;j<line_byte;j++)
{
imagedata[i*line_byte+j]=abs(255-imagedata[i*line_byte+j]);
}
}
}
void image_channel() //抽取RGB通道
{
int i,j;
char rgb;
printf("\nplease enter a char(r/g/b): ");
fflush(stdin);
scanf("%c",&rgb);
if (rgb=='b')
{
for (i=0;i<bmp.biHeight;i++)
{
for (j=0;j<line_byte/3;j++)
{
imagedata[i*line_byte+3*j+1]=0;
imagedata[i*line_byte+3*j+2]=0;
}
}
}
else if(rgb=='g')
{
for (i=0;i<bmp.biHeight;i++)
{
for (j=0;j<line_byte/3;j++)
{
imagedata[i*line_byte+3*j]=0;
imagedata[i*line_byte+3*j+2]=0;
}
}
}
else
{
for (i=0;i<bmp.biHeight;i++)
{
for (j=0;j<line_byte/3;j++)
{
imagedata[i*line_byte+3*j]=0;
imagedata[i*line_byte+3*j+1]=0;
}
}
}
}
void image_bright()//改变图像亮度
{
int level;
int i,j;
printf("\n please enter the level of brightness[-255 to 255] :");
fflush(stdin);
scanf("%d",&level);
for (i=0;i<bmp.biHeight;i++)
{
for (j=0;j<line_byte;j++)
{
if (level>=0)
{
if ((imagedata[i*line_byte+j]+level)>255)
imagedata[i*line_byte+j]=255;
else
imagedata[i*line_byte+j]+=level;
}
else
{
if ((imagedata[i*line_byte+j]-abs(level))<0)
imagedata[i*line_byte+j]=0;
else
imagedata[i*line_byte+j]+=level;
}
}
}
}
//void image_create() //创建一幅24位BMP图像文件。
//{
//main.c文件
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<conio.h>
#include"image.h"
BMP bmp;
int main()
{
FILE *file=NULL;
int choose;
char gono;
do
{
image_info(file); //imagedata已经分配了动态内存,但是没有释放
printf("\n 1.image_opposite");
printf("\n 2.image_gray");
printf("\n 3.image_binarization");
printf("\n 4.image_channel");
printf("\n 5.image_brightness");
//printf("6.image_opposite");
//printf("7.image_opposite");
printf("\nchoose your options:");
fflush(stdin);
scanf("%d",&choose);
switch(choose)
{
case 1:
image_opposite();
image_save(file);
free(imagedata);
break;
case 2:
image_gray();
image_save(file);
free(imagedata);
break;
case 3:
image_binarization();
image_save(file);
free(imagedata);
break;
case 4:
image_channel();
image_save(file);
free(imagedata);
break;
case 5:
image_bright();
image_save(file);
free(imagedata);
break;
default:
printf("\n wrong choose!");
}
printf("\nlet's go on?(y/n):");
fflush(stdin);
scanf("%c",&gono);
if (gono=='n')
{
printf("\nbye bye!");
break;
}
}
while(1);
return 0;
}
㈢ 如何用c语言实现压缩图片内存大小
是(row,col,value),这样把所有不为零的值组成一个向量。这种存储方式比二维数组节省了不少空间,当然还可以进一步节省,因为三元组里面row或者col重复存储了,一行或者一列存一次就行了,按这种思路走下去就是行压缩存储了。
那具体什么是行压缩存储呢?行压缩存储的思想就是,把所有不为零的值按行访问的顺序组成一个向量,然后再把每一行值不为0的列的下标存下来,这个两个向量的大小和稀疏矩阵中不为0的值得个数相同,当然要实现对行压缩矩阵的访问,还要把每一行的不为0的列的下标在第二个向量中开始的位置存下来,有人把这个叫做指针。有了这三个向量就可以实现对矩阵实现高效的按行访问了。行压缩存储比三元组优秀的不仅是空间的压缩,还有就是行访问时的高效。三元组如果是有序的,可以二分查找来访问一行,但是行压缩存储按行访问时的时间复杂度是常数级的。 大家可以参考下面这个行压缩矩阵示意图:
㈣ BMP图片分析和显示 c语言 压缩,解压缩
bmp是一种简单的图片格式,但要解释清楚也不是件容易的事。
一个bmp文件可以分为4个部分,第一部分是文件信息,第二部分是图片信息,第三部分是调色板,第四部分就是图片的数据了。
第一部分主要是说,我就是bmp格式的文件,我的大小是多少,我的图片数据存在什么地方。
第二部分主要是说,我这张图片宽度和长度分别是多少,颜色深度有几位,有没有压缩等信息。
颜色深度8bit 4bit 1bit的意思是说,大自然存在无穷的颜色,但计算机的存储是有限的,我只能每个像素点保存1bit的信息,也就是说,我只能保存两种颜色的信息。如果每个像素点保存4bit的信息,我就可以保存16种颜色了。如果每个像素点保存8bit的信息,我就可以保存256种颜色了。由此可见bit越长可以保存的颜色种类就越多。
第三部分要根据第二部分的来表示的。上面说了如果颜色深度是8bit,就可以保存256种颜色了,但具体是哪种颜色呢,这就要靠第三部分调色板来告诉你了,根据不同的bit长度,调色板的长度也不同,比如1bit,此部分就是有两种颜色,4bit就是16种颜色,8bit就是256种颜色,16bit时就就不再告诉大家各种颜色是什么了,因为颜色种类太多了。这时这部分反而只有三个数据,分别告诉大家,三个颜色分别在一个16bit数据的具体位置。如果图像深度是24bit,这部分就没有了,因为计算机只能显示24Bit的颜色。
第四部分就是存储具体图像数据的地方了,这个地方告诉我们,图片中的每一个像素点的颜色是什么。但是对于8bit 4bit 1bit的图像,他存的只是索引,告诉我们这个地方的颜色就是调色板里的第几个颜色。对于24bit的颜色就是保存颜色的身。而16位的就比较复杂,要通过一些位移运算来确定具体是什么颜色。
具体代码,网上多的是。我就不提供了。
㈤ 求用C语言写的图像压缩(JPEG)编码中zigzag编程部分
你说的是这段?
还是包括后面的huffman编码部分
static UChar zigzag[64]={ 0, 1, 5, 6,14,15,27,28,
2, 4, 7,13,16,26,29,42,
3, 8,12,17,25,30,41,43,
9,11,18,24,31,40,44,53,
10,19,23,32,39,45,52,54,
20,22,33,38,46,51,55,60,
21,34,37,47,50,56,59,61,
35,36,48,49,57,58,62,63 };
//zigzag reorder
for (i=0;i<=63;i++) DU[zigzag[i]]=DU_DCT[i];
㈥ bp神经网络 图像压缩
笼统的说,遇到这种情况,你可以调整隐含层神经元的个数或增加隐含层数。不过应该具体情况具体分析,如果方便的话,请你将你的程序贴出来,我可以帮你分析一下。谢谢。
㈦ C语言实现把一个JPG图片分解为两个图片,急!!谢谢
麻烦。。无聊。。
先找着jpg文件头格式。。
C打开文件。。找到数据部分。。
新建文件。。写入。。保存。。
综上所述:无聊+麻烦。
㈧ C语言 缩印,求解答,感谢。
望采纳!
㈨ 用C语言编写程序处理图片bmp文件 1.读取图片的宽度,高度,每个像素所需的位数,水平分辨率,垂直
#include<windows.h>
//读bmp图片需要两个结构
#pragmapack(push,enter_defBM,1)//指定内存对齐单位为1。
typedefstructtagBmpFileHeader
{
WORDbfType;//文件类型BM
DWORDbfSize;//文件大小
WORDbfReserved1;//保留字
WORDbfReserved2;//保留字
DWORDbfOffBits;//位图的数据信息离文件头的偏移量
}BFH;
typedefstructtagBmpImgHeader
{
DWORDbiSize;//表示本结构的大小,0X28
LONGbiWidth;//位图的宽度
LONGbiHeight;//位图的高度
WORDbiPlanes;//位面数永远为1
WORDbiBitCount;//位图的位数
DWORDbiCompression;//压缩类型
DWORDbiSizeImage;//表示位图数据区域的大小
LONGbiXPelsPerMeter;//表示显示设备的水平分辨率
LONGbiYPelsPerMeter;//表示显示设备的垂直分辨率
DWORDbiClrUsed;//实际使用的颜色数目
DWORDbiClrImportant;//重要的颜色数量
}BIH;
#pragmapack(pop,enter_defBM)//恢复默认内存对齐单位。
#defineHDIBHANDLE//位图句柄
DWORDWINAPIDIBNumColors(BYTE*data)
{
WORDwBitCount;
DWORDdwClrUsed=((BIH*)data)->biClrUsed;
if(dwClrUsed!=0)return(WORD)dwClrUsed;
wBitCount=((BIH*)data)->biBitCount;
return1<<wBitCount;
}
WORDWINAPIPaletteSize(BYTE*data)
{
return(WORD)(::DIBNumColors(data)*sizeof(RGBQUAD));
}
BYTE*WINAPIFindDIBBits(BYTE*data)
{
return(data+*(DWORD*)data+::PaletteSize(data));
}
//获取Bmp的宽度
DWORDFARDIBWidth(constBYTE*data)
{
BIH*pbmi;
pbmi=(BIH*)data;
if(pbmi->biSize==sizeof(BIH))returnpbmi->biWidth;
elsereturn-1;
}
//获取Bmp的高度
DWORDFARDIBHeight(constBYTE*data)
{
BIH*pbmi;
pbmi=(BIH*)data;
if(pbmi->biSize==sizeof(BIH))returnpbmi->biHeight;
elsereturn-1;
}
//从文件读取Bmp图像数据
HDIBWINAPIReadDIBFile(FILE*fp)
{
BFHbmf;
HDIBhDIB;
BYTE*pData;
rewind(fp);
if(fread(&bmf,sizeof(BFH),1,fp)!=1)returnNULL;//文件读取错误
if(bmf.bfType!=19778)returnNULL;//文件类型错误
hDIB=(HDIB)::GlobalAlloc(GMEM_MOVEABLE|GMEM_ZEROINIT,bmf.bfSize);//为DIB分配内存
if(hDIB==0)returnNULL;//内存分配失败。
pData=(BYTE*)::GlobalLock((HGLOBAL)hDIB);//锁定
if(fread(pData,1,bmf.bfSize-sizeof(BFH),fp)!=(bmf.bfSize-sizeof(BFH)))//文件读取错误
{
::GlobalUnlock((HGLOBAL)hDIB);//解除锁定
::GlobalFree((HGLOBAL)hDIB);//释放内存
returnNULL;
}
::GlobalUnlock((HGLOBAL)hDIB);//解除锁定
returnhDIB;//返回DIB句柄
}
BOOLWINAPIPaintDIB(HDChDC,intposX,intposY,HDIBhDIB)
{
BYTE*pDIBHd;//BITMAPINFOHEADER指针
BYTE*pDIBBits;//DIB象素指针
BOOLbSuccess=FALSE;//成功标志
HPALETTEhPal=NULL;//DIB调色板
//HPALETTEhOldPal=NULL;//以前的调色板
if(hDIB==NULL)returnFALSE;//判断DIB对象是否为空
pDIBHd=(BYTE*)::GlobalLock((HGLOBAL)hDIB);//锁定DIB
pDIBBits=::FindDIBBits(pDIBHd);//找到DIB图像象素起始位置
::SetStretchBltMode(hDC,COLORONCOLOR);//设置显示模式
//调用SetDIBitsToDevice()来绘制DIB对象
bSuccess=::SetDIBitsToDevice(hDC,//hDC
posX,posY,
((BIH*)pDIBHd)->biWidth,//nDestWidth
((BIH*)pDIBHd)->biHeight,//nDestHeight
0,//SrcX
0,//SrcY
0,//nStartScan
(WORD)DIBHeight(pDIBHd),//nNumScans
pDIBBits,//lpBits
(LPBITMAPINFO)pDIBHd,//lpBitsInfo
DIB_RGB_COLORS);//wUsage
::GlobalUnlock((HGLOBAL)hDIB);//解除锁定
returnbSuccess;
}
//打印位图信息
VOIDWINAPIPrintDIBInfo(HDIBhDIB)
{
BYTE*pDIBHd=(BYTE*)::GlobalLock((HGLOBAL)hDIB);
BIH*pbmi=(BIH*)pDIBHd;
constchar*lp[]=
{
"位图信息长度:%d ",
"位图图像大小:%dx%d ",
"位面数:%d ",
"位图颜色深度:%d ",
"位图数据压缩类型:%d ",
"位图数据区域大小:%d ",
"位图分辨率:水平%ddpi,垂直%ddpi ",
};
printf("WindowsV3cBitmapInfoHeader信息 ");
printf(lp[0],pbmi->biSize);
printf(lp[1],pbmi->biWidth,pbmi->biHeight);
printf(lp[2],pbmi->biPlanes);
printf(lp[3],pbmi->biBitCount);
printf(lp[4],pbmi->biCompression);
printf(lp[5],pbmi->biSizeImage);
printf(lp[6],(LONG)(pbmi->biXPelsPerMeter*0.0254f+0.5f),(LONG)(pbmi->biYPelsPerMeter*0.0254f+0.5f));
::GlobalUnlock((HGLOBAL)hDIB);//解除锁定
}intmain(intargc,char*argv[])
{
HDIBx;
FILE*fp=fopen("1.bmp","rb");
if(fp==NULL)return-1;
x=ReadDIBFile(fp);
printf("DIBhandle%u",x);
PaintDIB(GetDC(NULL),0,0,x);
PrintDIBInfo(x);
return0;
}
㈩ 哪里有JPEG 16 位图像的压缩和解冻函数(C语言)
只能给个建议,考虑一下将这个图像从内存中读出来,然后保存成一个文件如:a.jpg(系统可能会自动的进行压缩,matlab可以这样做,C我不清楚),然后再将这个文件读到内存中,可能行的通吧,试一下。