当前位置:首页 » 编程语言 » fpgrowth算法c语言
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

fpgrowth算法c语言

发布时间: 2022-09-10 12:46:08

⑴ FP-growth算法的 java 实现源码

http://portal.acm.org/citation.cfm?id=1133907 这里有PDF下载 源代码: http://www.programsalon.com/view/downloads36/sourcecode/math/112919/fpgrowth/fptree.cpp__.htm 或 http://www.programsalon.com/downloads67/sourcecode/math/detail243513.html

⑵ 人工智能算法简介

人工智能的三大基石—算法、数据和计算能力,算法作为其中之一,是非常重要的,那么人工智能都会涉及哪些算法呢?不同算法适用于哪些场景呢?

一、按照模型训练方式不同可以分为监督学习(Supervised Learning),无监督学习(Unsupervised Learning)、半监督学习(Semi-supervised Learning)和强化学习(Reinforcement Learning)四大类。

常见的监督学习算法包含以下几类:
(1)人工神经网络(Artificial Neural Network)类:反向传播(Backpropagation)、波尔兹曼机(Boltzmann Machine)、卷积神经网络(Convolutional Neural Network)、Hopfield网络(hopfield Network)、多层感知器(Multilyer Perceptron)、径向基函数网络(Radial Basis Function Network,RBFN)、受限波尔兹曼机(Restricted Boltzmann Machine)、回归神经网络(Recurrent Neural Network,RNN)、自组织映射(Self-organizing Map,SOM)、尖峰神经网络(Spiking Neural Network)等。
(2)贝叶斯类(Bayesin):朴素贝叶斯(Naive Bayes)、高斯贝叶斯(Gaussian Naive Bayes)、多项朴素贝叶斯(Multinomial Naive Bayes)、平均-依赖性评估(Averaged One-Dependence Estimators,AODE)
贝叶斯信念网络(Bayesian Belief Network,BBN)、贝叶斯网络(Bayesian Network,BN)等。
(3)决策树(Decision Tree)类:分类和回归树(Classification and Regression Tree,CART)、迭代Dichotomiser3(Iterative Dichotomiser 3, ID3),C4.5算法(C4.5 Algorithm)、C5.0算法(C5.0 Algorithm)、卡方自动交互检测(Chi-squared Automatic Interaction Detection,CHAID)、决策残端(Decision Stump)、ID3算法(ID3 Algorithm)、随机森林(Random Forest)、SLIQ(Supervised Learning in Quest)等。
(4)线性分类器(Linear Classifier)类:Fisher的线性判别(Fisher’s Linear Discriminant)
线性回归(Linear Regression)、逻辑回归(Logistic Regression)、多项逻辑回归(Multionmial Logistic Regression)、朴素贝叶斯分类器(Naive Bayes Classifier)、感知(Perception)、支持向量机(Support Vector Machine)等。

常见的无监督学习类算法包括:
(1) 人工神经网络(Artificial Neural Network)类:生成对抗网络(Generative Adversarial Networks,GAN),前馈神经网络(Feedforward Neural Network)、逻辑学习机(Logic Learning Machine)、自组织映射(Self-organizing Map)等。
(2) 关联规则学习(Association Rule Learning)类:先验算法(Apriori Algorithm)、Eclat算法(Eclat Algorithm)、FP-Growth算法等。
(3)分层聚类算法(Hierarchical Clustering):单连锁聚类(Single-linkage Clustering),概念聚类(Conceptual Clustering)等。
(4)聚类分析(Cluster analysis):BIRCH算法、DBSCAN算法,期望最大化(Expectation-maximization,EM)、模糊聚类(Fuzzy Clustering)、K-means算法、K均值聚类(K-means Clustering)、K-medians聚类、均值漂移算法(Mean-shift)、OPTICS算法等。
(5)异常检测(Anomaly detection)类:K最邻近(K-nearest Neighbor,KNN)算法,局部异常因子算法(Local Outlier Factor,LOF)等。

常见的半监督学习类算法包含:生成模型(Generative Models)、低密度分离(Low-density Separation)、基于图形的方法(Graph-based Methods)、联合训练(Co-training)等。

常见的强化学习类算法包含:Q学习(Q-learning)、状态-行动-奖励-状态-行动(State-Action-Reward-State-Action,SARSA)、DQN(Deep Q Network)、策略梯度算法(Policy Gradients)、基于模型强化学习(Model Based RL)、时序差分学习(Temporal Different Learning)等。

常见的深度学习类算法包含:深度信念网络(Deep Belief Machines)、深度卷积神经网络(Deep Convolutional Neural Networks)、深度递归神经网络(Deep Recurrent Neural Network)、分层时间记忆(Hierarchical Temporal Memory,HTM)、深度波尔兹曼机(Deep Boltzmann Machine,DBM)、栈式自动编码器(Stacked Autoencoder)、生成对抗网络(Generative Adversarial Networks)等。

二、按照解决任务的不同来分类,粗略可以分为二分类算法(Two-class Classification)、多分类算法(Multi-class Classification)、回归算法(Regression)、聚类算法(Clustering)和异常检测(Anomaly Detection)五种。
1.二分类(Two-class Classification)
(1)二分类支持向量机(Two-class SVM):适用于数据特征较多、线性模型的场景。
(2)二分类平均感知器(Two-class Average Perceptron):适用于训练时间短、线性模型的场景。
(3)二分类逻辑回归(Two-class Logistic Regression):适用于训练时间短、线性模型的场景。
(4)二分类贝叶斯点机(Two-class Bayes Point Machine):适用于训练时间短、线性模型的场景。(5)二分类决策森林(Two-class Decision Forest):适用于训练时间短、精准的场景。
(6)二分类提升决策树(Two-class Boosted Decision Tree):适用于训练时间短、精准度高、内存占用量大的场景
(7)二分类决策丛林(Two-class Decision Jungle):适用于训练时间短、精确度高、内存占用量小的场景。
(8)二分类局部深度支持向量机(Two-class Locally Deep SVM):适用于数据特征较多的场景。
(9)二分类神经网络(Two-class Neural Network):适用于精准度高、训练时间较长的场景。

解决多分类问题通常适用三种解决方案:第一种,从数据集和适用方法入手,利用二分类器解决多分类问题;第二种,直接使用具备多分类能力的多分类器;第三种,将二分类器改进成为多分类器今儿解决多分类问题。
常用的算法:
(1)多分类逻辑回归(Multiclass Logistic Regression):适用训练时间短、线性模型的场景。
(2)多分类神经网络(Multiclass Neural Network):适用于精准度高、训练时间较长的场景。
(3)多分类决策森林(Multiclass Decision Forest):适用于精准度高,训练时间短的场景。
(4)多分类决策丛林(Multiclass Decision Jungle):适用于精准度高,内存占用较小的场景。
(5)“一对多”多分类(One-vs-all Multiclass):取决于二分类器效果。

回归
回归问题通常被用来预测具体的数值而非分类。除了返回的结果不同,其他方法与分类问题类似。我们将定量输出,或者连续变量预测称为回归;将定性输出,或者离散变量预测称为分类。长巾的算法有:
(1)排序回归(Ordinal Regression):适用于对数据进行分类排序的场景。
(2)泊松回归(Poission Regression):适用于预测事件次数的场景。
(3)快速森林分位数回归(Fast Forest Quantile Regression):适用于预测分布的场景。
(4)线性回归(Linear Regression):适用于训练时间短、线性模型的场景。
(5)贝叶斯线性回归(Bayesian Linear Regression):适用于线性模型,训练数据量较少的场景。
(6)神经网络回归(Neural Network Regression):适用于精准度高、训练时间较长的场景。
(7)决策森林回归(Decision Forest Regression):适用于精准度高、训练时间短的场景。
(8)提升决策树回归(Boosted Decision Tree Regression):适用于精确度高、训练时间短、内存占用较大的场景。

聚类
聚类的目标是发现数据的潜在规律和结构。聚类通常被用做描述和衡量不同数据源间的相似性,并把数据源分类到不同的簇中。
(1)层次聚类(Hierarchical Clustering):适用于训练时间短、大数据量的场景。
(2)K-means算法:适用于精准度高、训练时间短的场景。
(3)模糊聚类FCM算法(Fuzzy C-means,FCM):适用于精确度高、训练时间短的场景。
(4)SOM神经网络(Self-organizing Feature Map,SOM):适用于运行时间较长的场景。
异常检测
异常检测是指对数据中存在的不正常或非典型的分体进行检测和标志,有时也称为偏差检测。
异常检测看起来和监督学习问题非常相似,都是分类问题。都是对样本的标签进行预测和判断,但是实际上两者的区别非常大,因为异常检测中的正样本(异常点)非常小。常用的算法有:
(1)一分类支持向量机(One-class SVM):适用于数据特征较多的场景。
(2)基于PCA的异常检测(PCA-based Anomaly Detection):适用于训练时间短的场景。

常见的迁移学习类算法包含:归纳式迁移学习(Inctive Transfer Learning) 、直推式迁移学习(Transctive Transfer Learning)、无监督式迁移学习(Unsupervised Transfer Learning)、传递式迁移学习(Transitive Transfer Learning)等。

算法的适用场景:
需要考虑的因素有:
(1)数据量的大小、数据质量和数据本身的特点
(2)机器学习要解决的具体业务场景中问题的本质是什么?
(3)可以接受的计算时间是什么?
(4)算法精度要求有多高?
————————————————

原文链接: https://blog.csdn.net/nfzhlk/article/details/82725769

⑶ FLDA 是人工智能算法么全名中英文是啥啊

应该不是。

人工智能之机器学习体系汇总

  • 监督学习 Supervised learning

  • Fisher的线性判别 Fisher’s linear discriminant

  • 线性回归 Linear regression

  • Logistic回归 Logistic regression

  • 多项Logistic回归 Multinomial logistic regression

  • 朴素贝叶斯分类器 Naive Bayes classifier

  • 感知 Perceptron

  • 支持向量机 Support vector machine

  • 分类和回归树(CART) Classification and regression tree (CART)

  • 迭代Dichotomiser 3(ID3) Iterative Dichotomiser 3(ID3)

  • C4.5算法 C4.5 algorithm

  • C5.0算法 C5.0 algorithm

  • 卡方自动交互检测(CHAID) Chi-squared Automatic Interaction Detection(CHAID)

  • 决策残端 Decision stump

  • ID3算法 ID3 algorithm

  • 随机森林 Random forest

  • SLIQ

  • 朴素贝叶斯 Naive Bayes

  • 高斯贝叶斯 Gaussian Naive Bayes

  • 多项朴素贝叶斯 Multinomial Naive Bayes

  • 平均一依赖性评估(AODE) Averaged One-Dependence Estimators(AODE)

  • 贝叶斯信念网络(BNN) Bayesian Belief Network(BBN)

  • 贝叶斯网络(BN) Bayesian Network(BN)

  • 自动编码器 Autoencoder

  • 反向传播 Backpropagation

  • 玻尔兹曼机 Boltzmann machine

  • 卷积神经网络 Convolutional neural network

  • Hopfield网络 Hopfield network

  • 多层感知器 Multilayer perceptron

  • 径向基函数网络(RBFN) Radial basis function network(RBFN)

  • 受限玻尔兹曼机 Restricted Boltzmann machine

  • 回归神经网络(RNN) Recurrent neural network(RNN)

  • 自组织映射(SOM) Self-organizing map(SOM)

  • 尖峰神经网络 Spiking neural network

  • 人工神经网络 Artificial neural network

  • 贝叶斯 Bayesian

  • 决策树 Decision Tree

  • 线性分类 Linear classifier

  • 无监督学习 Unsupervised learning

  • k-最近邻算法(K-NN) k-nearest neighbors classification(K-NN)

  • 局部异常因子 Local outlier factor

  • BIRCH

  • DBSCAN

  • 期望最大化(EM) Expectation-maximization(EM)

  • 模糊聚类 Fuzzy clustering

  • K-means算法 K-means algorithm

  • k-均值聚类 K-means clustering

  • k-位数 K-medians

  • 平均移 Mean-shift

  • OPTICS算法 OPTICS algorithm

  • 单连锁聚类 Single-linkage clustering

  • 概念聚类 Conceptual clustering

  • 先验算法 Apriori algorithm

  • Eclat算法 Eclat algorithm

  • FP-growth算法 FP-growth algorithm

  • 对抗生成网络

  • 前馈神经网络 Feedforward neurral network

  • 逻辑学习机 Logic learning machine

  • 自组织映射 Self-organizing map

  • 极端学习机 Extreme learning machine

  • 人工神经网络 Artificial neural network

  • 关联规则学习 Association rule learning

  • 分层聚类 Hierarchical clustering

  • 聚类分析 Cluster analysis

  • 异常检测 Anomaly detection

  • 半监督学习 Semi-supervised learning

  • 生成模型 Generative models

  • 低密度分离 Low-density separation

  • 基于图形的方法 Graph-based methods

  • 联合训练 Co-training

  • 强化学习 Reinforcement learning

  • 时间差分学习 Temporal difference learning

  • Q学习 Q-learning

  • 学习自动 Learning Automata

  • 状态-行动-回馈-状态-行动(SARSA) State-Action-Reward-State-Action(SARSA)

  • 深度学习 Deep learning

  • 深度信念网络 Deep belief machines

  • 深度卷积神经网络 Deep Convolutional neural networks

  • 深度递归神经网络 Deep Recurrent neural networks

  • 分层时间记忆 Hierarchical temporal memory

  • 深度玻尔兹曼机(DBM) Deep Boltzmann Machine(DBM)

  • 堆叠自动编码器 Stacked Boltzmann Machine

  • 生成式对抗网络 Generative adversarial networks

  • 迁移学习 Transfer learning

  • 传递式迁移学习 Transitive Transfer Learning

  • 其他

  • 主成分分析(PCA) Principal component analysis(PCA)

  • 主成分回归(PCR) Principal component regression(PCR)

  • 因子分析 Factor analysis

  • Bootstrap aggregating (Bagging)

  • AdaBoost

  • 梯度提升机(GBM) Gradient boosting machine(GBM)

  • 梯度提升决策树(GBRT) Gradient boosted decision tree(GBRT)

  • 集成学习算法

  • 降维

⑷ 谁有用matlab实现的FP-Growth 算法,谢谢大侠啦! 我从CSDN下了一个运行不了,出了如下错误:

a=magic(6);
b=0;
for i=1:1:6
for j=1:1:6
b=a(i,j)+b;
end
end
c=b/36;
b,c

⑸ 求关联规则中FPgrowth算法的R语言代码

安装格式化插件:1.按Ctrl+Shift+P调出命令面板2.输入install调出Pac

⑹ 大数据学习路线是什么

主要分为 7 个阶段:入门知识 → Java 基础 → Scala 基础 → Hadoop 技术模块 → Hadoop 项目实战 → Spark 技术模块 → 大数据项目实战。

阶段一:学习入门知识

这一部分主要针对的是新手,在学习之前需要先掌握基本的数据库知识。MySQL 是一个 DBMS(数据库管理系统),是最流行的关系型数据库管理系统(关系数据库,是建立在关系数据库模型基础上的数据库,借助于集合代数等概念和方法来处理数据库中的数据)。

MongoDB 是 IT 行业非常流行的一种非关系型数据库(NoSQL),其灵活的数据存储方式备受当前 IT 从业人员的青睐。

而 Redis 是一个开源、支持网络、基于内存、键值对存储数据库。两者都非常有必要了解。

1、Linux 基础入门(新版)

2、Vim编辑器

3、Git 实战教程

4、MySQL 基础课程

5、MongoDB 基础教程

6、Redis基础教程

阶段二:Java基础

Java 是目前使用最为广泛的编程语言,它具有的众多特性,特别适合作为大数据应用的开发语言。

Java 语言具有功能强大和简单易用两个特征,跨平台应用能力比 C、C++ 更易用,更容易上手。同时还具有简单性、面向对象、分布式、健壮性、安全性、平台独立与可移植性、多线程、动态性等特点。最重要的一点是 Hadoop 是用 Java 编写的。

1、Java编程语言(新版)

2、Java进阶之设计模式

3、J2SE核心开发实战

4、JDK 核心 API

5、JDBC 入门教程

6、Java 8 新特性指南

阶段三:Scala基础

Scala 是一种多范式的编程语言,其设计的初衷是要集成面向对象编程和函数式编程的各种特性。由于 Scala 运行于 Java 平台(Java 虚拟机),并兼容现有的Java 程序,所以 Scala 可以和大数据相关的基于 JVM 的系统很好的集成。

1、Scala 开发教程

2、Scala 专题教程 - Case Class和模式匹配

3、Scala 专题教程 - 隐式变换和隐式参数

4、Scala 专题教程 - 抽象成员

5、Scala 专题教程 - Extractor

6、Scala 开发二十四点游戏

阶段四:Hadoop技术模块

Hadoop 是一款支持数据密集型分布式应用并以 Apache 2.0 许可协议发布的开源软件框架,它能搭建大型数据仓库,PB 级别数据的存储、处理、分析、统计等业务。编程语言你可以选,但 Hadoop 一定是大数据必学内容。

1、Hadoop入门进阶课程

2、Hadoop部署及管理

3、HBASE 教程

4、Hadoop 分布式文件系统--导入和导出数据

5、使用 Flume 收集数据

阶段五:Hadoop项目实战

当然,学完理论就要进行动手实战了,Hadoop 项目实战可以帮助加深对内容的理解,并锻炼动手能力。

1、Hadoop 图处理--《hadoop应用框架》

阶段六:Spark技术模块

Spark 和 Hadoop 都是大数据框架。Hadoop 提供了 Spark 所没有的功能特性,比如分布式文件系统,而 Spark 为需要它的那些数据集提供了实时内存处理。所以学习 Spark 也非常必要。

1、Spark

2、x 快速入门教程

2、Spark 大数据动手实验

3、Spark 基础之 GraphX 图计算框架学习

4、Spark 基础之 DataFrame 基本概念学习

5、Spark 基础之 DataFrame 高阶应用技巧

6、Spark 基础之 Streaming 快速上手

7、Spark 基础之 SQL 快速上手

8、Spark 基础之使用机器学习库 MLlib

9、Spark 基础之 SparkR 快速上手

10、流式实时日志分析系统--《Spark 最佳实践》

11、使用 Spark 和 D3.js 分析航班大数据

阶段七:大数据项目实战

最后阶段提供了大数据实战项目,这是对常用技能的系统运用,例如使用常用的机器学习进行建模、分析和运算,这是成为大数据工程师过程中的重要一步。

1、Ebay 在线拍卖数据分析

2、流式实时日志分析系统--《Spark 最佳实践》

3、大数据带你挖掘打车的秘籍

4、Twitter数据情感分析

5、使用 Spark 进行流量日志分析

6、Spark流式计算电商商品关注度

7、Spark的模式挖掘-FPGrowth算法

(6)fpgrowth算法c语言扩展阅读:

大数据技术的具体内容:

分布式存储计算架构(强烈推荐:Hadoop)

分布式程序设计(包含:Apache Pig或者Hive)

分布式文件系统(比如:Google GFS)

多种存储模型,主要包含文档,图,键值,时间序列这几种存储模型(比如:BigTable,Apollo,DynamoDB等)

数据收集架构(比如:Kinesis,Kafla)

集成开发环境(比如:R-Studio)

程序开发辅助工具(比如:大量的第三方开发辅助工具)

调度协调架构工具(比如:Apache Aurora)

机器学习(常用的有Apache Mahout 或 H2O)

托管管理(比如:Apache Hadoop Benchmarking)

安全管理(常用的有Gateway)

大数据系统部署(可以看下Apache Ambari)

搜索引擎架构(学习或者企业都建议使用Lucene搜索引擎)

多种数据库的演变(MySQL/Memcached)

商业智能(大力推荐:Jaspersoft)

数据可视化(这个工具就很多了,可以根据实际需要来选择)

大数据处理算法(10大经典算法)



⑺ fpgrowth算法属于数据分析吗

fpgrowth算法是数据分析系列中的一种。FP-growth,即FrequentPatternGrowth,它通过构建FP树(即FrequentPatternTree)这样的数据结构,巧妙得将数据存储在FP树中,只需要在构建FP树时扫描数据库两次,后续处理就不需要再访问数据库了。这种特性使得FP-growth算法比Apriori算法速度快。FP树是一种前缀树,由频繁项的前缀构成。