当前位置:首页 » 编程语言 » c语言怎么设置函数运行时间
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

c语言怎么设置函数运行时间

发布时间: 2022-09-08 19:51:18

c语言中怎样测试函数执行时间

有4种方法可以达成测算程序运行时间的目的。
它们分别是使用clock, times, gettimeofday, getrusage来实现的。
下面就来逐一介绍,并比较它们的优劣点。

系统测试环境:

VirtualBox (Ubuntu 9.10)
gcc version 4.4.1
libc6 2.10.1-0ubuntu16
Core Duo T2500 2GMHz

例程如下:
只要修改第11行的定义值,就可以使用不同的测量方法了。

#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>
#include <stdio.h>
#include <time.h>
#define TEST_BY_CLOCK (char)(0x00)
#define TEST_BY_TIMES (char)(0x01)
#define TEST_BY_GETTIMEOFDAY (char)(0x02)
#define TEST_BY_GETRUSAGE (char)(0x03)
#define TEST_METHOD (TEST_BY_GETTIMEOFDAY)
#define COORDINATION_X (int)(1024)
#define COORDINATION_Y (int)(1024)
static int g_Matrix[COORDINATION_X][COORDINATION_Y];
double getTimeval()
{
struct rusage stRusage;
struct timeval stTimeval;
if (TEST_METHOD == TEST_BY_GETTIMEOFDAY)
{
gettimeofday(&stTimeval, NULL);
}
else if (TEST_METHOD == TEST_BY_GETRUSAGE)

{
getrusage(RUSAGE_SELF, &stRusage);
stTimeval = stRusage.ru_utime;
}
return stTimeval.tv_sec + (double)stTimeval.tv_usec*1E-6;
}
int main()
{
int i, j;
int n = 0;
clock_t clockT1, clockT2;
double doubleT1, doubleT2;
if (TEST_METHOD == TEST_BY_CLOCK)
{
clockT1 = clock();
}
else if (TEST_METHOD == TEST_BY_TIMES)
{
times(&clockT1);
}
else if (TEST_METHOD == TEST_BY_GETTIMEOFDAY)
{
doubleT1 = getTimeval();
}
else if (TEST_METHOD == TEST_BY_GETRUSAGE)
{
doubleT1 = getTimeval();
}
for (i = 0; i < COORDINATION_X; i++)
{
for (j = 0; j < COORDINATION_Y; j++)
{
g_Matrix[i][j] = i * j;
}
}
if (TEST_METHOD == TEST_BY_CLOCK)
{
clockT2 = clock();
printf("Time result tested by clock = %10.30f\n",(double)(clockT2 - clockT1)/CLOCKS_PER_SEC);
}
else if (TEST_METHOD == TEST_BY_TIMES)
{
times(&clockT2);
printf("Time result tested by times = %10.30f\n", (double)(clockT2 - clockT1)/sysconf(_SC_CLK_TCK));
}
else if (TEST_METHOD == TEST_BY_GETTIMEOFDAY)
{
doubleT2 = getTimeval();
printf("Time result tested by gettimeofday = %10.30f\n",(double)(doubleT2 - doubleT1));
}
else if (TEST_METHOD == TEST_BY_GETRUSAGE)
{
doubleT2 = getTimeval();
printf("Time result tested by getrusage = %10.70f\n", (double)(doubleT2 - doubleT1));
}
return 0;
}

1. 使用clock的方法:

clock是ANSI C的标准库函数,关于这个函数需要说明几点。

首先,它返回的是CPU耗费在本程序上的时间。也就是说,途中sleep的话,由于CPU资源被释放,那段时间将不被计算在内。

其次,得到的返回值其实就是耗费在本程序上的CPU时间片的数量,也就是Clock Tick的值。该值必须除以CLOCKS_PER_SEC这个宏值,才
能最后得到ss.mmnn格式的运行时间。在POSIX兼容系统中,CLOCKS_PER_SEC的值为1,000,000的,也就是
1MHz。

最后,使用这个函数能达到的精度大约为10ms。

2. 使用times的方法:

times的用法基本和clock类似,同样是取得CPU时间片的数量,所不同的是要除以的时间单位值为sysconf(_SC_CLK_TCK)。

3. 使用gettimeofday的方法:

用gettimeofday直接提取硬件时钟进行运算,得到的结果的精度相比前两种方法提高了很多。

但是也正由于它提取硬件时钟的原因,这个方法只能计算程序开始时间和结束时间的差值。而此时系统中如果在运行其他的后台程序,可能会影响到最终结果的值。如果后台繁忙,系统dispatch过多的话,并不能完全真实反映被测量函数的运行时间。

4. 使用getrusage的方法:

getrusage得到的是程序对系统资源的占用信息。只要指定了RUSAGE_SELF,就可以得到程序本身运行所占用的系统时间。

㈡ C语言求一个程序运行时间

C/C++中的计时函数是clock()。

所以,可以用clock函数来计算的运行一个循环、程序或者处理其它事件到底花了多少时间,具体参考代码如下:

#include“stdio.h”
#include“stdlib.h”
#include“time.h”

intmain(void)
{
longi=10000000L;
clock_tstart,finish;
doubleration;
/*测量一个事件持续的时间*/
printf("Timetodo%ldemptyloopsis",i);
start=clock();
while(i--);
finish=clock();
ration=(double)(finish-start)/CLOCKS_PER_SEC;
printf("%fseconds ",ration);
system("pause");
}

㈢ 怎么用C语言来计算一个函数调用了多久

可以通过计算时间差的方法来计算一个函数调用了多久。

具体细节如下:

  1. 计算函数执行时间是评价程序效率的一种常用方法。

  2. 可以在调用一个函数之间获取当前时间,在调用之后再次获取当前时间,然后计算二者的时间差。

  3. 但是如果一个函数执行时间非常短,会得到两个时间差为0的情况,此时可以修改程序为调用该函数1000次,然后把时间差除以1000。

  4. 得到当前时间的方法是:首先程序最前面添加头文件#include<time.h>,然后通过调用time(NULL)获取当前时间。

㈣ 怎么用C语言让一个程序在规定时间内运行

多线程:一个线程检测时间,一个线程正常执行要做的工作。

㈤ 用C语言,怎么算出主函数调用函数时,该函数的执行时间。举个例子,谢谢啊。请高手帮忙

int main()
{
int TimeStart = GetTickCount();
Sum();//这个是你要调用的函数
int TimeEnd = GetTickCount();
int Time = TimeEnd - TimeStart;
//Time的值 就是调用Sum()函数所用的时间
}
简单的写了一下,希望能帮到你

㈥ c语言clock怎么用啊 算程序运行时间谢谢大家了

#include<stdio.h>
#include<stdlib.h>
#include<time.h>
void main()
{
clock_t start, finish;
double ration=0;
start = clock();

/*******************************
**********添加代码**************
*******************************/

finish = clock();
ration = (double)(finish - start) / CLOCKS_PER_SEC;
printf( "%f seconds\n", ration );

}

把你需要计算时间的代码添加进去就可以结算出时间了。有不明白的可以继续问我。

㈦ 如何使用C语言settime函数(就是用来设置系统的时间)

1、函数名:
settime

能:
设置系统时间
原型:void
settime
2、例程:
#include <stdio.h>
#include <dos.h>
int main(void)
{
struct time t;
gettime(&t);
printf("The current minute is: %d\n", t.ti_min);
printf("The current hour is: %d\n", t.ti_hour);
printf("The current hundredth of a second is: %d\n", t.ti_hund);
printf("The current second is: %d\n", t.ti_sec);
/* Add one to the minutes struct element and then call settime */
t.ti_min++;
settime(&t); //设置系统时间
return 0;
}

㈧ C语言中时间的函数

一.概念

在C/C++中,通过学习许多C/C++库,你可以有很多操作、使用时间的方法。但在这之前你需要了解一些“时间”和“日期”的概念,主要有以下几个:

1. 协调世界时,又称为世界标准时间,也就是大家所熟知的格林威治标准时间(Greenwich Mean Time,GMT)。比如,中国内地的时间与UTC的时差为+8,也就是UTC+8。美国是UTC-5。

2. 日历时间,是用“从一个标准时间点到此时的时间经过的秒数”来表示的时间。这个标准时间点对不同的编译器来说会有所不同,但对一个编译系统来说,这个标准时间点是不变的,该编译系统中的时间对应的日历时间都通过该标准时间点来衡量,所以可以说日历时间是“相对时间”,但是无论你在哪一个时区,在同一时刻对同一个标准时间点来说,日历时间都是一样的。

3. 时间点。时间点在标准C/C++中是一个整数,它用此时的时间和标准时间点相差的秒数(即日历时间)来表示。

4. 时钟计时单元(而不把它叫做时钟滴答次数),一个时钟计时单元的时间长短是由CPU控制的。一个clock tick不是CPU的一个时钟周期,而是C/C++的一个基本计时单位。

我们可以使用ANSI标准库中的time.h头文件。这个头文件中定义的时间和日期所使用的方法,无论是在结构定义,还是命名,都具有明显的C语言风格。下面,我将说明在C/C++中怎样使用日期的时间功能。

二. 介绍

1. 计时

C/C++中的计时函数是clock(),而与其相关的数据类型是clock_t。在MSDN中,查得对clock函数定义如下:

clock_t clock( void );

这个函数返回从“开启这个程序进程”到“程序中调用clock()函数”时之间的CPU时钟计时单元(clock tick)数,在MSDN中称之为挂钟时间(wal-clock)。其中clock_t是用来保存时间的数据类型,在time.h文件中,我们可以找到对它的定义:

#ifndef _CLOCK_T_DEFINED

typedef long clock_t;

#define _CLOCK_T_DEFINED

#endif

很明显,clock_t是一个长整形数。在time.h文件中,还定义了一个常量CLOCKS_PER_SEC,它用来表示一秒钟会有多少个时钟计时单元,其定义如下:

#define CLOCKS_PER_SEC ((clock_t)1000)

可以看到每过千分之一秒(1毫秒),调用clock()函数返回的值就加1。下面举个例子,你可以使用公式clock()/CLOCKS_PER_SEC来计算一个进程自身的运行时间:

void elapsed_time()

{

printf("Elapsed time:%u secs. ",clock()/CLOCKS_PER_SEC);

}

当然,你也可以用clock函数来计算你的机器运行一个循环或者处理其它事件到底花了多少时间:

/* 测量一个事件持续的时间*/

/* Date : 10/24/2007 */

#include "stdio.h"

#include "stdlib.h"

#include "time.h"

int main( void )

{

long i = 10000000L;

clock_t start, finish;

double ration;

/* 测量一个事件持续的时间*/

printf( "Time to do %ld empty loops is ", i );

start = clock();

while( i-- ) ;

finish = clock();

ration = (double)(finish - start) / CLOCKS_PER_SEC;

printf( "%f seconds ", ration );

system("pause");

}

在笔者的机器上,运行结果如下:

Time to do 10000000 empty loops is 0.03000 seconds

上面我们看到时钟计时单元的长度为1毫秒,那么计时的精度也为1毫秒,那么我们可不可以通过改变CLOCKS_PER_SEC的定义,通过把它定义的大一些,从而使计时精度更高呢?通过尝试,你会发现这样是不行的。在标准C/C++中,最小的计时单位是一毫秒。

2.与日期和时间相关的数据结构

在标准C/C++中,我们可通过tm结构来获得日期和时间,tm结构在time.h中的定义如下:

#ifndef _TM_DEFINED

struct tm {

int tm_sec; /* 秒 – 取值区间为[0,59] */

int tm_min; /* 分 - 取值区间为[0,59] */

int tm_hour; /* 时 - 取值区间为[0,23] */

int tm_mday; /* 一个月中的日期 - 取值区间为[1,31] */

int tm_mon; /* 月份(从一月开始,0代表一月) - 取值区间为[0,11] */

int tm_year; /* 年份,其值等于实际年份减去1900 */

int tm_wday; /* 星期 – 取值区间为[0,6],其中0代表星期天,1代表星期一,以此类推 */

int tm_yday; /* 从每年的1月1日开始的天数 – 取值区间为[0,365],其中0代表1月1日,1代表1月2日,以此类推 */

int tm_isdst; /* 夏令时标识符,实行夏令时的时候,tm_isdst为正。不实行夏令时的进候,tm_isdst为0;不了解情况时,tm_isdst()为负。*/

};

#define _TM_DEFINED

#endif

ANSI C标准称使用tm结构的这种时间表示为分解时间(broken-down time)。

而日历时间(Calendar Time)是通过time_t数据类型来表示的,用time_t表示的时间(日历时间)是从一个时间点(例如:1970年1月1日0时0分0秒)到此时的秒数。在time.h中,我们也可以看到time_t是一个长整型数:

#ifndef _TIME_T_DEFINED

typedef long time_t; /* 时间值 */

#define _TIME_T_DEFINED /* 避免重复定义 time_t */

#endif

大家可能会产生疑问:既然time_t实际上是长整型,到未来的某一天,从一个时间点(一般是1970年1月1日0时0分0秒)到那时的秒数(即日历时间)超出了长整形所能表示的数的范围怎么办?对time_t数据类型的值来说,它所表示的时间不能晚于2038年1月18日19时14分07秒。为了能够表示更久远的时间,一些编译器厂商引入了64位甚至更长的整形数来保存日历时间。比如微软在Visual C++中采用了__time64_t数据类型来保存日历时间,并通过_time64()函数来获得日历时间(而不是通过使用32位字的time()函数),这样就可以通过该数据类型保存3001年1月1日0时0分0秒(不包括该时间点)之前的时间。

在time.h头文件中,我们还可以看到一些函数,它们都是以time_t为参数类型或返回值类型的函数:

double difftime(time_t time1, time_t time0);

time_t mktime(struct tm * timeptr);

time_t time(time_t * timer);

char * asctime(const struct tm * timeptr);

char * ctime(const time_t *timer);

此外,time.h还提供了两种不同的函数将日历时间(一个用time_t表示的整数)转换为我们平时看到的把年月日时分秒分开显示的时间格式tm:

struct tm * gmtime(const time_t *timer);

struct tm * localtime(const time_t * timer);

通过查阅MSDN,我们可以知道Microsoft C/C++ 7.0中时间点的值(time_t对象的值)是从1899年12月31日0时0分0秒到该时间点所经过的秒数,而其它各种版本的Microsoft C/C++和所有不同版本的Visual C++都是计算的从1970年1月1日0时0分0秒到该时间点所经过的秒数。

3.与日期和时间相关的函数及应用

在本节,我将向大家展示怎样利用time.h中声明的函数对时间进行操作。这些操作包括取当前时间、计算时间间隔、以不同的形式显示时间等内容。

4. 获得日历时间

我们可以通过time()函数来获得日历时间(Calendar Time),其原型为:

time_t time(time_t * timer);

如果你已经声明了参数timer,你可以从参数timer返回现在的日历时间,同时也可以通过返回值返回现在的日历时间,即从一个时间点(例如:1970年1月1日0时0分0秒)到现在此时的秒数。如果参数为空(NUL),函数将只通过返回值返回现在的日历时间,比如下面这个例子用来显示当前的日历时间:

运行的结果与当时的时间有关,我当时运行的'结果是:

/* Date : 10/24/2007 */

/* Author: Eman Lee */

#include "stdio.h"

#include "stdlib.h"

#include "time.h"

int main(void)

{

time_t lt;

lt =time(NULL);

printf("The Calendar Time now is %d ",lt);

return 0;

}

The Calendar Time now is 1122707619

其中1122707619就是我运行程序时的日历时间。即从1970-01-01 08:00:00到此时的秒数。

5. 获得日期和时间

这里说的日期和时间就是我们平时所说的年、月、日、时、分、秒等信息。从第2节我们已经知道这些信息都保存在一个名为tm的结构体中,那么如何将一个日历时间保存为一个tm结构的对象呢?

其中可以使用的函数是gmtime()和localtime(),这两个函数的原型为:

struct tm * gmtime(const time_t *timer);

struct tm * localtime(const time_t * timer);

其中gmtime()函数是将日历时间转化为世界标准时间(即格林尼治时间),并返回一个tm结构体来保存这个时间,而localtime()函数是将日历时间转化为本地时间。比如现在用gmtime()函数获得的世界标准时间是2005年7月30日7点18分20秒,那么我用localtime()函数在中国地区获得的本地时间会比世界标准时间晚8个小时,即2005年7月30日15点18分20秒。下面是个例子:

//本地时间,世界标准时间

/* Date : 10/24/2007 */

/* Author: Eman Lee */

#include "stdio.h"

#include "stdlib.h"

#include "time.h"

int main(void)

{

struct tm *local;

time_t t;

t=time(NULL);

local=localtime(&t);

printf("Local hour is: %d:%d:%d ",local->tm_hour,local->tm_min,local->tm_sec);

local=gmtime(&t);

printf("UTC hour is: %d:%d:%d ",local->tm_hour,local->tm_min,local->tm_sec);

return 0;

}

运行结果是:

Local hour is: 23:17:47

UTC hour is: 15:17:47

6. 固定的时间格式

我们可以通过asctime()函数和ctime()函数将时间以固定的格式显示出来,两者的返回值都是char*型的字符串。返回的时间格式为:

星期几 月份 日期 时:分:秒 年

例如:Wed Jan 02 02:03:55 1980

其中 是一个换行符,是一个空字符,表示字符串结束。下面是两个函数的原型:

char * asctime(const struct tm * timeptr);

char * ctime(const time_t *timer);

其中asctime()函数是通过tm结构来生成具有固定格式的保存时间信息的字符串,而ctime()是通过日历时间来生成时间字符串。这样的话,asctime()函数只是把tm结构对象中的各个域填到时间字符串的相应位置就行了,而ctime()函数需要先参照本地的时间设置,把日历时间转化为本地时间,然后再生成格式化后的字符串。在下面,如果t是一个非空的time_t变量的话,那么:

printf(ctime(&t));

等价于:

struct tm *ptr;

ptr=localtime(&t);

printf(asctime(ptr));

那么,下面这个程序的两条printf语句输出的结果就是不同的了(除非你将本地时区设为世界标准时间所在的时区):

//本地时间,世界标准时间

/* Date : 10/24/2007 */

/* Author: Eman Lee */

#include "stdio.h"

#include "stdlib.h"

#include "time.h"

int main(void)

{

struct tm *ptr;

time_t lt;

lt =time(NULL);

ptr=gmtime(<);

printf(asctime(ptr));

printf(ctime(<));

return 0;

}

运行结果:

Sat Jul 30 08:43:03 2005

Sat Jul 30 16:43:03 2005

7. 自定义时间格式

我们可以使用strftime()函数将时间格式化为我们想要的格式。它的原型如下:

size_t strftime(

char *strDest,

size_t maxsize,

const char *format,

const struct tm *timeptr

);

我们可以根据format指向字符串中格式命令把timeptr中保存的时间信息放在strDest指向的字符串中,最多向strDest中存放maxsize个字符。该函数返回向strDest指向的字符串中放置的字符数。

函数strftime()的操作有些类似于sprintf():识别以百分号(%)开始的格式命令集合,格式化输出结果放在一个字符串中。格式化命令说明串strDest中各种日期和时间信息的确切表示方法。格式串中的其他字符原样放进串中。格式命令列在下面,它们是区分大小写的。

%a 星期几的简写

%A 星期几的全称

%b 月分的简写

%B 月份的全称

%c 标准的日期的时间串

%C 年份的后两位数字

%d 十进制表示的每月的第几天

%D 月/天/年

%e 在两字符域中,十进制表示的每月的第几天

%F 年-月-日

%g 年份的后两位数字,使用基于周的年

%G 年分,使用基于周的年

%h 简写的月份名

%H 24小时制的小时

%I 12小时制的小时

%j 十进制表示的每年的第几天

%m 十进制表示的月份

%M 十时制表示的分钟数

%n 新行符

%p 本地的AM或PM的等价显示

%r 12小时的时间

%R 显示小时和分钟:hh:mm

%S 十进制的秒数

%t 水平制表符

%T 显示时分秒:hh:mm:ss

%u 每周的第几天,星期一为第一天 (值从0到6,星期一为0)

%U 第年的第几周,把星期日做为第一天(值从0到53)

%V 每年的第几周,使用基于周的年

%w 十进制表示的星期几(值从0到6,星期天为0)

%W 每年的第几周,把星期一做为第一天(值从0到53)

%x 标准的日期串

%X 标准的时间串

%y 不带世纪的十进制年份(值从0到99)

%Y 带世纪部分的十进制年份

%z,%Z 时区名称,如果不能得到时区名称则返回空字符。

%% 百分号

如果想显示现在是几点了,并以12小时制显示,就象下面这段程序:

//显示现在是几点了,并以12小时制显示

/* Date : 10/24/2007 */

/* Author: Eman Lee */

#include "stdio.h"

#include "stdlib.h"

#include "time.h"

int main(void)

{

struct tm *ptr;

time_t localTime;

char str[80];

localTime=time(NULL);

ptr=localtime(&localTime);

strftime(str,100,"It is now %I %p ",ptr);

printf(str);

return 0;

}

其运行结果为:

It is now 4PM

而下面的程序则显示当前的完整日期:

//显示当前的完整日期

/* Date : 10/24/2007 */

/* Author: Eman Lee */

#include "stdio.h"

#include "stdlib.h"

#include "time.h"

void main( void )

{

struct tm *newtime;

char tmpbuf[128];

time_t localTime1;

time( &localTime1 );

newtime=localtime(&localTime1);

strftime( tmpbuf, 128, "Today is %A, day %d of %B in the year %Y. ", newtime);

printf(tmpbuf);

}

运行结果:

Today is Saturday, day 30 of July in the year 2005.

8. 计算持续时间的长度

有时候在实际应用中要计算一个事件持续的时间长度,比如计算打字速度。在第1节计时部分中,我已经用clock函数举了一个例子。Clock()函数可以精确到毫秒级。同时,我们也可以使用difftime()函数,但它只能精确到秒。该函数的定义如下:

double difftime(time_t time1, time_t time0);

虽然该函数返回的以秒计算的时间间隔是double类型的,但这并不说明该时间具有同double一样的精确度,这是由它的参数觉得的(time_t是以秒为单位计算的)。比如下面一段程序:

//计算持续时间的长度

/* Date : 10/24/2007 */

/* Author: Eman Lee */

#include "stdio.h"

#include "stdlib.h"

#include "time.h"

int main(void)

{

time_t start,end;

start = time(NULL);

system("pause");

end = time(NULL);

printf("The pause used %f seconds. ",difftime(end,start));//<-

system("pause");

return 0;

}

运行结果为:

请按任意键继续. . .

The pause used 2.000000 seconds.

请按任意键继续. . .

可以想象,暂停的时间并不那么巧是整整2秒钟。其实,你将上面程序的带有“//<-”注释的一行用下面的一行代码替换:

printf("The pause used %f seconds. ",end-start);

其运行结果是一样的。

9. 分解时间转化为日历时间

这里说的分解时间就是以年、月、日、时、分、秒等分量保存的时间结构,在C/C++中是tm结构。我们可以使用mktime()函数将用tm结构表示的时间转化为日历时间。其函数原型如下:

time_t mktime(struct tm * timeptr);

其返回值就是转化后的日历时间。这样我们就可以先制定一个分解时间,然后对这个时间进行操作了,下面的例子可以计算出1997年7月1日是星期几:

//计算出1997年7月1日是星期几

/* Date : 10/24/2007 */

/* Author: Eman Lee */

#include "stdio.h"

#include "stdlib.h"

#include "time.h"

int main(void)

{

struct tm time;

time_t t_of_day;

time.tm_year=1997-1900;

time.tm_mon=6;

time.tm_mday=1;

time.tm_hour=0;

time.tm_min=0;

time.tm_sec=1;

time.tm_isdst=0;

t_of_day=mktime(&time);

printf(ctime(&t_of_day));

return 0;

}

运行结果:

Tue Jul 01 00:00:01 1997

有了mktime()函数,是不是我们可以操作现在之前的任何时间呢?你可以通过这种办法算出1945年8月15号是星期几吗?答案是否定的。因为这个时间在1970年1月1日之前,所以在大多数编译器中,这样的程序虽然可以编译通过,但运行时会异常终止。

注:linux系统时间如果转换为 time_t 类型,都是从1970-01-01 08:00:00 开始计算

㈨ C语言如何实现在每天某个特定时间执行某个函数

Windows提供了定时器,帮助编写定期发送消息的程序。定时器一般通过一下两中方式通知应用程序间隔时间已到。
⑴ 给指定窗口发送WM_TIMER消息,也就是下面的给出在窗口类中使用的方法。
⑵ 调用一个应用程序定义的回调函数,也就是在非窗口类中使用方法。

4.1 在窗口类中使用定时器
在窗口类中使用定时器比较简单。假如我们想让这个窗口上放置一个电子钟,这样我们必须每1秒或者0.5秒钟去更新显示显见。按照下面的步骤,就可以完成这个电子钟程序,并且知道如何在窗口类中使用定时器:
首先做在我们新建项目的主窗口上添加一个Label控件,用来显示时间。接着
⑴ 用函数SetTimer设置一个定时器,函数格式如下: UINT SetTimer( UINT nIDEvent,
UINT nElapse,
void (CALLBACK EXPORT* lpfnTimer)(HWND, UINT, UINT, DWORD));

这个函数是CWnd类的一个成员函数,其参数意义如下:

nIDEvent: 为设定的定时器指定的定时器标志值,设置多个定时器的时候,每个定时器的值都不同,消息处理函数就是通过这个参数来判断是哪个定时器的。这里我们设定为1。
nElapse: 指定发送消息的时间间隔,单位是毫秒。这里我们设定为1000,也就是一秒。
lpfnTimer: 指定定时器消息由哪个回调函数来执行,如果为空,WM_TIMER将加入到应用程序的消息队列中,并由CWnd类来处理。这里我们设定为NULL。
最后代码如下:SetTimer(1,1000,NULL);
⑵ 通过Class Wizard给主窗口类添加一个WM_TIMER消息的映射函数,默认为OnTimer(UINT nIDEvent)。
⑶ 然后我们就可以在OnTimer(UINT nIDEvent)的函数实现中添加我们的代码了。参数nIDEvent就是我们先前设定定时器时指定的标志值,在这里我们就可以通过它来区别不同的定时器,而作出不同的处理。添加的代码如下:switch(nIDEvent)
{
case 1:
CTime m_SysTime = CTime::GetCurrentTime();
SetDlgItemText(IDC_STATIC_TIME,m_SysTime.Format("%Y年%m月%d日 %H:%M:%S"));
break;
}

代码中的IDC_STATIC_TIME就是我们先前添加的Label控件的ID。
至此,我们的电子钟的程序就完成了。

4.2 在非窗口类中使用定时器
在非窗口类中使用定时器就要用到前面我们介绍到的所有知识了。因为是无窗口类,所以我们不能使用在窗口类中用消息映射的方法来设置定时器,这时候就必须要用到回调函数。又因为回调函数是具有一定格式的,它的参数不能由我们自己来决定,所以我们没办法利用参数将this传递进去。可是静态成员函数是可以访问静态成员变量的,因此我们可以把this保存在一个静态成员变量中,在静态成员函数中就可以使用该指针,对于只有一个实例的指针,这种方法还是行的通的,由于在一个类中该静态成员变量只有一个拷贝,对于有多个实例的类,我们就不能用区分了。解决的办法就是把定时器标志值作为关键字,类实例的指针作为项,保存在一个静态映射表中,因为是标志值是唯一的,用它就可以快速检索出映射表中对应的该实例的指针,因为是静态的,所以回调函数是可以访问他们的。
首先介绍一下用于设置定时的函数:

UINT SetTimer(
HWND hWnd, // handle of window for timer messages
UINT nIDEvent, // timer identifier
UINT uElapse, // time-out value
TIMERPROC lpTimerFunc // address of timer procere
);

其中的参数意义如下:
hWnd: 指定与定时器相关联的窗口的句柄。这里我们设为NULL。
nIDEvent: 定时器标志值,如果hWnd参数为NULL,它将会被跳过,所以我们也设定为NULL。
uElapse: 指定发送消息的时间间隔,单位是毫秒。这里我们不指定,用参数传入。
lpTimerFunc: 指定当间隔时间到的时候被统治的函数的地址,也就是这里的回调函数。这个函数的格式必须为以下格式:
VOID CALLBACK TimerProc(
HWND hwnd, // handle of window for timer messages
UINT uMsg, // WM_TIMER message
UINT idEvent, // timer identifier
DWORD dwTime // current system time
);

其中的参数意义如下:
hwnd: 与定时器相关联的窗口的句柄。
uMsg: WM_TIMER消息。
idEvent: 定时器标志值。
deTime: 系统启动后所以经过的时间,单位毫秒。
最后设定定时器的代码为:m_nTimerID = SetTimer(NULL,NULL,nElapse,MyTimerProc);
先通过Class Wizard创建一个非窗口类,选择Generic Class类类型,类名称为CMyTimer,该类的作用是每隔一段时间提醒我们做某件事情,然后用这个类创建三个实例,每个实例以不同的时间间隔提醒我们做不同的事情。
MyTimer.h#include

class CMyTimer;
//用模板类中的映射表类定义一种数据类型
typedef CMap CTimerMap;

class CMyTimer
{
public:
//设置定时器,nElapse表示时间间隔,sz表示要提示的内容
void SetMyTimer(UINT nElapse,CString sz);
//销毁该实例的定时器
void KillMyTimer();
//保存该实例的定时器标志值
UINT m_nTimerID;
//静态数据成员要提示的内容
CString szContent;
//声明静态数据成员,映射表类,用于保存所有的定时器信息
static CTimerMap m_sTimeMap;
//静态成员函数,用于处理定时器的消息
static void CALLBACK MyTimerProc(HWND hwnd,UINT uMsg,UINT idEvent,DWORD dwTime);
CMyTimer();
virtual ~CMyTimer();
};

MyTimer.cpp#include "stdafx.h"
#include "MyTimer.h"

//必须要在外部定义一下静态数据成员
CTimerMap CMyTimer::m_sTimeMap;

CMyTimer::CMyTimer()
{
m_nTimerID = 0;
}

CMyTimer::~CMyTimer()
{
}

void CALLBACK CMyTimer::MyTimerProc(HWND hwnd,UINT uMsg,UINT idEvent,DWORD dwTime)
{
CString sz;
sz.Format("%d号定时器:%s",
idEvent,
m_sTimeMap[idEvent]->szContent);
AfxMessageBox(sz);
}

void CMyTimer::SetMyTimer(UINT nElapse,CString sz)
{
szContent = sz;
m_nTimerID = SetTimer(NULL,NULL,nElapse,MyTimerProc);
m_sTimeMap[m_nTimerID] = this;
}

void CMyTimer::KillMyTimer()
{
KillTimer(NULL,m_nTimerID);
m_sTimeMap.RemoveKey(m_nTimerID);
}

这样就完成了在非窗口类中使用定时器的方法。以上这些代码都在Windwos 2000 Professional 和 Visual C++ 6.0中编译通过。

㈩ 求C语言程序:如何获得一个程序运行的时间 最好带一段简单的代码 新人学不懂 呵呵 谢谢大家啦

clock()函数,计算代码消耗的cpu时间,一般用处不大
time()函数,获取系统时间,许多依赖于time()计算超时的程序,在修改系统时间后一般都不能正常运行。
因此本人推荐:
windows下:计算绝对时间QueryPerformanceCount/QueryPerformanceFrequency.
cpu脉冲计数/ cpu频率,获得开机以来的秒数。
当然,这两个函数获得时间精度是很高的(us级别),只是我们一般用不到这么精确。
linux下:
#include <sys/sysinfo.h>
调用sysinfo()获得系统启动以来经历的秒数时间。这个不属于高精度计时。
如果要进行高精度计时,高精度时间,C运行库的gettimeofday().(当然据我估计也是受到系统更改时间的影响)。
用绝对时间判断系统时间有没有被更改,用高精度时间精确计时,二者结合才是王道。