① c语言递归函数的问题
通过分析这个代码,建立了如图的树。
1、当进去A时,num = 1;
2、接着往左进去B,num = 2;
3、往B左边及右边因为是NULL直接返回2处,再返回到1处;
4、接着往A右边C,此时num=3,这里把返回值C压入寄存器RAX,代码返回到A,但是最上层A处没有接收返回值,此时A退出,main函数从RAX取出返回值赋值给变量a。
这就是整个调用过程,这里返回值并不是最上层的返回值,是C的返回值,之所以能得到这个值是这个程序没有同步其它地方使用了RAX寄存器,它的值没有被修改。
② C语言中的递归是什么意思
程序调用自身的编程技巧称为递归( recursion)。递归做为一种算法在程序设计语言中广泛应用。 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解。
递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。
一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。
(2)c语言递归过程扩展阅读:
递归的应用
1、数据的定义是按递归定义的。(Fibonacci函数)
2、问题解法按递归算法实现。这类问题虽则本身没有明显的递归结构,但用递归求解比迭代求解更简单,如Hanoi问题。
3、数据的结构形式是按递归定义的。
递归的缺点
递归算法解题相对常用的算法如普通循环等,运行效率较低。因此,应该尽量避免使用递归,除非没有更好的算法或者某种特定情况,递归更为适合的时候。在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。
③ C语言 递归程序 求解
递归函数就是做了一件事:求和
递归过程如下:
第一次进入:n==3, 执行的是 p[0]+f(&p[1],2);这样的话会继续调用函数f,也就有了第二次进入。
第二次进入:表达式变成了p[0]+p[1]+f[&p[1],1],这样的话会继续调用函数f,也就有了第三次进入。
第三次进入:n==1, p[0]+p[1]+p[2].
return (p[0]+f(&p[1],2)=p[0]+p[1]+f[&p[1],1]=p[0]+p[1]+p[2])-->return p[0]+p[1]+p[2]
递归一般是出于效率的要求,当然你这个没什么影响。递归也不是用在这里的。看递归要干什么很简单,看两点:1.递归退出条件是什么,退出时的返回值;2.递归时在做什么。
④ c语言递归算法
用递归法计算n!
用递归法计算n!可用下述公式表示:
n!=1 (n=0,1)
n×(n-1)! (n>1)
按公式可编程如下:
long ff(int n)
{
long f;
if(n<0) printf("n<0,input error");
else if(n==0||n==1) f=1;
else f=ff(n-1)*n;
return(f);
}
main()
{
int n;
long y;
printf("\ninput a inteager number:\n");
scanf("%d",&n);
y=ff(n);
printf("%d!=%ld",n,y);
}
程序中给出的函数ff是一个递归函数。主函数调用ff 后即进入函数ff执行,如果n<0,n==0或n=1时都将结束函数的执行,否则就递归调用ff函数自身。由于每次递归调用的实参为n-1,即把n-1的值赋予形参n,最后当n-1的值为1时再作递归调用,形参n的值也为1,将使递归终止。然后可逐层退回。
下面我们再举例说明该过程。设执行本程序时输入为5,即求5!。在主函数中的调用语句即为y=ff(5),进入ff函数后,由于n=5,不等于0或1,故应执行f=ff(n-1)*n,即f=ff(5-1)*5。该语句对ff作递归调用即ff(4)。
进行四次递归调用后,ff函数形参取得的值变为1,故不再继续递归调用而开始逐层返回主调函数。ff(1)的函数返回值为1,ff(2)的返回值为1*2=2,ff(3)的返回值为2*3=6,ff(4)的返回值为6*4=24,最后返回值ff(5)为24*5=120。
⑤ c语言递归函数
递归(recursion)就是子程序(或函数)直接调用自己或通过一系列调用语句间接调用自己,是一种描述问题和解决问题的基本方法。
递归通常用来解决结构自相似的问题。所谓结构自相似,是指构成原问题的子问题与原问题在结构上相似,可以用类似的方法解决。具体地,整个问题的解决,可以分为两部分:第一部分是一些特殊情况,有直接的解法;第二部分与原问题相似,但比原问题的规模小。实际上,递归是把一个不能或不好解决的大问题转化为一个或几个小问题,再把这些小问题进一步分解成更小的问题,直至每个小问题都可以直接解决。因此,递归有两个基本要素:
(1)边界条件:确定递归到何时终止,也称为递归出口。
(2)递归模式:大问题是如何分解为小问题的,也称为递归体。递归函数只有具备了这两个要素,才能在有限次计算后得出结果
汉诺塔问题:对汉诺塔问题的求解,可以通过以下3个步骤实现:
(1)将塔上的n-1个碟子借助塔C先移到塔B上;
(2)把塔A上剩下的一个碟子移到塔C上;
(3)将n-1个碟子从塔B借助塔A移到塔C上。
在递归函数中,调用函数和被调用函数是同一个函数,需要注意的是递归函数的调用层次,如果把调用递归函数的主函数称为第0层,进入函数后,首次递归调用自身称为第1层调用;从第i层递归调用自身称为第i+1层。反之,退出第i+1层调用应该返回第i层。采用图示方法描述递归函数的运行轨迹,从中可较直观地了解到各调用层次及其执行情况,具体方法如下:
(1)写出函数当前调用层执行的各语句,并用有向弧表示语句的执行次序;
(2)对函数的每个递归调用,写出对应的函数调用,从调用处画一条有向弧指向被调用函数入口,表示调用路线,从被调用函数末尾处画一条有向弧指向调用语句的下面,表示返回路线;
(3)在返回路线上标出本层调用所得的函数值。n=3时汉诺塔算法的运行轨迹如下图所示,有向弧上的数字表示递归调用和返回的执行顺序
三、递归函数的内部执行过程
一个递归函数的调用过程类似于多个函数的嵌套的调用,只不过调用函数和被调用函数是同一个函数。为了保证递归函数的正确执行,系统需设立一个工作栈。具体地说,递归调用的内部执行过程如下:
(1)运动开始时,首先为递归调用建立一个工作栈,其结构包括值参、局部变量和返回地址;
(2)每次执行递归调用之前,把递归函数的值参和局部变量的当前值以及调用后的返回地址压栈;
(3)每次递归调用结束后,将栈顶元素出栈,使相应的值参和局部变量恢复为调用前的值,然后转向返回地址指定的位置继续执行。
上述汉诺塔算法执行过程中,工作栈的变化如下图所示,其中栈元素的结构为(返回地址,n值,A值,B值,C值),返回地址对应算法中语句的行号,分图的序号对应图中递归调用和返回的序号
我可以帮助你,你先设置我最佳答案后,我网络Hii教你。
⑥ C语言关于函数的递归
你的递归程序是错的,我转来个对的,带讲解的,你看看。
语言函数的递归和调用
一、基本内容:
C语言中的函数可以递归调用,即:可以直接(简单递归)或间接(间接递归)地自己调自己。
要点:
1、C语言函数可以递归调用。
2、可以通过直接或间接两种方式调用。目前只讨论直接递归调用。
二、递归条件
采用递归方法来解决问题,必须符合以下三个条件:
1、可以把要解决的问题转化为一个新问题,而这个新的问题的解决方法仍与原来的解决方法相同,只是所处理的对象有规律地递增或递减。
说明:解决问题的方法相同,调用函数的参数每次不同(有规律的递增或递减),如果没有规律也就不能适用递归调用。
2、可以应用这个转化过程使问题得到解决。
说明:使用其他的办法比较麻烦或很难解决,而使用递归的方法可以很好地解决问题。
3、必定要有一个明确的结束递归的条件。
说明:一定要能够在适当的地方结束递归调用。不然可能导致系统崩溃。
三、递归实例
例:使用递归的方法求n!
当n>1时,求n!的问题可以转化为n*(n-1)!的新问题。
比如n=5:
第一部分:5*4*3*2*1
n*(n-1)!
第二部分:4*3*2*1
(n-1)*(n-2)!
第三部分:3*2*1
(n-2)(n-3)!
第四部分:2*1
(n-3)(n-4)!
第五部分:1
(n-5)!
5-5=0,得到值1,结束递归。
源程序:
fac(int
n)
{int
t;
if(n==1)||(n==0)
return
1;
else
{
t=n*fac(n-1);
return
t;
}
}
main(
)
{int
m,y;
printf(“Enter
m:”);
scanf(“%d”,&m);
if(m<0)
printf(“Input
data
Error!\n”);
else
{y=fac(m);
printf(“\n%d!
=%d
\n”,m,y);
}
}
四、递归说明
1、当函数自己调用自己时,系统将自动把函数中当前的变量和形参暂时保留起来,在新一轮的调用过程中,系统为新调用的函数所用到的变量和形参开辟另外的存储单元(内存空间)。每次调用函数所使用的变量在不同的内存空间。
2、递归调用的层次越多,同名变量的占用的存储单元也就越多。一定要记住,每次函数的调用,系统都会为该函数的变量开辟新的内存空间。
3、当本次调用的函数运行结束时,系统将释放本次调用时所占用的内存空间。程序的流程返回到上一层的调用点,同时取得当初进入该层时,函数中的变量和形参所占用的内存空间的数据。
4、所有递归问题都可以用非递归的方法来解决,但对于一些比较复杂的递归问题用非递归的方法往往使程序变得十分复杂难以读懂,而函数的递归调用在解决这类问题时能使程序简洁明了有较好的可读性;但由于递归调用过程中,系统要为每一层调用中的变量开辟内存空间、要记住每一层调用后的返回点、要增加许多额外的开销,因此函数的递归调用通常会降低程序的运行效率。
五、程序流程
fac(int
n)
/*每次调用使用不同的参数*/
{
int
t;
/*每次调用都会为变量t开辟不同的内存空间*/
if(n==1)||(n==0)
/*当满足这些条件返回1
*/
return
1;
else
{
t=n*fac(n-1);
/*每次程序运行到此处就会用n-1作为参数再调用一次本函数,此处是调用点*/
return
t;
/*只有在上一句调用的所有过程全部结束时才运行到此处。*/
}
}
⑦ C语言的递归过程!
这个东西首先,你要确定递归出口。没有出口,你就算不出结果的。
从你给出的代码片段来看,出口应该是n==0,也就说rfcat(0)=1这样。
那么所谓的第一层到底哪里算第一层呢?
首先程序从主函数开始运行,系统建立了一个存储运行状态的栈。在系统堆栈的最下面,放进main记录。记录下从哪里进入的这个函数。
在运行到rfcat(5)这行时,进入这个rfcat函数。此时,n==5。系统栈里,压入rfcat记录。
然后在函数里,运行到ans=n*rfact(n-1)时,又遇到了rfcat这个函数,此时,将n-1带入了这个函数,“递归”调用函数。此时,又在系统栈里压入了一个rfcat记录。
就这样重复重复,直到发现出口。就是在n==0时,return了一个值,1。这时,这里的return,不仅是代表返回值,更是说在系统栈里的函数结束了,要返回上一个函数里运行。弹出这个记录的同时,得到了进入函数时程序的下一步该进行的动作。
然后就这样一步步的return。直到main的最后的return 0;结束整个程序。
⑧ C语言中,函数的递归是如何执行的
{ printf("Move %c to %c\n",source, destination); } <-------从原柱移向目的柱 else <--------如果不是一个盘了,而最后一个盘是最大的,应先到目的柱上 { /* 将最大盘上面的所有盘子递归移向helpMedia, 过程是借助destination,完成后就剩下最大和空的dst柱 PlayHanio(dishNum-1, source, helpMedia, destination); printf("Move %c to %c\n", source, destination); <---经过上面最大盘就能移向空的destination /* 最后,把上面移在helpMedia的盘子按该方法都移向destination,注意最大盘子和盘子个数现在变了哦*/ PlayHanio(dishNum-1, helpMedia, destination, source);}}int main(void){char first='A', second='B', third='C'; <---------三条柱A,B,C int dishNum = 3; <-------盘子个数假设三个 PlayHanio(dishNum, first, second, third); return 0; }。。上面是汉诺塔的原理,如果你记住了这,编出该程序很容易建议试从3,4个盘子去进行程序分析,因为原理是一样,只是那些柱在递归时是不断变化的,这要注意!!但是多个就不太现实了,假设有N个盘子,那你就移动2^n-1次哦。学递归建议开始记住它的原理,能编出程序就可以,不要老是想追根究底,这样你总是连程序都不会编如快速排序,二叉树……当然上述对我是可以的,对你我就不清楚了,自己去尝出一条路吧。。还有就是递归的原理其实是涉及到堆栈的压栈和出栈的,也不难啦,它不能提高速度,相反,每递归一次,它就得把上一个函数的地址压栈,这样递归次数多时内存就大啊但是,但的一大作用就是让程序清晰明了!
⑨ C语言什么是递归
递归方法的概念
类方法成员间允许相互调用,也可以自己调用自己。类的方法如果在方法体内直接或间接地自己调用自己就称为递归方法。
递归基本思想就是“自己调用自己”。递归方法实际上体现了“依此类推”、“用同样的步骤重复”这样的思想,它可以用简单的程序来解决某些复杂的计算问题。
递归调用在完成阶乘运算、级数运算、幂指数运算等方面特别有效。
在执行递归操作时,C#语言把递归过程中的信息保存在堆栈中。如果无限循环地递归,或者递归次数太多,则产生“堆栈溢出”错误
例:用递归方法求阶乘。利用的数学公式为n!=n*(n-1)!。当n=0时,n!=1。
代码如下:
public long F(int n)
{
if (n==1)
return 1;
else
return n*F(n-1);
}