⑴ c语言怎样将变量存入数组
我猜是因为数组初始化的值必须都是编译期常量,而你的Adr是一个变量,跟它相关的(Adr>>4)*17,(Adr&0x0F)*17也都是变量,所以不能用来初始化数组。
可以把Adr定义为一个符号常量试试看,即
#defineAdr(0xA5)
来代替
u8Adr=0xA5;
⑵ C语言排序
//总共给你整理了7种排序算法:希尔排序,链式基数排序,归并排序
//起泡排序,简单选择排序,树形选择排序,堆排序,先自己看看吧,
//看不懂可以再问身边的人或者查资料,既然可以上网,我相信你所在的地方信息流通方式应该还行,所有的程序全部在VC++6.0下编译通过
//希尔排序
#include<stdio.h>
typedef int InfoType; // 定义其它数据项的类型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一个用作示例的小顺序表的最大长度
typedef int KeyType; // 定义关键字类型为整型
struct RedType // 记录类型
{
KeyType key; // 关键字项
InfoType otherinfo; // 其它数据项,具体类型在主程中定义
};
struct SqList // 顺序表类型
{
RedType r[MAXSIZE+1]; // r[0]闲置或用作哨兵单元
int length; // 顺序表长度
};
void ShellInsert(SqList &L,int dk)
{ // 对顺序表L作一趟希尔插入排序。本算法是和一趟直接插入排序相比,
// 作了以下修改:
// 1.前后记录位置的增量是dk,而不是1;
// 2.r[0]只是暂存单元,不是哨兵。当j<=0时,插入位置已找到。算法10.4
int i,j;
for(i=dk+1;i<=L.length;++i)
if LT(L.r[i].key,L.r[i-dk].key)
{ // 需将L.r[i]插入有序增量子表
L.r[0]=L.r[i]; // 暂存在L.r[0]
for(j=i-dk;j>0&<(L.r[0].key,L.r[j].key);j-=dk)
L.r[j+dk]=L.r[j]; // 记录后移,查找插入位置
L.r[j+dk]=L.r[0]; // 插入
}
}
void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("%d ",L.r[i].key);
printf("\n");
}
void print1(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}
void ShellSort(SqList &L,int dlta[],int t)
{ // 按增量序列dlta[0..t-1]对顺序表L作希尔排序。算法10.5
int k;
for(k=0;k<t;++k)
{
ShellInsert(L,dlta[k]); // 一趟增量为dlta[k]的插入排序
printf("第%d趟排序结果: ",k+1);
print(L);
}
}
#define N 10
#define T 3
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8},{55,9},{4,10}};
SqList l;
int dt[T]={5,3,1}; // 增量序列数组
for(int i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前: ");
print(l);
ShellSort(l,dt,T);
printf("排序后: ");
print1(l);
}
/*****************************************************************/
//链式基数排序
typedef int InfoType; // 定义其它数据项的类型
typedef int KeyType; // 定义RedType类型的关键字为整型
struct RedType // 记录类型(同c10-1.h)
{
KeyType key; // 关键字项
InfoType otherinfo; // 其它数据项
};
typedef char KeysType; // 定义关键字类型为字符型
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函数结果状态代码
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status; // Status是函数的类型,其值是函数结果状态代码,如OK等
typedef int Boolean; // Boolean是布尔类型,其值是TRUE或FALSE
#define MAX_NUM_OF_KEY 8 // 关键字项数的最大值
#define RADIX 10 // 关键字基数,此时是十进制整数的基数
#define MAX_SPACE 1000
struct SLCell // 静态链表的结点类型
{
KeysType keys[MAX_NUM_OF_KEY]; // 关键字
InfoType otheritems; // 其它数据项
int next;
};
struct SLList // 静态链表类型
{
SLCell r[MAX_SPACE]; // 静态链表的可利用空间,r[0]为头结点
int keynum; // 记录的当前关键字个数
int recnum; // 静态链表的当前长度
};
typedef int ArrType[RADIX];
void InitList(SLList &L,RedType D[],int n)
{ // 初始化静态链表L(把数组D中的数据存于L中)
char c[MAX_NUM_OF_KEY],c1[MAX_NUM_OF_KEY];
int i,j,max=D[0].key; // max为关键字的最大值
for(i=1;i<n;i++)
if(max<D[i].key)
max=D[i].key;
L.keynum=int(ceil(log10(max)));
L.recnum=n;
for(i=1;i<=n;i++)
{
L.r[i].otheritems=D[i-1].otherinfo;
itoa(D[i-1].key,c,10); // 将10进制整型转化为字符型,存入c
for(j=strlen(c);j<L.keynum;j++) // 若c的长度<max的位数,在c前补'0'
{
strcpy(c1,"0");
strcat(c1,c);
strcpy(c,c1);
}
for(j=0;j<L.keynum;j++)
L.r[i].keys[j]=c[L.keynum-1-j];
}
}
int ord(char c)
{ // 返回k的映射(个位整数)
return c-'0';
}
void Distribute(SLCell r[],int i,ArrType f,ArrType e) // 算法10.15
{ // 静态键表L的r域中记录已按(keys[0],…,keys[i-1])有序。本算法按
// 第i个关键字keys[i]建立RADIX个子表,使同一子表中记录的keys[i]相同。
// f[0..RADIX-1]和e[0..RADIX-1]分别指向各子表中第一个和最后一个记录
int j,p;
for(j=0;j<RADIX;++j)
f[j]=0; // 各子表初始化为空表
for(p=r[0].next;p;p=r[p].next)
{
j=ord(r[p].keys[i]); // ord将记录中第i个关键字映射到[0..RADIX-1]
if(!f[j])
f[j]=p;
else
r[e[j]].next=p;
e[j]=p; // 将p所指的结点插入第j个子表中
}
}
int succ(int i)
{ // 求后继函数
return ++i;
}
void Collect(SLCell r[],ArrType f,ArrType e)
{ // 本算法按keys[i]自小至大地将f[0..RADIX-1]所指各子表依次链接成
// 一个链表,e[0..RADIX-1]为各子表的尾指针。算法10.16
int j,t;
for(j=0;!f[j];j=succ(j)); // 找第一个非空子表,succ为求后继函数
r[0].next=f[j];
t=e[j]; // r[0].next指向第一个非空子表中第一个结点
while(j<RADIX-1)
{
for(j=succ(j);j<RADIX-1&&!f[j];j=succ(j)); // 找下一个非空子表
if(f[j])
{ // 链接两个非空子表
r[t].next=f[j];
t=e[j];
}
}
r[t].next=0; // t指向最后一个非空子表中的最后一个结点
}
void printl(SLList L)
{ // 按链表输出静态链表
int i=L.r[0].next,j;
while(i)
{
for(j=L.keynum-1;j>=0;j--)
printf("%c",L.r[i].keys[j]);
printf(" ");
i=L.r[i].next;
}
}
void RadixSort(SLList &L)
{ // L是采用静态链表表示的顺序表。对L作基数排序,使得L成为按关键字
// 自小到大的有序静态链表,L.r[0]为头结点。算法10.17
int i;
ArrType f,e;
for(i=0;i<L.recnum;++i)
L.r[i].next=i+1;
L.r[L.recnum].next=0; // 将L改造为静态链表
for(i=0;i<L.keynum;++i)
{ // 按最低位优先依次对各关键字进行分配和收集
Distribute(L.r,i,f,e); // 第i趟分配
Collect(L.r,f,e); // 第i趟收集
printf("第%d趟收集后:\n",i+1);
printl(L);
printf("\n");
}
}
void print(SLList L)
{ // 按数组序号输出静态链表
int i,j;
printf("keynum=%d recnum=%d\n",L.keynum,L.recnum);
for(i=1;i<=L.recnum;i++)
{
printf("keys=");
for(j=L.keynum-1;j>=0;j--)
printf("%c",L.r[i].keys[j]);
printf(" otheritems=%d next=%d\n",L.r[i].otheritems,L.r[i].next);
}
}
void Sort(SLList L,int adr[]) // 改此句(类型)
{ // 求得adr[1..L.length],adr[i]为静态链表L的第i个最小记录的序号
int i=1,p=L.r[0].next;
while(p)
{
adr[i++]=p;
p=L.r[p].next;
}
}
void Rearrange(SLList &L,int adr[]) // 改此句(类型)
{ // adr给出静态链表L的有序次序,即L.r[adr[i]]是第i小的记录。
// 本算法按adr重排L.r,使其有序。算法10.18(L的类型有变)
int i,j,k;
for(i=1;i<L.recnum;++i) // 改此句(类型)
if(adr[i]!=i)
{
j=i;
L.r[0]=L.r[i]; // 暂存记录L.r[i]
while(adr[j]!=i)
{ // 调整L.r[adr[j]]的记录到位直到adr[j]=i为止
k=adr[j];
L.r[j]=L.r[k];
adr[j]=j;
j=k; // 记录按序到位
}
L.r[j]=L.r[0];
adr[j]=j;
}
}
#define N 10
void main()
{
RedType d[N]={{278,1},{109,2},{63,3},{930,4},{589,5},{184,6},{505,7},{269,8},{8,9},{83,10}};
SLList l;
int *adr;
InitList(l,d,N);
printf("排序前(next域还没赋值):\n");
print(l);
RadixSort(l);
printf("排序后(静态链表):\n");
print(l);
adr=(int*)malloc((l.recnum)*sizeof(int));
Sort(l,adr);
Rearrange(l,adr);
printf("排序后(重排记录):\n");
print(l);
}
/*******************************************/
//归并排序
#include<stdio.h>
typedef int InfoType; // 定义其它数据项的类型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一个用作示例的小顺序表的最大长度
typedef int KeyType; // 定义关键字类型为整型
struct RedType // 记录类型
{
KeyType key; // 关键字项
InfoType otherinfo; // 其它数据项,具体类型在主程中定义
};
struct SqList // 顺序表类型
{
RedType r[MAXSIZE+1]; // r[0]闲置或用作哨兵单元
int length; // 顺序表长度
};
void Merge(RedType SR[],RedType TR[],int i,int m,int n)
{ // 将有序的SR[i..m]和SR[m+1..n]归并为有序的TR[i..n] 算法10.12
int j,k,l;
for(j=m+1,k=i;i<=m&&j<=n;++k) // 将SR中记录由小到大地并入TR
if LQ(SR[i].key,SR[j].key)
TR[k]=SR[i++];
else
TR[k]=SR[j++];
if(i<=m)
for(l=0;l<=m-i;l++)
TR[k+l]=SR[i+l]; // 将剩余的SR[i..m]复制到TR
if(j<=n)
for(l=0;l<=n-j;l++)
TR[k+l]=SR[j+l]; // 将剩余的SR[j..n]复制到TR
}
void MSort(RedType SR[],RedType TR1[],int s, int t)
{ // 将SR[s..t]归并排序为TR1[s..t]。算法10.13
int m;
RedType TR2[MAXSIZE+1];
if(s==t)
TR1[s]=SR[s];
else
{
m=(s+t)/2; // 将SR[s..t]平分为SR[s..m]和SR[m+1..t]
MSort(SR,TR2,s,m); // 递归地将SR[s..m]归并为有序的TR2[s..m]
MSort(SR,TR2,m+1,t); // 递归地将SR[m+1..t]归并为有序的TR2[m+1..t]
Merge(TR2,TR1,s,m,t); // 将TR2[s..m]和TR2[m+1..t]归并到TR1[s..t]
}
}
void MergeSort(SqList &L)
{ // 对顺序表L作归并排序。算法10.14
MSort(L.r,L.r,1,L.length);
}
void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}
#define N 7
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
MergeSort(l);
printf("排序后:\n");
print(l);
}
/**********************************************/
//起泡排序
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函数结果状态代码
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status;
typedef int Boolean;
#define N 8
void bubble_sort(int a[],int n)
{ // 将a中整数序列重新排列成自小至大有序的整数序列(起泡排序)
int i,j,t;
Status change;
for(i=n-1,change=TRUE;i>1&&change;--i)
{
change=FALSE;
for(j=0;j<i;++j)
if(a[j]>a[j+1])
{
t=a[j];
a[j]=a[j+1];
a[j+1]=t;
change=TRUE;
}
}
}
void print(int r[],int n)
{
int i;
for(i=0;i<n;i++)
printf("%d ",r[i]);
printf("\n");
}
void main()
{
int d[N]={49,38,65,97,76,13,27,49};
printf("排序前:\n");
print(d,N);
bubble_sort(d,N);
printf("排序后:\n");
print(d,N);
}
/****************************************************/
//简单选择排序
#include<stdio.h>
typedef int InfoType; // 定义其它数据项的类型
#define MAXSIZE 20 // 一个用作示例的小顺序表的最大长度
typedef int KeyType; // 定义关键字类型为整型
struct RedType // 记录类型
{
KeyType key; // 关键字项
InfoType otherinfo; // 其它数据项,具体类型在主程中定义
};
struct SqList // 顺序表类型
{
RedType r[MAXSIZE+1]; // r[0]闲置或用作哨兵单元
int length; // 顺序表长度
};
int SelectMinKey(SqList L,int i)
{ // 返回在L.r[i..L.length]中key最小的记录的序号
KeyType min;
int j,k;
k=i; // 设第i个为最小
min=L.r[i].key;
for(j=i+1;j<=L.length;j++)
if(L.r[j].key<min) // 找到更小的
{
k=j;
min=L.r[j].key;
}
return k;
}
void SelectSort(SqList &L)
{ // 对顺序表L作简单选择排序。算法10.9
int i,j;
RedType t;
for(i=1;i<L.length;++i)
{ // 选择第i小的记录,并交换到位
j=SelectMinKey(L,i); // 在L.r[i..L.length]中选择key最小的记录
if(i!=j)
{ // 与第i个记录交换
t=L.r[i];
L.r[i]=L.r[j];
L.r[j]=t;
}
}
}
void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}
#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
SelectSort(l);
printf("排序后:\n");
print(l);
}
/************************************************/
//树形选择排序
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函数结果状态代码
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status; // Status是函数的类型,其值是函数结果状态代码,如OK等
typedef int Boolean; // Boolean是布尔类型,其值是TRUE或FALSE
typedef int InfoType; // 定义其它数据项的类型
#define MAXSIZE 20 // 一个用作示例的小顺序表的最大长度
typedef int KeyType; // 定义关键字类型为整型
struct RedType // 记录类型
{
KeyType key; // 关键字项
InfoType otherinfo; // 其它数据项,具体类型在主程中定义
};
struct SqList // 顺序表类型
{
RedType r[MAXSIZE+1]; // r[0]闲置或用作哨兵单元
int length; // 顺序表长度
};
void TreeSort(SqList &L)
{ // 树形选择排序
int i,j,j1,k,k1,l,n=L.length;
RedType *t;
l=(int)ceil(log(n)/log(2))+1; // 完全二叉树的层数
k=(int)pow(2,l)-1; // l层完全二叉树的结点总数
k1=(int)pow(2,l-1)-1; // l-1层完全二叉树的结点总数
t=(RedType*)malloc(k*sizeof(RedType)); // 二叉树采用顺序存储结构
for(i=1;i<=n;i++) // 将L.r赋给叶子结点
t[k1+i-1]=L.r[i];
for(i=k1+n;i<k;i++) // 给多余的叶子的关键字赋无穷大
t[i].key=INT_MAX;
j1=k1;
j=k;
while(j1)
{ // 给非叶子结点赋值
for(i=j1;i<j;i+=2)
t[i].key<t[i+1].key?(t[(i+1)/2-1]=t[i]):(t[(i+1)/2-1]=t[i+1]);
j=j1;
j1=(j1-1)/2;
}
for(i=0;i<n;i++)
{
L.r[i+1]=t[0]; // 将当前最小值赋给L.r[i]
j1=0;
for(j=1;j<l;j++) // 沿树根找结点t[0]在叶子中的序号j1
t[2*j1+1].key==t[j1].key?(j1=2*j1+1):(j1=2*j1+2);
t[j1].key=INT_MAX;
while(j1)
{
j1=(j1+1)/2-1; // 序号为j1的结点的双亲结点序号
t[2*j1+1].key<=t[2*j1+2].key?(t[j1]=t[2*j1+1]):(t[j1]=t[2*j1+2]);
}
}
free(t);
}
void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}
#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
TreeSort(l);
printf("排序后:\n");
print(l);
}
/****************************/
//堆排序
#include<stdio.h>
typedef int InfoType; // 定义其它数据项的类型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一个用作示例的小顺序表的最大长度
typedef int KeyType; // 定义关键字类型为整型
struct RedType // 记录类型
{
KeyType key; // 关键字项
InfoType otherinfo; // 其它数据项,具体类型在主程中定义
};
struct SqList // 顺序表类型
{
RedType r[MAXSIZE+1]; // r[0]闲置或用作哨兵单元
int length; // 顺序表长度
};
typedef SqList HeapType; // 堆采用顺序表存储表示
void HeapAdjust(HeapType &H,int s,int m) // 算法10.10
{ // 已知H.r[s..m]中记录的关键字除H.r[s].key之外均满足堆的定义,本函数
// 调整H.r[s]的关键字,使H.r[s..m]成为一个大顶堆(对其中记录的关键字而言)
RedType rc;
int j;
rc=H.r[s];
for(j=2*s;j<=m;j*=2)
{ // 沿key较大的孩子结点向下筛选
if(j<m&<(H.r[j].key,H.r[j+1].key))
++j; // j为key较大的记录的下标
if(!LT(rc.key,H.r[j].key))
break; // rc应插入在位置s上
H.r[s]=H.r[j];
s=j;
}
H.r[s]=rc; // 插入
}
void HeapSort(HeapType &H)
{ // 对顺序表H进行堆排序。算法10.11
RedType t;
int i;
for(i=H.length/2;i>0;--i) // 把H.r[1..H.length]建成大顶堆
HeapAdjust(H,i,H.length);
for(i=H.length;i>1;--i)
{ // 将堆顶记录和当前未经排序子序列H.r[1..i]中最后一个记录相互交换
t=H.r[1];
H.r[1]=H.r[i];
H.r[i]=t;
HeapAdjust(H,1,i-1); // 将H.r[1..i-1]重新调整为大顶堆
}
}
void print(HeapType H)
{
int i;
for(i=1;i<=H.length;i++)
printf("(%d,%d)",H.r[i].key,H.r[i].otherinfo);
printf("\n");
}
#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
HeapType h;
int i;
for(i=0;i<N;i++)
h.r[i+1]=d[i];
h.length=N;
printf("排序前:\n");
print(h);
HeapSort(h);
printf("排序后:\n");
print(h);
}
⑶ c语言中的,adr<<=1;和adr=<<1;还有adr<<1.它们的区别
没有第二种这样的写法
adr<<=1; 等同于 adr = adr<<1;
adr<<1,这只是个表达式,不能作为语句
⑷ C语言,编写一个简单的通讯录管理系统
实现一个通讯录管理系统;
通讯录管理系统可以用来存储1000个人的信息,每个人的信息包括:
姓名、性别、年龄、电话、住址
**提供方法:
1. 添加联系人信息
2. 删除指定联系人信息
3. 查找指定联系人信息
4. 修改指定联系人信息
5. 显示所有联系人信息
6. 清空所有联系人
7. 以名字排序所有联系人**
1、linkman.h(头文件)
3、程序运行结果部分示范:
⑸ 计算机二级C语言主要考点
引用。。:
数据结构与算法
1 算法
算法:是指解题方案的准确而完整的描述。
算法不等于程序,也不等计算机方法,程序的编制不可能优于算法的设计。
算法的基本特征:是一组严谨地定义运算顺序的规则,每一个规则都是有效的,是明确的,此顺序将在有限的次数下终止。特征包括:
(1)可行性;
(2)确定性,算法中每一步骤都必须有明确定义,不充许有模棱两可的解释,不允许有多义性;
(3)有穷性,算法必须能在有限的时间内做完,即能在执行有限个步骤后终止,包括合理的执行时间的含义;
(4)拥有足够的情报。
算法的基本要素:一是对数据对象的运算和操作;二是算法的控制结构。
指令系统:一个计算机系统能执行的所有指令的集合。
基本运算和操作包括:算术运算、逻辑运算、关系运算、数据传输。
算法的控制结构:顺序结构、选择结构、循环结构。
算法基本设计方法:列举法、归纳法、递推、递归、减斗递推技术、回溯法。
算法复杂度:算法时间复杂度和算法空间复杂度。
算法时间复杂度是指执行算法所需要的计算工作量。
算法空间复杂度是指执行这个算法所需要的内存空间。
2 数据结构的基本基本概念
数据结构研究的三个方面:
(1)数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构;
(2)在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构;
(3)对各种数据结构进行的运算。
数据结构是指相互有关联的数据元素的集合。
数据的逻辑结构包含:
(1)表示数据元素的信息;
(2)表示各数据元素之间的前后件关系。
数据的存储结构有顺序、链接、索引等。
线性结构条件:
(1)有且只有一个根结点;
(2)每一个结点最多有一个前件,也最多有一个后件。
非线性结构:不满足线性结构条件的数据结构。
3 线性表及其顺序存储结构
线性表由一组数据元素构成,数据元素的位置只取决于自己的序号,元素之间的相对位置是线性的。
在复杂线性表中,由若干项数据元素组成的数据元素称为记录,而由多个记录构成的线性表又称为文件。
非空线性表的结构特征:
(1)且只有一个根结点a1,它无前件;
(2)有且只有一个终端结点an,它无后件;
(3)除根结点与终端结点外,其他所有结点有且只有一个前件,也有且只有一个后件。结点个数n称为线性表的长度,当n=0时,称为空表。
线性表的顺序存储结构具有以下两个基本特点:
(1)线性表中所有元素的所占的存储空间是连续的;
(2)线性表中各数据元素在存储空间中是按逻辑顺序依次存放的。
ai的存储地址为:adr(ai)=adr(a1)+(i-1)k,,adr(a1)为第一个元素的地址,k代表每个元素占的字节数。
顺序表的运算:插入、删除。 (详见14--16页)
4 栈和队列
栈是限定在一端进行插入与删除的线性表,允许插入与删除的一端称为栈顶,不允许插入与删除的另一端称为栈底。
栈按照“先进后出”(filo)或“后进先出”(lifo)组织数据,栈具有记忆作用。用top表示栈顶位置,用bottom表示栈底。
栈的基本运算:(1)插入元素称为入栈运算;(2)删除元素称为退栈运算;(3)读栈顶元素是将栈顶元素赋给一个指定的变量,此时指针无变化。
队列是指允许在一端(队尾)进入插入,而在另一端(队头)进行删除的线性表。rear指针指向队尾,front指针指向队头。
队列是“先进行出”(fifo)或“后进后出”(lilo)的线性表。
队列运算包括(1)入队运算:从队尾插入一个元素;(2)退队运算:从队头删除一个元素。
循环队列:s=0表示队列空,s=1且front=rear表示队列满
5 线性链表
数据结构中的每一个结点对应于一个存储单元,这种存储单元称为存储结点,简称结点。
结点由两部分组成:(1)用于存储数据元素值,称为数据域;(2)用于存放指针,称为指针域,用于指向前一个或后一个结点。
2008-2-21 10:07 回复 斗牛士 黛石Sara 2楼在链式存储结构中,存储数据结构的存储空间可以不连续,各数据结点的存储顺序与数据元素之间的逻辑关系可以不一致,而数据元素之间的逻辑关系是由指针域来确定的。
链式存储方式即可用于表示线性结构,也可用于表示非线性结构。
线性链表,head称为头指针,head=null(或0)称为空表,如果是两指针:左指针(llink)指向前件结点,右指针(rlink)指向后件结点。
线性链表的基本运算:查找、插入、删除。
6 树与二叉树
树是一种简单的非线性结构,所有元素之间具有明显的层次特性。
在树结构中,每一个结点只有一个前件,称为父结点,没有前件的结点只有一个,称为树的根结点,简称树的根。每一个结点可以有多个后件,称为该结点的子结点。没有后件的结点称为叶子结点。
在树结构中,一个结点所拥有的后件的个数称为该结点的度,所有结点中最大的度称为树的度。树的最大层次称为树的深度。
二叉树的特点:(1)非空二叉树只有一个根结点;(2)每一个结点最多有两棵子树,且分别称为该结点的左子树与右子树。
二叉树的基本性质:
(1)在二叉树的第k层上,最多有2k-1(k≥1)个结点;
(2)深度为m的二叉树最多有2m-1个结点;
(3)度为0的结点(即叶子结点)总是比度为2的结点多一个;
(4)具有n个结点的二叉树,其深度至少为[log2n]+1,其中[log2n]表示取log2n的整数部分;
(5)具有n个结点的完全二叉树的深度为[log2n]+1;
(6)设完全二叉树共有n个结点。如果从根结点开始,按层序(每一层从左到右)用自然数1,2,….n给结点进行编号(k=1,2….n),有以下结论:
①若k=1,则该结点为根结点,它没有父结点;若k>1,则该结点的父结点编号为int(k/2);
②若2k≤n,则编号为k的结点的左子结点编号为2k;否则该结点无左子结点(也无右子结点);
③若2k+1≤n,则编号为k的结点的右子结点编号为2k+1;否则该结点无右子结点。
满二叉树是指除最后一层外,每一层上的所有结点有两个子结点,则k层上有2k-1个结点深度为m的满二叉树有2m-1个结点。
完全二叉树是指除最后一层外,每一层上的结点数均达到最大值,在最后一层上只缺少右边的若干结点。
二叉树存储结构采用链式存储结构,对于满二叉树与完全二叉树可以按层序进行顺序存储。
二叉树的遍历:
(1)前序遍历(dlr),首先访问根结点,然后遍历左子树,最后遍历右子树;
(2)中序遍历(ldr),首先遍历左子树,然后访问根结点,最后遍历右子树;
(3)后序遍历(lrd)首先遍历左子树,然后访问遍历右子树,最后访问根结点。
7 查找技术
顺序查找的使用情况:
(1)线性表为无序表;
(2)表采用链式存储结构。
二分法查找只适用于顺序存储的有序表,对于长度为n的有序线性表,最坏情况只需比较log2n次。
8 排序技术
排序是指将一个无序序列整理成按值非递减顺序排列的有序序列。
交换类排序法:(1)冒泡排序法,需要比较的次数为n(n-1)/2; (2)快速排序法。
插入类排序法:(1)简单插入排序法,最坏情况需要n(n-1)/2次比较;(2)希尔排序法,最坏情况需要o(n1.5)次比较。
选择类排序法:(1)简单选择排序法,
最坏情况需要n(n-1)/2次比较;(2)堆排序法,最坏情况需要o(nlog2n)次比较。
⑹ C语言新手 做作业急...! C语言中 *adr 和*str表示的什么
*adr 和*str你说的拷贝字符串的函数参数吧,其实只是参数的名字,没什么特别的,只不过系统函数这么写,你只管用就行了
检查头字符不能为0,后面的只能是‘0’——‘9’之间的,你可以自己写
⑺ c语言中& *的用法
for
(int
i=1;i<=3;++i)这种写法完全没问题,只不过是c99之后才支持的,而之前的c语言标准中变量申明必须放在语句块的开头。有些比较老的编译器不支持新的标准,所以会报错。你可以换个比较新的编译器,比如vc2005、2008等等都可以。这样的写法现在是提倡的。
⑻ 请问430单片机中p0 = (unsigned char *)adr是什么意思啊
没用过这个单片机,从c语言的角度看。第一个表达式是把adr临时转换成uchar型变量然后赋予p0。如果adr是uint型,这段的作用就是把adr的低八位赋予p0。第二个表达式,*号一般用作乘号或者指针运算,作指针运算时*号的意思为指针变量所指向的变量。比如p存有变量a的地址,那么*p等效于a。单片机的p0应该不算是指针变量,所以第二个我也不懂。
⑼ C语言课程设计
/******头文件(.h)***********/
#include "stdio.h" /*I/O函数*/
#include "stdlib.h" /*标准库函数*/
#include "string.h"/*字符串函数*/
#include "ctype.h" /*字符操作函数*/
#include "conio.h" /*控制台输入输出函数 */
#define M 50 /*定义常数表示记录数*/
typedef struct /*定义数据结构*/
{
char name[20]; /*姓名*/
char units[30]; /*单位*/
char tele[20]; /*电话*/
char m_ph[20]; //手机
char rela[20]; //关系
char email[50]; //邮箱
char qq[20]; //qq
}ADDRESS;
/******以下是函数原型*******/
int enter(ADDRESS t[]); /*输入记录*/
void list(ADDRESS t[],int n); /*显示记录*/
void search(ADDRESS t[],int n); /*按姓名查找显示记录*/
int Delete(ADDRESS t[],int n); /*删除记录*/
int add(ADDRESS t[],int n); /*插入记录*/
void save(ADDRESS t[],int n); /*记录保存为文件*/
int load(ADDRESS t[]); /*从文件中读记录*/
void display(ADDRESS t[]); /*按序号查找显示记录*/
void sort(ADDRESS t[],int n); /*按姓名排序*/
void qseek(ADDRESS t[],int n); /*快速查找记录*/
void print(ADDRESS temp); /*显示单条记录*/
int find(ADDRESS t[],int n,char *s) ; /*查找函数*/
int menu_select(); /*主菜单函数*/
/******主函数开始*******/
main()
{
system("color 37");//背景色为浅绿,前景色为白色
printf(" 欢迎使用通讯录管理系统\n");//欢迎界面
int i;
ADDRESS adr[M]; /*定义结构体数组*/
int length; /*保存记录长度*/
for(;;)/*无限循环*/
{
switch(menu_select()) /*调用主菜单函数,返回值整数作开关语句的条件*/
{
case 0:length=enter(adr);break;/*输入记录*/
case 1:list(adr,length);break; /*显示全部记录*/
case 2:search(adr,length);break; /*查找记录*/
case 3:length=Delete(adr,length);break; /*删除记录*/
case 4:length=add(adr,length); break; /*插入记录*/
case 5:save(adr,length);break; /*保存文件*/
case 6:length=load(adr); break; /*读文件*/
case 7:display(adr);break; /*按序号显示记录*/
case 8:sort(adr,length);break; /*按姓名排序*/
case 9:qseek(adr,length);break; /*快速查找记录*/
case 10:exit(0); /*如返回值为10则程序结束*/
}
}
}
/*菜单函数,函数返回值为整数,代表所选的菜单项*/
int menu_select()
{
char s[80];
int c;
printf("按任意键进入菜单......\n");/*提示按任意键继续*/
getch(); /*读入任意字符*/
system("cls"); /*清屏*/
printf(" ********************菜单***********************\n\n");
printf(" 0. 输入记录\n");
printf(" 1. 显示所有记录\n");
printf(" 2. 按姓名查找记录\n");
printf(" 3. 删除记录\n");
printf(" 4. 添加记录\n");
printf(" 5. 保存文件\n");
printf(" 6. 载入文件\n");
printf(" 7. 按序号显示记录\n");
printf(" 8. 记录排序\n");
printf(" 9. 查找记录\n");
printf(" 10. 退出\n");
printf(" ***********************************************\n");
do
{
printf("\n 请输入选项(0~10):"); /*提示输入选项*/
scanf("%d",&c);/*输入选择项*/
fflush(stdin);
}while(c<0 || c>10);/*选择项不在0~10之间重输*/
return c; /*返回选择项,主程序根据该数调用相应的函数*/
}
/***输入记录,形参为结构体数组,函数值返回类型为整型表示记录长度*/
int enter(ADDRESS t[])
{
int i,n;
char num[30];
system("cls"); /*清屏*/
int flag=1;
for(;;)
{
flag = 1;
system("cls"); /*清屏*/
printf("\n请输入记录数:\n"); /*提示信息*/
scanf("%s", &num); /*输入记录数*/
fflush(stdin);
for(int nima = 0; num[nima]; nima++)
{
if (num[nima] < 48 || num[nima] > 57)
{
flag = 0;
break;
}
}
if(flag==1)
break;
}
n=atoi(num);
printf("请输入记录:\n"); /*提示输入记录*/
printf("姓名 单位 电话 手机 关系 邮箱 QQ\n");
printf("--------------------------------------------------------------------------\n");
for(i=0;i<n;i++)
{
scanf("%s%s%s%s%s%s%s",t[i].name,t[i].units,t[i].tele,t[i].m_ph,t[i].rela,t[i].email,t[i].qq); /*输入记录*/
fflush(stdin);
for(int k=0;k<=19;k++)
{
if((t[i].tele[k]>='a' && t[i].tele[k]<='z' )|| (t[i].tele[k]>='A' && t[i].tele[k]<='Z'))
{
printf("电话输入错误!请重新输入联系人信息\n");
i--;
break;
}
if((t[i].m_ph[k]>='a' && t[i].m_ph[k]<='z' )|| (t[i].m_ph[k]>='A' && t[i].m_ph[k]<='Z'))
{
printf("手机输入错误!请重新输入联系人信息\n");
i--;
break;
}
if((t[i].qq[k]>='a' && t[i].qq[k]<='z' )|| (t[i].qq[k]>='A' && t[i].qq[k]<='Z'))
{
printf("QQ输入错误!请重新输入联系人信息\n");
i--;
break;
}
}
printf("--------------------------------------------------------------------------\n");
}
return n; /*返回记录条数*/
}
/*显示记录,参数为记录数组和记录条数*/
void list(ADDRESS t[],int n)
{
int i;
system("cls"); /*清屏*/
printf("\n\n************************************************************************\n");
printf("姓名 单位 电话 手机 关系 邮箱 QQ\n");
printf("--------------------------------------------------------------------------\n");
for(i=0;i<n;i++)
printf("%-10s%-14s%-12s%-12s%-10s%-12s%-14s\n",t[i].name,t[i].units,t[i].tele,t[i].m_ph,t[i].rela,t[i].email,t[i].qq);
if((i+1)%10==0) /*判断输出是否达到10条记录*/
{
printf("按任意键显示下一页\n"); /*提示信息*/
getch(); /*按任意键继续*/
}
printf("*********************************结束***********************************\n");
}
/*查找记录*/
void search(ADDRESS t[],int n)
{
char s[20]; /*保存待查找姓名字符串*/
int i; /*保存查找到结点的序号*/
system("cls"); /*清屏*/
printf("请输入待查找姓名:\n");
scanf("%s",s); /*输入待查找姓名*/
i=find(t,n,s); /*调用find函数,得到一个整数*/
if(i>n-1) /*如果整数i值大于n-1,说明没找到*/
{
printf("未找到!!!\n");
getch();
}
else
print(t[i]); /*找到,调用显示函数显示记录*/
}
/*显示指定的一条记录*/
void print(ADDRESS temp)
{
system("cls"); /*清屏*/
printf("\n\n************************************************************************\n");
printf("姓名 单位 电话 手机 关系 邮箱 QQ\n");
printf("--------------------------------------------------------------------------\n");
printf("%-10s%-14s%-12s%-12s%-10s%-12s%-14s\n",temp.name,temp.units,temp.tele,temp.m_ph,temp.rela,temp.email,temp.qq);
printf("*********************************结束***********************************\n");
getchar();
}
/*查找函数,参数为记录数组和记录条数以及姓名s */
int find(ADDRESS t[],int n,char *s)
{
int i;
system("cls"); /*清屏*/
for(i=0;i<n;i++)/*从第一条记录开始,直到最后一条*/
{
if(strcmp(s,t[i].name)==0) /*记录中的姓名和待比较的姓名是否相等*/
return i; /*相等,则返回该记录的下标号,程序提前结结束*/
}
return i; /*返回i值*/
getch();
}
/*删除函数,参数为记录数组和记录条数*/
int Delete(ADDRESS t[],int n)
{
char s[20]; /*要删除记录的姓名*/
char ch;
int i,j;
system("cls"); /*清屏*/
printf("请输入待删除的姓名:\n"); /*提示信息*/
scanf("%s",s);/*输入姓名*/
i=find(t,n,s); /*调用find函数*/
if(i>n-1) /*如果i>n-1超过了数组的长度*/
printf("未找到!!!\n"); /*显示没找到要删除的记录*/
else
{
print(t[i]); /*调用输出函数显示该条记录信息*/
printf("确定删除?(Y/N)\n"); /*确认是否要删除*/
scanf("%c",&ch); /*输入一个整数0或1*/
if(ch=='y' || ch=='Y') /*如果确认删除输入y*/
{
for(j=i+1;j<n;j++) /*删除该记录,实际后续记录前移*/
{
strcpy(t[j-1].name,t[j].name); /*将后一条记录的姓名拷贝到前一条*/
strcpy(t[j-1].units,t[j].units); /*将后一条记录的单位拷贝到前一条*/
strcpy(t[j-1].tele,t[j].tele); /*将后一条记录的电话拷贝到前一条*/
strcpy(t[j-1].m_ph,t[j].m_ph); /*将后一条记录的手机拷贝到前一条*/
strcpy(t[j-1].rela,t[j].rela); /*将后一条记录的关系拷贝到前一条*/
strcpy(t[j-1].email,t[j].email); /*将后一条记录的邮箱拷贝到前一条*/
strcpy(t[j-1].qq,t[j].qq); /*将后一条记录的qq拷贝到前一条*/
}
printf("删除成功!\n");
n--; /*记录数减1*/
}
}
getch();
return n; /*返回记录数*/
}
/*插入记录函数,参数为结构体数组和记录数*/
int add(ADDRESS t[],int n)/*插入函数,参数为结构体数组和记录数*/
{
ADDRESS temp; /*新插入记录信息*/
int i,j,flag;
char s[30]; /*确定插入在哪个记录之前*/
system("cls"); /*清屏*/
printf("请输入记录:\n");
printf("************************************************************************\n");
printf("姓名 单位 电话 手机 关系 邮箱 QQ\n");
printf("--------------------------------------------------------------------------\n");
scanf("%s%s%s%s%s%s%s",temp.name,temp.units,temp.tele,temp.m_ph,temp.rela,temp.email,temp.qq); /*输入插入信息*/
fflush(stdin);
printf("请输入插入位置的姓名: \n");
scanf("%s",s); /*输入插入位置的姓名*/
i=find(t,n,s); /*调用find,确定插入位置*/
for(j=n-1;j>=i;j--) /*从最后一个结点开始向后移动一条*/
{
strcpy(t[j+1].name,t[j].name); /*当前记录的姓名拷贝到后一条*/
strcpy(t[j+1].units,t[j].units); /*当前记录的单位拷贝到后一条*/
strcpy(t[j+1].tele,t[j].tele); /*当前记录的电话拷贝到后一条*/
strcpy(t[j+1].m_ph,t[j].m_ph); /*当前记录的手机拷贝到后一条*/
strcpy(t[j+1].rela,t[j].rela); /*当前记录的关系拷贝到后一条*/
strcpy(t[j+1].email,t[j].email); /*当前记录的邮箱拷贝到后一条*/
strcpy(t[j+1].qq,t[j].qq); /*当前记录的qq拷贝到后一条*/
}
strcpy(t[i].name,temp.name); /*将新插入记录的姓名拷贝到第i个位置*/
strcpy(t[i].units,temp.units); /*将新插入记录的单位拷贝到第i个位置*/
strcpy(t[i].tele,temp.tele); /*将新插入记录的电话拷贝到第i个位置*/
strcpy(t[i].m_ph,temp.m_ph); /*将新插入记录的手机拷贝到第i个位置*/
strcpy(t[i].rela,temp.rela); /*将新插入记录的关系拷贝到第i个位置*/
strcpy(t[i].email,temp.email); /*将新插入记录的邮箱拷贝到第i个位置*/
strcpy(t[i].qq,temp.qq); /*将新插入记录的qq拷贝到第i个位置*/
n++; /*记录数加1*/
printf("添加成功!!!\n");
getch();
return n; /*返回记录数*/
}
/*保存函数,参数为结构体数组和记录数*/
void save(ADDRESS t[],int n)
{
int i;
char outfile[30];
FILE *fp; /*指向文件的指针*/
system("cls"); /*清屏*/
printf("请输入待保存的文件名:\n");
scanf("%s",outfile);
if((fp=fopen(outfile,"wb"))==NULL) /*打开文件,并判断打开是否正常*/
{
printf("无法打开文件!\n");/*无法打开*/
exit(1); /*退出*/
}
printf("\n保存文件...\n"); /*输出提示信息*/
fprintf(fp,"%d",n); /*将记录数写入文件*/
fprintf(fp,"\r\n"); /*将换行符号写入文件*/
for(i=0;i<n;i++)
{
fprintf(fp,"%-10s%-14s%-12s%-12s%-10s%-12s%-14s\n",t[i].name,t[i].units,t[i].tele,t[i].m_ph,t[i].rela,t[i].email,t[i].qq);/*格式写入记录*/
fprintf(fp,"\r\n"); /*将换行符号写入文件*/
}
fclose(fp);/*关闭文件*/
printf("****保存成功!****\n"); /*显示保存成功*/
getch();
}
/*载入函数,参数为结构体数组*/
int load(ADDRESS t[])
{
int i,n;
char outfile[30];
FILE *fp; /*指向文件的指针*/
system("cls"); /*清屏*/
printf("请输入待载入的文件名:\n");
scanf("%s",outfile);
if((fp=fopen(outfile,"rb"))==NULL)/*打开文件*/
{
printf("无法打开文件!\n"); /*不能打开*/
exit(1); /*退出*/
}
fscanf(fp,"%d",&n); /*读入记录数*/
for(i=0;i<n;i++)
fscanf(fp,"%10s%14s%12s%12s%10s%12s%14s",t[i].name,t[i].units,t[i].tele,
t[i].m_ph,t[i].rela,t[i].email,t[i].qq); /*按格式读入记录*/
fclose(fp); /*关闭文件*/
printf("从文件读入数据成功!!!\n"); /*显示保存成功*/
getch();
return n; /*返回记录数*/
}
/*按序号显示记录函数*/
void display(ADDRESS t[])
{
int id,n;
char outfile[30];
FILE *fp; /*指向文件的指针*/
system("cls"); /*清屏*/
printf("请输入待载入的文件名:");
scanf("%s",outfile);
if((fp=fopen(outfile,"rb"))==NULL) /*打开文件*/
{
printf("无法打开文件!\n"); /*不能打开文件*/
exit(1); /*退出*/
}
printf("请输入记录序号:\n"); /*显示信息*/
scanf("%d",&id); /*输入序号*/
fscanf(fp,"%d",&n); /*从文件读入记录数*/
if(id>=0&&id<n) /*判断序号是否在记录范围内*/
{
fseek(fp,(id-1)*sizeof(ADDRESS),1); /*移动文件指针到该记录位置*/
print(t[id]); /*调用输出函数显示该记录*/
printf("\r\n");
}
else
{
printf(" %d号记录不存在!!!\n ",id); /*如果序号不合理显示信息*/
getch();
}
fclose(fp); /*关闭文件*/
}
/*排序函数,参数为结构体数组和记录数*/
void sort(ADDRESS t[],int n)
{
int i,j,flag;
system("cls"); /*清屏*/
ADDRESS temp; /*临时变量做交换数据用*/
for(i=0;i<n;i++)
{
flag=0; /*设标志判断是否发生过交换*/
for(j=0;j<n-1;j++)
if((strcmp(t[j].name,t[j+1].name))>0) /*比较大小*/
{
flag=1;
strcpy(temp.name,t[j].name); /*交换记录*/
strcpy(temp.units,t[j].units);
strcpy(temp.tele,t[j].tele);
strcpy(temp.m_ph,t[j].m_ph);
strcpy(temp.rela,t[j].rela);
strcpy(temp.email,t[j].email);
strcpy(temp.qq,t[j].qq);
strcpy(t[j].name,t[j+1].name);
strcpy(t[j].units,t[j+1].units);
strcpy(t[j].tele,t[j+1].tele);
strcpy(t[j].m_ph,t[j+1].m_ph);
strcpy(t[j].rela,t[j+1].rela);
strcpy(t[j].email,t[j+1].email);
strcpy(t[j].qq,t[j+1].qq);
strcpy(t[j+1].name,temp.name);
strcpy(t[j+1].units,temp.units);
strcpy(t[j+1].tele,temp.tele);
strcpy(t[j+1].m_ph,temp.m_ph);
strcpy(t[j+1].rela,temp.rela);
strcpy(t[j+1].email,temp.email);
strcpy(t[j+1].qq,temp.qq);
}
if(flag==0)break; /*如果标志为0,说明没有发生过交换循环结束*/
}
printf("排序成功!!!\n"); /*显示排序成功*/
}
/*快速查找,参数为结构体数组和记录数*/
void qseek(ADDRESS t[],int n)
{
char s[20];
int l,r,m;
system("cls"); /*清屏*/
printf("\n请在查找前排序!\n"); /*提示确认在查找之前,记录是否已排序*/
printf("请输入待查找的姓名:\n"); /*提示输入*/
scanf("%s",s); /*输入待查找的姓名*/
l=0;r=n-1; /*设置左边界与右边界的初值*/
while(l<=r) /*当左边界<=右边界时*/
{
m=(l+r)/2; /*计算中间位置*/
if(strcmp(t[m].name,s)==0) /*与中间结点姓名字段做比较判是否相等*/
{
print(t[m]); /*如果相等,则调用print函数显示记录信息*/
return ; /*返回*/
}
if(strcmp(t[m].name,s)<0) /*如果中间结点小*/
l=m+1; /*修改左边界*/
else
r=m-1; /*否则,中间结点大,修改右边界*/
}
if(l>r) /*如果左边界大于右边界时*/
printf("未找到!\n"); /*显示没找到*/
getch();
}
⑽ C语言实现哈希表的相关运算算法 编写程序实现哈希表的构造过程。
#define MaxSize 100 //定义最大哈希表长度
#define NULLKEY -1 //定义空关键字值
#define DELKEY -2 //定义被删关键字值
typedef int KeyType; //关键字类型
typedef char * InfoType; //其他数据类型
typedef struct
{
KeyType key; //关键字域
InfoType data; //其他数据域
int count; //探查次数域
} HashData;
typedef HashData HashTable[MaxSize]; //哈希表类型
void InsertHT(HashTable ha,int &n,KeyType k,int p) //将关键字k插入到哈希表中
{
int i,adr;
adr=k % p;
if (ha[adr].key==NULLKEY || ha[adr].key==DELKEY) //x[j]可以直接放在哈希表中
{
ha[adr].key=k;
ha[adr].count=1;
}
else //发生冲突时采用线性探查法解决冲突
{
i=1; //i记录x[j]发生冲突的次数
do
{
adr=(adr+1) % p;
i++;
}
while (ha[adr].key!=NULLKEY && ha[adr].key!=DELKEY);
ha[adr].key=k;
ha[adr].count=i;
}
n++;
}
void CreateHT(HashTable ha,KeyType x[],int n,