1. 如何使用c语言计算杨辉三角
只要使用二维数组,用C语言计算杨辉三角是一件非常简单的事。一个数组并初始化第一个元素值为1,然后按规律填写下面各行中的数据,最后进行输出就行了。
2. C语言中怎么写杨辉三角啊
#include <stdio.h>
//设定杨辉三角的行数N
#define N 10
int main()
{
int i, j;
int a[N][N];
printf("\n");
//令两斜边的所有数值为1
for (i = 0; i < N; i++)
{
a[i][0] = 1;
a[i][i] = 1;
}
//令杨辉三角内部的数值等于其两肩数字之和
for (i = 2; i < N; i++)
for (j = 1; j < i; j++)
a[i][j] = a[i - 1][j - 1] + a[i - 1][j];
for (i = 0; i < N; i++)
{
for (j = 0; j <= i; j++)
printf("%5d", a[i][j]);
printf("\n");
}
}
3. c语言的杨辉三角程序
c语言的杨辉三角程序如下:
#include<stdio.h>
#include<stdlib.h>
intmain()
{
ints=1,h;//数值和高度
inti,j;//循环计数
scanf("%d",&h);//输入层数
printf("1
");//输出第一个1
for(i=2;i<=h;s=1,i++)//行数i从2到层高
printf("1");//第一个1
for(j=1;j<=i-2;j++)//列位置j绕过第一个直接开始循环
//printf("%d",(s=(i-j)/j*s));
printf("%d",(s=(i-j)*s/j));
getchar();//暂停等待
}
(3)如何用c语言写杨辉三角扩展阅读:
杨辉三角概述
前提:每行端点与结尾的数为1.
每个数等于它上方两数之和。
每行数字左右对称,由1开始逐渐变大。
第n行的数字有n项。
第n行数字和为2n。
第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。
第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。
每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即 C(n+1,i)=C(n,i)+C(n,i-1)。
(a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。
将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。
4. 用c语言编写程序 输出杨辉三角
程序:
#include<stdio.h>
int main()
int n,i,j,a[100];
n=10;
printf(" 1");
printf(" ");
a[1]=a[2]=1;
printf("%3d%3d ",a[1],a[2]);
for(i=3;i<=n;i++)
{
a[1]=a[i]=1;
for(j=i-1;j>1;j--)
a[j]=a[j]+a[j-1];
for(j=1;j<=i;j++)
printf("%3d",a[j]);
printf(" ");
}
return 0;
}
应用
与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。例如在杨辉三角中,第3行的三个数恰好对应着两数和的平方的展开式的每一项的系数(性质 8),第4行的四个数恰好依次对应两数和的立方的展开式的每一项的系数。
以上内容参考:网络-杨辉三角
5. 如何用C语言循环输出杨辉三角
#include <stdio.h>
#define N 14
void main()
{
int i, j, k, n=0, a[N][N]; /*定义二维数组a[14][14]*/
while(n<=0||n>=13){ /*控制打印的行数不要太大,过大会造成显示不规范*/
printf("请输入要打印的行数:");
scanf("%d",&n);
}
printf("%d行杨辉三角如下: ",n);
for(i=1;i<=n;i++)
a[i][1] = a[i][i] = 1; /*两边的数令它为1,因为现在循环从1开始,就认为a[i][1]为第一个数*/
for(i=3;i<=n;i++)
for(j=2;j<=i-1;j++)
a[i][j]=a[i-1][j-1]+a[i-1][j]; /*除两边的数外都等于上两顶数之和*/
for(i=1;i<=n;i++){
for(k=1;k<=n-i;k++)
printf(" "); /*这一行主要是在输出数之前打上空格占位,让输出的数更美观*/
for(j=1;j<=i;j++) /*j<=i的原因是不输出其它的数,只输出我们想要的数*/
printf("%6d",a[i][j]);
printf(" "); /*当一行输出完以后换行继续下一行的输出*/
}
printf(" ");
}
拓展资料:
C语言是一门通用计算机编程语言,广泛应用于底层开发。C语言的设计目标是提供一种能以简易的方式编译、处理低级存储器、产生少量的机器码以及不需要任何运行环境支持便能运行的编程语言。
尽管C语言提供了许多低级处理的功能,但仍然保持着良好跨平台的特性,以一个标准规格写出的C语言程序可在许多电脑平台上进行编译,甚至包含一些嵌入式处理器(单片机或称MCU)以及超级电脑等作业平台。
二十世纪八十年代,为了避免各开发厂商用的C语言语法产生差异,由美国国家标准局为C语言制定了一套完整的美国国家标准语法,称为ANSI C,作为C语言最初的标准。[1]目前2011年12月8日,国际标准化组织(ISO)和国际电工委员会(IEC)发布的C11标准是C语言的第三个官方标准,也是C语言的最新标准,该标准更好的支持了汉字函数名和汉字标识符,一定程度上实现了汉字编程。
C语言是一门面向过程的计算机编程语言,与C++,Java等面向对象的编程语言有所不同。
其编译器主要有Clang、GCC、WIN-TC、SUBLIME、MSVC、Turbo C等。
参考资料:C语言_网络
6. C语言,输出杨辉三角
修改:#include"stdio.h"
void main()
{
int a[10][10],i,j;
for(i=0;i<=9;i++){
a[i][0]=1;//原代码此处需修改,第一位数为1
a[i][i]=1;
}
for(i=1;i=9;i++)
for(j=1;j<i;j++)//原代码此处需修改
a[i][j]=a[i-1][j-1]+a[i-1][j];
for(i=0;i<=9;i++){
for(j=0;j<=i;j++){printf("%5d ",a[i][j]);}
printf("
");
}return 0;}
(6)如何用c语言写杨辉三角扩展阅读:
杨辉三角概述:
1.每个数等于它上方两数之和。
2.每行数字左右对称,由1开始逐渐变大。
3.第n行的数字有n+1项。
4.第n行数字和为2n。
5.第n行的m个数可表示为C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。
6.第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。
7.每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即C(n+1,i)=C(n,i)+C(n,i-1)。
8.(a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。
9.将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。
10将各行数字相排列,可得11的n-1(n为行数)次方:1=11^0; 11=11^1; 121=11^2……当n>5时会不符合这一条性质,此时应把第n行的最右面的数字"1"放在个位,然后把左面的一个数字的个位对齐到十位。
以此类推,把空位用“0”补齐,然后把所有的数加起来,得到的数正好是11的n-1次方。以n=11为例,第十一行的数为:1,10,45,120,210,252,210,120,45,10,1,结果为 25937424601=1110。
7. 用C语言编写杨辉三角形
杨辉三角形是形如
1
1
1
1
2
1
1
3
3
1
1
4
6
4
1
的三角形,其实质是二项式(a+b)的n次方展开后各项的系数排成的三角形,它的特点是左右两边全是1,从第二行起,中间的每一个数是上一行里相邻两个数之和。这个题目常用于程序设计的练习。
下面给出六种不同的解法。
解法一
#include
main()
{
int
i,j,n=0,a[17][17]={0};
while(n<1
||
n>16)
{
printf("请输入杨辉三角形的行数:");
scanf("%d",&n);
}
for(i=0;i
评论
0
0
0
加载更多
8. C语言: 杨辉三角,请问怎么写
#include <stdio.h>
#include <stdlib.h>
#define ROW 10
#define COL 10
void tri()
{
int a[ROW][COL] = { 0 };
int i = 0, j = 0;
for (i = 0; i < ROW; i++)
{
a[i][0] = 1;
a[i][i] = 1;
}
for (i = 2; i < ROW; i++)
{
for (j = 1; j <= i; j++)
{
a[i][j] = a[i - 1][j - 1] + a[i - 1][j];
}
}
for (i = 0; i < ROW; i++)
{
/*for (j = 0; j <= col*(ROW - i) / 2; j++)
{
printf(" ");
}*/
for (j = 0; j <= i; j++)
{
printf("%3d ", a[i][j]);
}
printf(" ");
}
}
int main()
{
tri();
system("pause");
return 0;