A. intel cpu超频是不是还得看北桥芯片的频率啊
计算机某一部件工作频率而使之在非标准频率下工作从而提高该部件工作性能的行为,其中包括CPU超频、主板超频、内存超频、显示卡超频和硬盘超频等等很多部分。
通常所说的CPU超频仅仅是提高CPU的工作频率而采用的一种方法。一般来说,CPU制造商都会为了保证产品质量而预留一点频率余地,例如实际能达到2GHz的P4CPU可能只标称成1.8GHz来销售,因此CPU超频方法可以使你在花费很小的情况下提高计算机系统的性能。
在过去,我们超频的方法通常是将CPU的时钟速度加快。如今,许多主板厂商都开始在自己的产品上作了人性化的超频功能,因此超频的方法也从以前的硬超频变成了现在更方便更简单的软超频。所谓硬超频是指通过主板上面的跳线或者DIP开关手动设置外频和CPU、内存等工作电压来实现的;而软超频指的是在系统的BIOS里面进行设置外频、倍频和各部分电压等参数。一些主板厂商还推出了傻瓜超频功能,就是主板可以自动以1MHz为单位逐步提高外频频率,自动为用户找到一个让CPU能够稳定运行的最高频率。
对超频而言,冷却装置是非常重要的。如果你在超频以后,可以启动计算机,但在一分钟之内,你的机器死掉了,这通常是你的CPU过热的原因。我们选用的冷却装置通常是散热片、风扇或者是同时安装。你可以在电脑城里面找到这些设备。在选购散热片的时候,你要确信你的CPU和它匹配。散热片的表面必须与CPU的表面完全接触。你可以将散热片与CPU粘在一起,必要的话,在散热片上可以加装一个小风扇。同时,机箱的散热也非常重要。
超频对CPU和主板上的元件是有害的,但在方法得当的情况下,这种损害并不会立刻降临到你的CPU上,只有当你的CPU在较高的温度下运行的时候才会产生。通常,一颗CPU的寿命是10年左右,超频会缩短CPU的寿命
CPU的频率
凡是懂得点电脑的朋友,都应该对‘频率’两个字熟悉透了吧!作为机器的核心CPU的频率当然是非常重
要的,因为它能直接影响机器的性能。那么,您是否对CPU频率方面的问题了解得很透彻呢?请随我来,
让我给您详细说说吧!
所谓主频,也就是CPU正常工作时的时钟频率,从理论上讲CPU的主频越高,它的速度也就越快,因为频率
越高,单位时钟周期内完成的指令就越多,从而速度也就越快了。但是由于各种CPU内部结构的差异
(如缓存、指令集),并不是时钟频率相同速度就相同,比如PIII和赛扬,雷鸟和DURON,赛扬和DURON,
PIII与雷鸟,在相同主频下性能都不同程度的存在着差异。目前主流CPU的主频都在600MHz以上,而频率
最高(注意,并非最快)的P4已经达到1.7GHz,AMD的雷鸟也已经达到了1.3GHz,而且还会不断提升。
在486出现以后,由于CPU工作频率不断提高,而PC机的一些其他设备(如插卡、硬盘等)却受到工
艺的限制,不能承受更高的频率,因此限制了CPU频率的进一步提高。因此,出现了倍频技术,该技术能
够使CPU内部工作频率变为外部频率的倍数,从而通过提升倍频而达到提升主频的目的。因此在486以后
我们接触到两个新的概念--外频与倍频。它们与主频之间的关系是外频X倍频=主频。一颗CPU的外频与今
天我们常说的FSB(Front side bus,前端总线)频率是相同的(注意,是频率相同),目前市场上的
CPU的外频主要有66MHz(赛扬系列)、100MHz(部分PIII和部分雷鸟以及所有P4和DURON)、133MHz(部
分PIII和部分雷鸟)。值得一提的是,目前有些媒体宣传一些CPU的外频达到了200MHz(DURON)、
266MHz(雷鸟)甚至400MHz(P4),实际上是把外频与前端总线混为一谈了,其实它们的外频仍然是
100MHz和133MHz,但是由于采用了特殊的技术,使前端总线能够在一个时钟周期内完成2次甚至4次传输,
因此相当于将前端总线频率提升了好几倍。不过从外频与倍频的定义来看,它们的外频并未因此而发生改
变,希望大家注意这一点。今天外频并未比当初提升多少,但是倍频技术今天已经发展到一个很高的阶段
。以往的倍频都只能达到2-3倍,而现在的P4、雷鸟都已经达到了10倍以上,真不知道以后还会不会更高。
眼下的CPU倍频一般都已经在出厂前被锁定(除了部分工程样品),而外频则未上锁。部分CPU如AMD的
DURON和雷鸟能够通过特殊手段对其倍频进行解锁,而INTEL产CPU则不行。
由于外频不断提高,渐渐地提高到其他设备无法承受了,因此出现了分频技术(其实这是主板北桥芯
片的功能)。分频技术就是通过主板的北桥芯片将CPU外频降低,然后再提供给各插卡、硬盘等设备。早
期的66MHz外频时代是PCI设备2分频,AGP设备不分频;后来的100MHz外频时代则是PCI设备3分频,AGP设
备2/3分频(有些100MHz的北桥芯片也支持PCI设备4分频);目前的北桥芯片一般都支持133MHz外频,即
PCI设备4分频、AGP设备2分频。总之,在标准外频(66MHz、100MHz、133MHz)下北桥芯片必须使PCI设备
工作在33MHz,AGP设备工作在66MHz,才能说该芯片能正式支持该种外频。
最后再来谈谈CPU的超频。CPU超频其实就是通过提高外频或者倍频的手段来提高CPU主频从而提升整
个系统的性能。超频的历史已经很久远(其实也就几年),但是真正为大家所喜爱则是从赛扬系列的出产
而开始的,其中赛扬300A超450、366超550直到今天还为人们所津津乐道。而它们就是通过将赛扬CPU的
66MHz外频提升到100MHz从而提升了CPU的主频。而早期的DURON超频则与赛扬不同,它是通过破解倍频锁
然后提升倍频的方式来提高频率。总的看来,超倍频比超外频更稳定,因为超倍频没有改变外频,也就
不会影响到其他设备的正常运作;但是如果超外频,就可能遇到非标准外频如75MHz、83MHz、112MHz等,
这些情况下由于分频技术的限制,致使其他设备都不能工作在正常的频率下,从而可能造成系统的不稳定
,甚至出现硬盘数据丢失、严重的可能损坏。因此,笔者在这里告诫大家:超频虽有好处,但是也十分危
险,所以请大家慎重超频!
参考资料:
应为现在论坛上有很多朋友问到关于CPU超频,所以就让小弟谈谈我本人的心得于体会。
一块CPU能够超频到多少是有很多原因的,譬如:CPU本身的质量,不同批号出厂的超频能力都有所不同。并不是有一个标准的答案。其次就要看其他周边硬件,主板对CPU超频有一定的影响。
超频的人有以下3种:
1 是一些刚买机的普通初学玩家,因为别人超他就跟着去超。并不知道超频的利弊,只是麻木的跟风。
2 是一些资金不多或机子不够用,又不想去升级换机的人。在这种情形下就只有去超频来提高机子的性能。
3 就是一些超级玩家又称骨灰级玩家。那些人往往为了兴趣和能够打破超频记录以去超频。他们的超频手法和一般玩家的很不同,他们为了CPU不被烧毁就想尽办法在低温下进行超频。并不是用风冷这么简单,而是用液氮、干冰等技术来达到降温的效果。往往在擦新新记录并用软件记录下来后,CPU和主板就会“报销”,真是即疯狂又浪费啊!
超频的利与弊:
利就是能够免费的获得更高的性能,还能够把CPU的最大潜能发挥出来。能够达到超频者的理想性能。
弊的方面就是减少CPU的使用寿命。CPU工作在非标准外频下还会影响其它硬件的正常使用。如果超得太高不单只系统不稳定,黑屏。甚至连CPU对烧毁掉。
超频的方法:
首先大家要知道:主频=外频*倍频
1 INTEL 的CPU因为在出厂时已经锁定倍频,所以就只有从外频下手。有一部分AMD的CPU可以通过连接L3金桥来降低倍频提高外频。通常的超频手法都是提高外频工作频率就能够达到提高CPU主频的效果。目前主流CPU的标准外频有100、133、166(注意:166已经是很难达到的外频)最好是在标准外频下工作(下文有说明)
2 如果还没有达到你想要的水平,可以提高CPU的电压(注意:每次调高的幅度最好是0.01),虽然通过调高电压可以再次突破CPU的主频,但是这样做会正加CPU的功率使温度升高,减小使用寿命。调得太高会烧毁,记得要适当。
超频要注意的问题:
1 最关键的问题也是最常见的问题—温度。在排除硬件存在质量问题的前提下,温度就是超频的最大“敌人”。很多人为了能够超频成功,在散热方面下了不小的工夫,买一个几百元的风扇、水冷、甚至用液氮和干冰等。如果温度超过CPU的最高界限就会烧毁。
2 在BIOS设置问题报警,一般设置为60度。
3 注意当CPU工作在非标准外频时给PCI、AGP等设备造成不能正常工作(正常工作频率是33Mhz和66Mhz)。这是主板最好有分频或锁定PCI和AGP工作频率的选项。当CPU的外频是100是就3分频、133就4分频、166就5分频。
4就算超频到一定的频率又不死机,这时也不要开心得过早。因为能开机运行几个软件都没事,并不代表你的机器一定稳定。你必须要运行一些《雷神之锤3》之类的大型3D游戏一个小时以上不死机才算成功。
在最后我祝愿所有的超频爱好者超频成功!!!因为我不想见到有更多的CPU壮烈牺牲:)
B. 想问一下关于CPU、一/二级缓存、前端总线、北桥芯片及外频的关系问题,望各位电脑高手指教
介绍你买《电脑迷》2006年5月上的,我刚买了一本,里面有详细介绍,因为字太多了,我就不打上去了。不好意思!
C. 关于外频,倍频系数,缓存,主频和前端总线频率
就是指cpu和内存或北桥传输的频率,前端总线频率是指主板支持多少的,和cpu的主频没有直接关系,只是较老的接口的话要大于外频x4才不会限制cpu的性能,如1066M的总线333M外频的cpu就会限制,都是越大越好。缓存就是为了弥补内存和cpu速度的差距设计的,把使用最多的数据预先读入缓存,不用频繁从速度较低的内存甚至硬盘去读取。外频和倍频看网络吧:
http://ke..com/view/1377.htm
D. cpu的参数:主频\外频\总线\L2缓存\\都是什么意思,怎么理解它
1、主频
在电子技术中,脉冲信号是一个按一定电压幅度,一定时间间隔连续发出的脉冲信号。脉冲信号之间的时间间隔,称为周期;而将在单位时间(如 1 秒)内所产生的脉冲个数称为频率。频率是描述周期性循环信号(包括脉冲信号)在单位时间内所出现的脉冲数量多少的计量名称;频率的标准计量单位是 Hz(赫)。电脑中的系统时钟,就是一个典型的频率相当精确和稳定的脉冲信号发生器。频率在数学表达式中用“f”表示,其相应的单位有:
Hz(赫)
kHz(千赫)
MHz (兆赫)
GHz(吉赫)
其中:1GHz=1000MHz
1MHz=1000kHz
1KHz=1000Hz
计算脉冲信号周期的时间单位及相应的换算关系是:
s(秒)
ms(毫秒)
μs(微秒)
ns(纳秒)
其中:1s=1000ms
1ms=1000μs
1μs=1000ns
CPU 的主频,即 CPU 内核工作的时钟频率(CPU Clock Speed)。通常所说的某某 CPU 是多少兆赫的,而这个多少兆赫,就是“CPU 的主频”。很多人认为 CPU 的主频就是其运行速度,其实不然。CPU 的主频表示在 CPU 内数字脉冲信号震荡的速度,与 CPU 实际的运算能力并没有直接关系。主频和实际的运算速度存在一定的关系,但目前还没有一个确定的公式能够定量两者的数值关系,因为 CPU 的运算速度还要看 CPU 的流水线的各方面的性能指标(缓存、指令集,CPU 的位数,等等)。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的 CPU 实际运算速度较低的现象。比如 AMD 公司的 AthlonXP 系列 CPU,大多都能以较低的主频,达到英特尔公司的 Pentium 4 系列 CPU 较高主频的 CPU 的性能。所以,Athlon XP 系列 CPU 才以 PR 值的方式来命名。因此,主频仅是 CPU 性能表现的一个方面,而不代表 CPU 的整体性能。
CPU 的主频并不代表 CPU 的速度,但提高主频对于提高 CPU 运算速度却是至关重要的。举个例子来说,假设某个 CPU 在一个时钟周期内执行一条运算指令,那么当 CPU 运行在 100MHz 主频时,将比它运行在 50MHz 主频时速度快一倍。因为 100MHz 的时钟周期比 50MHz 的时钟周期占用时间减少了一半,也就是工作在 100MHz 主频的 CPU 执行一条运算指令,所需时间仅为 10ns,比工作在 50MHz 主频时的 20ns 缩短了一半,自然运算速度也就快了一倍。只不过电脑的整体运行速度不仅取决于 CPU 运算速度,还与其它各分系统的运行情况有关,只有在提高主频的同时,各分系统运行速度和各分系统之间的数据传输速度都能得到提高时,电脑整体的运行速度,才能真正得到提高。
提高 CPU 工作主频,主要受到生产工艺的限制。由于 CPU 是在半导体硅片上制造的,在硅片上的元件之间需要导线进行联接,由于在高频状态下要求导线越细越短越好,这样才能减小导线分布电容等杂散干扰以保证 CPU 运算正确。因此,制造工艺的限制,是 CPU 主频发展的最大障碍之一。
2、前端总线
总线是将信息以一个或多个源部件传送到一个或多个目的部件的一组传输线。通俗的说,就是多个部件间的公共连线,用于在各个部件之间传输信息。人们常常以 MHz 表示的速度来描述总线频率。总线的种类很多,前端总线的英文名字是 Front Side Bus,通常用 FSB 表示,是将 CPU 连接到北桥芯片的总线。计算机的前端总线频率是由 CPU 和北桥芯片共同决定的。
北桥芯片(将在以后的主板专题中做详解)负责联系内存、显卡等数据吞吐量最大的部件,并和南桥芯片连接。CPU 就是通过前端总线(FSB)连接到北桥芯片,进而通过北桥芯片和内存、显卡交换数据。前端总线是 CPU 和外界交换数据的最主要通道。因此,前端总线的数据传输能力,对计算机整体性能作用很大。如果没有足够快的前端总线,再强的 CPU 也不能明显提高计算机整体速度。数据传输最大带宽,取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据位宽)÷8。目前 PC 机上所能达到的前端总线频率,有 266MHz、333MHz、400MHz、533MHz、800MHz 几种。前端总线频率越大,代表着 CPU 与北桥芯片之间的数据传输能力越大,更能充分发挥出 CPU 的功能。现在的 CPU 技术发展很快,运算速度提高很快,而足够大的前端总线,可以保障有足够的数据供给给 CPU,较低的前端总线,将无法供给足够的数据给 CPU,这样就限制了 CPU 性能得发挥,成为系统瓶颈。
外频与前端总线频率的区别:前端总线的速度,指的是 CPU 和北桥芯片间总线的速度,更实质性的表示了 CPU 和外界数据传输的速度。而外频的概念,是建立在数字脉冲信号震荡速度基础之上的,也就是说,100MHz 外频,特指数字脉冲信号在每秒钟震荡一万万次,它更多的影响了 PCI 及其他总线的频率。之所以前端总线与外频这两个概念容易混淆,主要的原因是在以前的很长一段时间里(主要是在 Pentium 4 出现之前和刚出现 Pentium 4 时),前端总线频率与外频是相同的。因此,往往直接称前端总线为外频,最终造成这样的误会。随着计算机技术的发展,人们发现前端总线频率需要高于外频,因此采用了 QDR(Quad Date Rate)技术,或者其他类似的技术实现这个目的。这些技术的原理,类似于 AGP 的 2X 或者 4X,它们使得前端总线的频率成为外频的 2 倍、4 倍甚至更高。从此之后,前端总线和外频的区别,才开始被人们重视起来。此外,在前端总线中,比较特殊的是 AMD 64 的 HyperTransport。
HyperTransport 最初是 AMD 在1999年提出的一种总线技术,随着 AMD 64 位平台的发布和推广,HyperTransport 应用越来越广泛,也越来越被人们所熟知。
HyperTransport 是一种为主板上的集成电路互连而设计的端到端总线技术,它可以在内存控制器、磁盘控制器以及 PCI 总线控制器之间,提供更高的数据传输带宽。HyperTransport 采用类似 DDR 的工作方式,在 400MHz 工作频率下,相当于 800MHz 的传输频率。此外 HyperTransport 是在同一个总线中模拟出两个独立数据链进行点对点数据双向传输,因此理论上最大传输速率可以视为翻倍,具有 4、8、16 及 32 位频宽的高速序列连接功能。在 400MHz 下,双向 4bit 模式的总线带宽为 0.8GB/sec,双向 8bit 模式的总线带宽为 1.6GB/sec;800MHz 下,双向 8bit 模式的总线带宽为 3.2GB/sec,双向 16bit 模式的总线带宽为 6.4GB/sec,双向 32bit 模式的总线带宽为 12.8GB/sec。以 400MHz 下,双向 4bit 模式为例,带宽计算方法为 400MHz ×2×2×4bit÷8=0.8GB/sec。
HyperTransport 还有一大特色,就是当数据位宽并非 32bit 时,可以分批传输数据来达到与 32bit 相同的效果。例如 16bit 的数据就可以分两批传输,8bit 的数据就可以分四批传输。这种数据分包传输的方法,给了 HyperTransport 在应用上更大的弹性空间。
2004 年 2 月,HyperTransport 技术联盟(Hyper Transport Technology Consortium)又正式发布了HyperTransport 2.0 规格,由于采用了 Dual-data 技术,使频率成功提升到了 1.0GHz、1.2GHz 和 1.4GHz,数据传输带宽由每通道 1.6Gb/sec 提升到了 2.0GB/sec、2.4Gb/sec 和 2.8GB/sec,最大带宽由原来的 12.8Gb/sec 提升到了 22.4GB/sec。
当 HyperTransport 应用于内存控制器时,其实也就类似于传统的前端总线(FSB,Front Side Bus),因此对于将 HyperTransport 技术用于内存控制器的 CPU 来说,其 HyperTransport 的频率也就相当于前端总线的频率。
10、外频
外频是 CPU 乃至整个计算机系统的基准频率,单位是 MHz(兆赫兹)。在早期的电脑中,内存与主板之间的同步运行的速度等于外频。在这种方式下,可以理解为 CPU 外频直接与内存相连通,实现两者间的同步运行状态。对于目前的计算机系统来说,两者完全可以不相同。但是外频的意义仍然存在,计算机系统中大多数的频率都是在外频的基础上,乘以一定的倍数来实现,这个倍数可以是大于 1 的,也可以是小于 1 的。
说到处理器外频,就要提到与之密切相关的两个概念:倍频与主频,主频就是 CPU 的时钟频率;倍频即主频与外频之比的倍数。主频、外频、倍频,其关系式:主频=外频×倍频。
在 486 之前,CPU 的主频还处于一个较低的阶段,CPU 的主频一般都等于外频。而在 486 出现以后,由于 CPU 工作频率不断提高,而 PC 机的一些其他设备(如插卡、硬盘等)却受到工艺的限制,不能承受更高的频率,因而限制了 CPU 频率的进一步提高。因此出现了倍频技术,该技术能够使 CPU 内部工作频率变为外部频率的倍数,从而通过提升倍频而达到提升主频的目的。倍频技术,就是使外部设备可以工作在一个较低外频上,而 CPU 主频是外频的倍数。
在 Pentium 时代,CPU 的外频一般是 60/66MHz,从 Pentium Ⅱ 350 开始,CPU 外频提高到 100MHz,目前 CPU 外频已经达到了 200MHz。由于正常情况下,外频和内存总线频率相同,所以当 CPU 外频提高后,与内存之间的交换速度也相应得到了提高,对提高电脑整体运行速度影响较大。
外频与前端总线(FSB)频率,很容易被混为一谈。前端总线的速度,指的是 CPU 和北桥芯片间总线的速度,更实质性的表示了 CPU 和外界数据传输的速度。而外频的概念,是建立在数字脉冲信号震荡速度基础之上的,也就是说,100MHz 外频特指数字脉冲信号在每秒钟震荡一万万次,它更多的影响了 PCI 及其他总线的频率。之所以前端总线与外频这两个概念容易混淆,主要的原因,是在以前的很长一段时间里(主要是在 Pentium 4 出现之前和刚出现 Pentium 4 时),前端总线频率与外频是相同的,因此往往直接称前端总线为外频,最终造成这样的误会。随着计算机技术的发展,人们发现前端总线频率需要高于外频,因此采用了 QDR(Quad Date Rate)技术,或者其他类似的技术实现这个目的。这些技术的原理类似于 AGP 的 2X 或者 4X,它们使得前端总线的频率成为外频的 2 倍、4 倍甚至更高,从此之后,前端总线和外频的区别,才开始被人们重视起来。
3、倍频
CPU 的倍频,全称是倍频系数。CPU 的核心工作频率与外频之间,存在着一个比值关系,这个比值就是倍频系数,简称倍频。理论上,倍频是从 1.5 一直到无限的。但需要注意的是,倍频是以 0.5 为一个间隔单位。外频与倍频相乘,就是主频。所以,其中任何一项提高,都可以使 CPU 的主频上升。
原先并没有倍频概念,CPU 的主频和系统总线的速度是一样的。但随着 CPU 的速度越来越快,倍频技术也就应运而生。它可使系统总线工作在相对较低的频率上,而 CPU 速度可以通过倍频来无限提升。那么 CPU 主频的计算方式,就变为:主频 = 外频 x 倍频。也就是,倍频是指 CPU 和系统总线之间相差的倍数,当外频不变时,提高倍频,CPU 主频也就越高。
13、二级缓存容量
CPU 缓存(Cache Memoney)是位于 CPU 与内存之间的临时存储器。它的容量比内存小,但交换速度更快。缓存中的数据,只是内存数据中的一小部分,但这一小部分是短时间内 CPU 即将访问的,当 CPU 调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度。由此可见,在 CPU 中加入缓存,是一种高效的解决方案。这样,整个内存储器(缓存+内存)就变成了既有缓存的高速度,又有内存的大容量的存储系统了。缓存对 CPU 的性能影响很大。主要是因为 CPU 的数据交换顺序和 CPU 与缓存间的带宽引起的。
缓存的工作原理,是当 CPU 要读取一个数据时,首先从缓存中查找,如果找到,就立即读取并送给 CPU 处理;如果没有找到,就用相对慢的速度从内存中读取并送给 CPU 处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。
正是这样的读取机制,使 CPU 读取缓存的命中率非常高(大多数 CPU 可达 90% 左右),也就是说,CPU 下一次要读取的数据 90% 都在缓存中,只有大约 10% 需要从内存读取。这就大大节省了 CPU 直接读取内存的时间,也使 CPU 读取数据时基本无需等待。总的来说,CPU 读取数据的顺序,是先缓存,后内存。
最早先的 CPU 缓存是个整体的,而且容量很低,英特尔公司从 Pentium 时代开始,把缓存进行了分类。当时集成在 CPU 内核中的缓存已不足以满足 CPU 的需求,而制造工艺上的限制,又不能大幅度提高缓存的容量。因此出现了集成在与 CPU 同一块电路板上或主板上的缓存,此时,就把 CPU 内核集成的缓存,称为一级缓存。而外部的称为二级缓存。一级缓存中,还分数据缓存(Data Cache,D-Cache)和指令缓存(Instruction Cache,I-Cache)。二者分别用来存放数据和执行这些数据的指令,而且两者可以同时被 CPU 访问,减少了争用 Cache 所造成的冲突,提高了处理器的效能。英特尔公司在推出 Pentium 4 处理器时,还新增了一种一级追踪缓存,容量为 12KB。
随着 CPU 制造工艺的发展,二级缓存也能轻易的集成在 CPU 内核中,容量也在逐年提升。现在再用集成在 CPU 内部与否来定义一、二级缓存,已不确切。而且随着二级缓存被集成入 CPU 内核中,以往二级缓存与 CPU 大差距分频的情况也被改变,此时其以相同于主频的速度工作,可以为 CPU 提供更高的传输速度。
二级缓存是 CPU 性能表现的关键之一。在 CPU 核心不变的情况下,增加二级缓存容量,能使性能大幅度提高。而同一核心的 CPU 高低端之分,往往也是在二级缓存上有差异。由此可见,二级缓存对于 CPU 的重要性。
CPU 在缓存中找到有用的数据被称为“命中”,当缓存中没有 CPU 所需的数据时(这时称为未命中),CPU 才访问内存。从理论上讲,在一颗拥有二级缓存的 CPU 中,读取一级缓存的命中率为 80%。也就是说,CPU 一级缓存中找到的有用数据,占数据总量的 80%,剩下的 20% 从二级缓存中读取。由于不能准确预测将要执行的数据,读取二级缓存的命中率也在 80% 左右(从二级缓存读到有用的数据占总数据的 16%)。那么,还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。目前的较高端的 CPU 中,还会带有三级缓存,它是为读取二级缓存后未命中的数据设计的—种缓存,在拥有三级缓存的 CPU 中,只有约 5% 的数据需要从内存中调用,这进一步提高了 CPU 的效率。
为了保证 CPU 访问时有较高的命中率,缓存中的内容应该按一定的算法替换。一种较常用的算法,是“最近最少使用算法”(LRU 算法),它是将最近一段时间内最少被访问过的行淘汰出局。因此,需要为每行设置一个计数器,LRU 算法是把命中行的计数器清零,其他各行计数器加 1。当需要替换时,淘汰行计数器计数值最大的数据行出局。这是一种高效、科学的算法。其计数器清零过程,可以把一些频繁调用后再不需要的数据淘汰出缓存,提高缓存的利用率。
CPU 产品中,一级缓存的容量基本在 4KB 到 64KB 之间,二级缓存的容量则分为 128KB、256KB、512KB、1MB、2MB 等。一级缓存容量,各产品之间相差不大,而二级缓存容量,则是提高 CPU 性能的关键。二级缓存容量的提升,是由 CPU 制造工艺所决定的,容量增大必然导致 CPU 内部晶体管数的增加,要在有限的 CPU 面积上集成更大的缓存,对制造工艺的要求也就越高。
E. cpu超频北桥频率怎么设
我的CPU也是AMD240的,不加压原装风扇超到3.5稳定运行,主板是华擎790GXH,金邦2G-DDR3内存。我的超频方法给你做参考,不同主板上具体操作大同小异:
开机进入BIOS->Advanced找到如下的选项逐个设置
1.OverClock Mode(超频模式的意思)->选择[async](异步超频的意思)
2.CPU Frequency按键盘上的+调到250,这个是外频,默认是200
3.Spread Spectrum(扩展频率的意思) 设为Auto
4.Boot Failure Guard(启动失败恢复) 设为Enabled
5.Cool 'n' Quiet 设为Disabled
6.Multiplier/Voltage Change(倍频/电压更改的意思) 设为manual(手动的意思)
7.NB Frequency Multiplier(北桥频率倍频)北桥频率=外频*北桥频率倍频,我们一般让北桥频率和HT总线频率相等,每个主板支持的的HT总线频率不一样,我的主板支持最大2600的HT总线频率,所以我就把这个选项设为9X,这样的话北桥频率变成250*9=2250,在安全稳定的范围内
8.HT BUS Speed(HT总线频率) 设为9X 变成2250
9.Memory Clock(内存频率的意思) 设为[667 MHz DDR3 1333]
10.按F10 保存重启即可。
望采纳。。
F. CPU的频率,HT总线频率和北桥频率三者之间有什么样的关系
cpu频率就是cpu运算的速度,ht总线频率是cpu和北桥之间通信的速度,当然这只是在amd的平台上,在intel的平台上,没有ht技术,用的是fsb。一般fsb频率都是cpu外频的4倍,但是amd的不是这样
G. CPU BIOS 如何设置
Multi Core Enhancement:强制所有核心运行在最高频率,关闭这个选项可以省电
CPU Ratio:CPU倍频,通常会有几个选项,Auto,AllCore,Per Core,Specific Per core;Auto就是默认的CPU倍频变化,可以再AIDA64中的CPUID子页面中看到单核最大睿频,双核最大睿频,四核最大睿频等。All Core 对于超频用户来说是经常选择的选项,也就是所有核心同时设定倍频的频率。PerCore就可以设置在不同的负载下有多少核心的倍频有多大,就像Auto一样。Specific Per Core是给极限玩家用的,你可以分别尝试并分配每个独立核心最高可以达到多少倍频。
CPU Cache Ratio:CPU环形总线倍频,也是CPU缓存频率,北桥频率。
注:环形总线是所有核心L3缓存沟通的桥梁,通常不需要太高频率,够用就好。也就是CPU-Z当中的NB Frequency。
H. 主频,外频,倍频,前端总线频率,他们的意义和关系,和缓存有什么关系呢
主频=外频*倍频 超频常常是说超 外频
频率是直接影响CPU与内存直接数据交换速度, 决定数据流动快慢
缓存是处理数据时暂时用的存储空间,
一般的缓存的速度会比内存快几倍
缓存越大意味着可以更少的和内存进行数据交换, 可以大大提高性能,
具体资料如下
CPU的外频
通常为系统总线的工作频率(系统时钟频率),CPU与周边设备传输数据的频率,具体是指CPU到芯片组之间的总线速度。外频是CPU与主板之间同步运行的速度,而且目前的绝大部分电脑系统中外频,也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。
在486之前,CPU的主频还处于一个较低的阶段,CPU的主频一般都等于外频。而在486出现以后,由于CPU工作频率不断提高,而PC机的一些其他设备(如插卡、硬盘等)却受到工艺的限制,不能承受更高的频率,因此限制了CPU频率的进一步提高。因此出现了倍频技术,该技术能够使CPU内部工作频率变为外部频率的倍数,从而通过提升倍频而达到提升主频的目的。倍频技术就是使外部设备可以工作在一个较低外频上,而CPU主频是外频的倍数。
在Pentium时代,CPU的外频一般是60/66MHz,从Pentium Ⅱ 350开始,CPU外频提高到100MHz,目前CPU外频已经达到了200MHz。由于正常情况下CPU总线频率和内存总线频率相同,所以当CPU外频提高后,与内存之间的交换速度也相应得到了提高,对提高电脑整体运行速度影响较大。
CPU的倍频全称是倍频系数
倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应——CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。
CPU的核心工作频率与外频之间存在着一个比值关系,这个比值就是倍频系数,简称倍频。理论上倍频是从1.5一直到无限的,但需要注意的是,倍频是以0.5为一个间隔单位。外频与倍频相乘就是主频,所以其中任何一项提高都可以使CPU的主频上升。
原先并没有倍频概念,CPU的主频和系统总线的速度是一样的,但CPU的速度越来越快,倍频技术也就应允而生。它可使系统总线工作在相对较低的频率上,而CPU速度可以通过倍频来无限提升。那么CPU主频的计算方式变为:主频 = 外频 x 倍频。也就是倍频是指CPU和系统总线之间相差的倍数,当外频不变时,提高倍频,CPU主频也就越高。
一个CPU默认的倍频只有一个,主板必须能支持这个倍频。因此在选购主板和CPU时必须注意这点,如果两者不匹配,系统就无法工作。此外,现在CPU的倍频很多已经被锁定,无法修改。
CPU缓存(Cache Memory)
位于CPU与内存之间的临时存储器,它的容量比内存小但交换速度快。在缓存中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度。由此可见,在CPU中加入缓存是一种高效的解决方案,这样整个内存储器(缓存+内存)就变成了既有缓存的高速度,又有内存的大容量的存储系统了。缓存对CPU的性能影响很大,主要是因为CPU的数据交换顺序和CPU与缓存间的带宽引起的。
缓存是为了解决CPU速度和内存速度的速度差异问题。内存中被CPU访问最频繁的数据和指令被复制入CPU中的缓存,这样CPU就可以不经常到象“蜗牛”一样慢的内存中去取数据了,CPU只要到缓存中去取就行了,而缓存的速度要比内存快很多。
这里要特别指出的是:
1.因为缓存只是内存中少部分数据的复制品,所以CPU到缓存中寻找数据时,也会出现找不到的情况(因为这些数据没有从内存复制到缓存中去),这时CPU还是会到内存中去找数据,这样系统的速度就慢下来了,不过CPU会把这些数据复制到缓存中去,以便下一次不要再到内存中去取。
2..因为随着时间的变化,被访问得最频繁的数据不是一成不变的,也就是说,刚才还不频繁的数据,此时已经需要被频繁的访问,刚才还是最频繁的数据,现在又不频繁了,所以说缓存中的数据要经常按照一定的算法来更换,这样才能保证缓存中的数据是被访问最频繁的。
总线
是将计算机微处理器与内存芯片以及与之通信的设备连接起来的硬件通道。前端总线将CPU连接到主内存和通向磁盘驱动器、调制解调器以及网卡这类系统部件的外设总线。人们常常以MHz表示的速度来描述总线频率。
前端总线(FSB)
频率是直接影响CPU与内存直接数据交换速度。由于数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率×数据位宽)÷8。目前PC机上所能达到的前端总线频率有266MHz、333MHz、400MHz、533MHz、800MHz,1066MHz,1333MHz几种,前端总线频率越大,代表着CPU与内存之间的数据传输量越大,更能充分发挥出CPU的功能。现在的CPU技术发展很快,运算速度提高很快,而足够大的前端总线可以保障有足够的数据供给给CPU。较低的前端总线将无法供给足够的数据给CPU,这样就限制了CPU性能得发挥,成为系统瓶颈。
外频与前端总线频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit=6400Mbit/s=800MByte/s(1Byte=8bit)。
主板支持的前端总线是由芯片组决定的,一般都带有足够的向下兼容性。如865PE主板支持800MHz前端总线,那安装的CPU的前端总线可以是800MHz,也可以是533MHz,但这样就无法发挥出主板的全部功效。
I. CPU外频 北桥频率 HT频率和内存频率之间的关系
CPU外频,就是系统硬件的基准频率北桥频率?你指的是前端总线的频率吗?HT总线频率=CPU外频*HT倍频内存频率=CPU外频*DRAM:FSB(也就是内存比例,这个可以自己调。貌似有5:1,6:1,10:1可选,我不清楚AMD的有几种可选项)
J. CPU的主频、外频、倍频、一级缓存、二级缓存、前线总端频率、各代表什么意思要简单易懂啊!
外频*倍频=主频
1.主频
主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人认为主频就决定着CPU的运行速度,这不仅是个片面的,而且对于服务器来讲,这个认识也出现了偏差。至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的数值关系,即使是两大处理器厂家Intel和AMD,在这点上也存在着很大的争议,我们从Intel的产品的发展趋势,可以看出 Intel很注重加强自身主频的发展。像其他的处理器厂家,有人曾经拿过一块1G的全美达来做比较,它的运行效率相当于2
G的Intel处理器。
所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。在Intel的处理器产品中,我们也可以看到这样的例子:1 GHz Itanium芯片能够表现得差不多跟2.66 GHz Xeon/Opteron一样快,或是1.5 GHz Itanium 2大约跟4 GHz Xeon/Opteron一样快。CPU的运算速度还要看CPU的流水线的各方面的性能指标。
当然,主频和实际的运算速度是有关的,只能说主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。
2.外频外频是CPU的基准频率,单位也是MHz。CPU的外频决定着整块主板的运行速度。说白了,在台式机中,我们所说的超频,都是超CPU的外频(当然一般情况下,CPU的外频都是被锁住的)相信这点是很好理解的。但对于服务器CPU来讲,超频是绝对不允许的。前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。
目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。
3.前端总线(FSB)频率前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据位宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是6.4GB/秒。
外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8bit/Byte=800MB/s。
L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32—256KB。
L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。 L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是4MB,而服务器和工作站上用CPU的L2高速缓存更高达2MB— 4MB,有的高达8MB或者19MB。
L3 Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显着的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。
其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。
但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。