当前位置:首页 » 硬盘大全 » 高速缓存容量怎么表示
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

高速缓存容量怎么表示

发布时间: 2022-04-20 22:34:55

1. CPU的二级缓存的2×2M,4×256K是什么意思代表什么怎么比较

二级缓存又叫l2 cache,它是处理器内部的一些缓冲存储器,其作用跟内存一样。 它是怎么出现的呢? 要上溯到上个世纪80年代,由于处理器的运行速度越来越快,慢慢地,处理器需要从内存中读取数据的速度需求就越来越高了。然而内存的速度提升速度却很缓慢,而能高速读写数据的内存价格又非常高昂,不能大量采用。从性能价格比的角度出发,英特尔等处理器设计生产公司想到一个办法,就是用少量的高速内存和大量的低速内存结合使用,共同为处理器提供数据。这样就兼顾了性能和使用成本的最优。而那些高速的内存因为是处于cpu和内存之间的位置,又是临时存放数据的地方,所以就叫做缓冲存储器了,简称“缓存”。它的作用就像仓库中临时堆放货物的地方一样,货物从运输车辆上放下时临时堆放在缓存区中,然后再搬到内部存储区中长时间存放。货物在这段区域中存放的时间很短,就是一个临时货场。 最初缓存只有一级,后来处理器速度又提升了,一级缓存不够用了,于是就添加了二级缓存。二级缓存是比一级缓存速度更慢,容量更大的内存,主要就是做一级缓存和内存之间数据临时交换的地方用。现在,为了适应速度更快的处理器p4ee,已经出现了三级缓存了,它的容量更大,速度相对二级缓存也要慢一些,但是比内存可快多了。 缓存的出现使得cpu处理器的运行效率得到了大幅度的提升,这个区域中存放的都是cpu频繁要使用的数据,所以缓存越大处理器效率就越高,同时由于缓存的物理结构比内存复杂很多,所以其成本也很高。

大量使用二级缓存带来的结果是处理器运行效率的提升和成本价格的大幅度不等比提升。举个例子,服务器上用的至强处理器和普通的p4处理器其内核基本上是一样的,就是二级缓存不同。至强的二级缓存是2mb~16mb,p4的二级缓存是512kb,于是最便宜的至强也比最贵的p4贵,原因就在二级缓存不同。

即l2 cache。由于l1级高速缓存容量的限制,为了再次提高cpu的运算速度,在cpu外部放置一高速存储器,即二级缓存。工作主频比较灵活,可与cpu同频,也可不同。cpu在读取数据时,先在l1中寻找,再从l2寻找,然后是内存,在后是外存储器。所以l2对系统的影响也不容忽视。

cpu缓存(cache memory)位于cpu与内存之间的临时存储器,它的容量比内存小但交换速度快。在缓存中的数据是内存中的一小部分,但这一小部分是短时间内cpu即将访问的,当cpu调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度。由此可见,在cpu中加入缓存是一种高效的解决方案,这样整个内存储器(缓存+内存)就变成了既有缓存的高速度,又有内存的大容量的存储系统了。缓存对cpu的性能影响很大,主要是因为cpu的数据交换顺序和cpu与缓存间的带宽引起的。

缓存的工作原理是当cpu要读取一个数据时,首先从缓存中查找,如果找到就立即读取并送给cpu处理;如果没有找到,就用相对慢的速度从内存中读取并送给cpu处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。

正是这样的读取机制使cpu读取缓存的命中率非常高(大多数cpu可达90%左右),也就是说cpu下一次要读取的数据90%都在缓存中,只有大约10%需要从内存读取。这大大节省了cpu直接读取内存的时间,也使cpu读取数据时基本无需等待。总的来说,cpu读取数据的顺序是先缓存后内存。

最早先的cpu缓存是个整体的,而且容量很低,英特尔公司从pentium时代开始把缓存进行了分类。当时集成在cpu内核中的缓存已不足以满足cpu的需求,而制造工艺上的限制又不能大幅度提高缓存的容量。因此出现了集成在与cpu同一块电路板上或主板上的缓存,此时就把 cpu内核集成的缓存称为一级缓存,而外部的称为二级缓存。一级缓存中还分数据缓存(data cache,d-cache)和指令缓存(instruction cache,i-cache)。二者分别用来存放数据和执行这些数据的指令,而且两者可以同时被cpu访问,减少了争用cache所造成的冲突,提高了处理器效能。英特尔公司在推出pentium 4处理器时,用新增的一种一级追踪缓存替代指令缓存,容量为12kμops,表示能存储12k条微指令。

随着cpu制造工艺的发展,二级缓存也能轻易的集成在cpu内核中,容量也在逐年提升。现在再用集成在cpu内部与否来定义一、二级缓存,已不确切。而且随着二级缓存被集成入cpu内核中,以往二级缓存与cpu大差距分频的情况也被改变,此时其以相同于主频的速度工作,可以为cpu提供更高的传输速度。

二级缓存是cpu性能表现的关键之一,在cpu核心不变化的情况下,增加二级缓存容量能使性能大幅度提高。而同一核心的cpu高低端之分往往也是在二级缓存上有差异,由此可见二级缓存对于cpu的重要性。

cpu在缓存中找到有用的数据被称为命中,当缓存中没有cpu所需的数据时(这时称为未命中),cpu才访问内存。从理论上讲,在一颗拥有二级缓存的cpu中,读取一级缓存的命中率为80%。也就是说cpu一级缓存中找到的有用数据占数据总量的80%,剩下的20%从二级缓存中读取。由于不能准确预测将要执行的数据,读取二级缓存的命中率也在80%左右(从二级缓存读到有用的数据占总数据的16%)。那么还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。目前的较高端的cpu中,还会带有三级缓存,它是为读取二级缓存后未命中的数据设计的—种缓存,在拥有三级缓存的cpu中,只有约5%的数据需要从内存中调用,这进一步提高了cpu的效率。

为了保证cpu访问时有较高的命中率,缓存中的内容应该按一定的算法替换。一种较常用的算法是“最近最少使用算法”(lru算法),它是将最近一段时间内最少被访问过的行淘汰出局。因此需要为每行设置一个计数器,lru算法是把命中行的计数器清零,其他各行计数器加1。当需要替换时淘汰行计数器计数值最大的数据行出局。这是一种高效、科学的算法,其计数器清零过程可以把一些频繁调用后再不需要的数据淘汰出缓存,提高缓存的利用率。

cpu产品中,一级缓存的容量基本在4kb到64kb之间,二级缓存的容量则分为128kb、256kb、512kb、1mb、2mb等。一级缓存容量各产品之间相差不大,而二级缓存容量则是提高cpu性能的关键。二级缓存容量的提升是由cpu制造工艺所决定的,容量增大必然导致cpu内部晶体管数的增加,要在有限的cpu面积上集成更大的缓存,对制造工艺的要求也就越高

缓存(cache)大小是cpu的重要指标之一,其结构与大小对cpu速度的影响非常大。简单地讲,缓存就是用来存储一些常用或即将用到的数据或指令,当需要这些数据或指令的时候直接从缓存中读取,这样比到内存甚至硬盘中读取要快得多,能够大幅度提升cpu的处理速度。
所谓处理器缓存,通常指的是二级高速缓存,或外部高速缓存。即高速缓冲存储器,是位于cpu和主存储器dram(dynamic ram)之间的规模较小的但速度很高的存储器,通常由sram(静态随机存储器)组成。用来存放那些被cpu频繁使用的数据,以便使cpu不必依赖于速度较慢的dram(动态随机存储器)。l2高速缓存一直都属于速度极快而价格也相当昂贵的一类内存,称为sram(静态ram),sram(static ram)是静态存储器的英文缩写。由于sram采用了与制作cpu相同的半导体工艺,因此与动态存储器dram比较,sram的存取速度快,但体积较大,价格很高。
处理器缓存的基本思想是用少量的sram作为cpu与dram存储系统之间的缓冲区,即cache系统。80486以及更高档微处理器的一个显着特点是处理器芯片内集成了sram作为cache,由于这些cache装在芯片内,因此称为片内cache。486芯片内cache的容量通常为8k。高档芯片如pentium为16kb,power pc可达32kb。pentium微处理器进一步改进片内cache,采用数据和双通道cache技术,相对而言,片内cache的容量不大,但是非常灵活、方便,极大地提高了微处理器的性能。片内cache也称为一级cache。由于486,586等高档处理器的时钟频率很高,一旦出现一级cache未命中的情况,性能将明显恶化。在这种情况下采用的办法是在处理器芯片之外再加cache,称为二级cache。二级cache实际上是cpu和主存之间的真正缓冲。由于系统板上的响应时间远低于cpu的速度,如果没有二级cache就不可能达到486,586等高档处理器的理想速度。二级cache的容量通常应比一级cache大一个数量级以上。在系统设置中,常要求用户确定二级cache是否安装及尺寸大小等。二级cache的大小一般为128kb、256kb或512kb。在486以上档次的微机中,普遍采用256kb或512kb同步cache。所谓同步是指cache和cpu采用了相同的时钟周期,以相同的速度同步工作。相对于异步cache,性能可提高30%以上。
目前,pc及其服务器系统的发展趋势之一是cpu主频越做越高,系统架构越做越先进,而主存dram的结构和存取时间改进较慢。因此,缓存(cache)技术愈显重要,在pc系统中cache越做越大。广大用户已把cache做为评价和选购pc系统的一个重要指标。

2. 怎样简单明了的解释高速缓存

L1高速缓存也叫一级高速缓存,主要用于暂存CPU指令和数据,不同CPU的L1高速缓存各不相同。L1高速缓存对CPU的性能影响较大,其容量越大,CPU的性能也就越高。
L2高速缓存也叫二级缓存,主要用于存放电脑运行时操作系统的指令、程序数据和地址指针等。CPU生产商都尽最大可能加大L2高速缓存的容量,并使其与CPU在相同频率下工作,来达到提高CPU性能的效果。
缓存比内存的速度快。

3. CPU的二级缓存的大小怎么看呢

缓存(Cache)

缓存就是系统中用于临时处理的存储器。CPU的运行速度是内存的好几倍甚至十多倍。这样的速度差异会导致实际运行速度很慢,浪费资源。一种解决办法是把内存速度提高,另一种就是使用少量的快速内存,就是缓存。由于使用缓存的成本较低,所以被大量采用。
原来的缓存很小,Pentium的缓存只有64KB。后来随着CPU速度加快,竞争激烈,现在的缓存开始增加。但研究表现,超过256的缓存运行效率没有太大提高。就使用了两级缓存技术,一级和二级。目前CPU的一级缓存一般是256KB,二级缓存是512KB到2MB。对大多数CPU来说,缓存越大,运行速度越快。P4和赛扬的区别就是缓存大小不一样。

CPU进行处理的数据信息多是从内存中调取的,但CPU的运算速度要比内存快得多,为此在此传输过程中放置一存储器,存储CPU经常使用的数据和指令。这样可以提高数据传输速度。可分一级缓存和二级缓存。

一级缓存

即L1 Cache。集成在CPU内部中,用于CPU在处理数据过程中数据的暂时保存。由于缓存指令和数据与CPU同频工作,L1级高速缓存缓存的容量越大,存储信息越多,可减少CPU与内存之间的数据交换次数,提高CPU的运算效率。但因高速缓冲存储器均由静态RAM组成,结构较复杂,在有限的CPU芯片面积上,L1级高速缓存的容量不可能做得太大。

二级缓存

即L2 Cache。由于L1级高速缓存容量的限制,为了再次提高CPU的运算速度,在CPU外部放置一高速存储器,即二级缓存。工作主频比较灵活,可与CPU同频,也可不同。CPU在读取数据时,先在L1中寻找,再从L2寻找,然后是内存,在后是外存储器。所以L2对系统的影响也不容忽视。

4. 想了解缓存的概念

缓存
缓存就是指可以进行高速数据交换的存储器,它先于内存与CPU交换数据,因此速度极快,所以又被称为高速缓存。与处理器相关的缓存一般分为两种——L1缓存,也称内部缓存;和L2缓存,也称外部缓存。例如Pentium4“Willamette”内核产品采用了423的针脚架构,具备400MHz的前端总线,拥有256KB全速二级缓存,8KB一级追踪缓存,SSE2指令集。
内部缓存(L1 Cache)
也就是我们经常说的一级高速缓存。在CPU里面内置了高速缓存可以提高CPU的运行效率,内置的L1高速缓存的容量和结构对CPU的性能影响较大,L1缓存越大,CPU工作时与存取速度较慢的L2缓存和内存间交换数据的次数越少,相对电脑的运算速度可以提高。不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大,L1缓存的容量单位一般为KB。
外部缓存(L2 Cache)
CPU外部的高速缓存,外部缓存成本昂贵,所以Pentium 4 Willamette核心为外部缓存256K,但同样核心的赛扬4代只有128K。

硬盘缓存越高,读取速度越快

5. 硬盘的(缓存容量)参数是什么意思

硬盘缓存是指硬盘控制器上的一块存取速度极快的内存芯片(如图),是硬盘与外部数据总线交换数据的场所,其容量通常用KB或MB来表示。

硬盘的缓存是一块存取速度很快的内存芯片

当我们日常进行电脑操作时,CPU快速处理各种任务,这就需要从硬盘中不断地读取数据。硬盘会首先将需要的数据放入硬盘缓存中,CPU读硬盘时系统先检查请求,寻找所要的数据是否在高速缓存中。如果在则称为命中,缓存就会发送出相应的数据,磁头也就不必再向磁盘访问数据,从而大幅度改善硬盘的性能。

大体上说来,硬盘的读过程在经过磁信号转换成电信号的过程后,都要通过缓存的一次次填充与清空、再填充与再清空后才能按部就班地通过ATA接口传送出去。而需要将数据写入硬盘时,CPU会在硬盘缓存中保留写数据,当硬盘空闲时再次写入,有效地提高了硬盘的使用效率。换句话说,就是由于CPU与硬盘之间存在巨大的速度差异,为解决硬盘在读写数据时CPU的等待问题,在硬盘上设置适当的高速缓存,以解决两者之间速度不匹配的问题。

6. 高速缓存是什么

高速缓存英文是cache。F5 BIG-IP软件实现快速缓存——高达9倍的服务器容量提升。高速缓存是一种特殊的存储器子系统,其中复制了频繁使用的数据,以利于CPU快速访问。存储器的高速缓冲存储器存储了频繁访问的 RAM 位置的内容及这些数据项的存储地址。当处理器引用存储器中的某地址时,高速缓冲存储器便检查是否存有该地址。如果存有该地址,则将数据返回处理器;如果没有保存该地址,则进行常规的存储器访问。因为高速缓冲存储器总是比主RAM 存储器速度快,所以当 RAM 的访问速度低于微处理器的速度时,常使用高速缓冲存储器。

L1高速缓存,也就是我们经常说的一级高速缓存。在CPU里面内置了高速缓存可以提高CPU的运行效率。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。采用回写(Write Back)结构的高速缓存。它对读和写*作均有可提供缓存。而采用写通(Write-through)结构的高速缓存,仅对读*作有效。在486以上的计算机中基本采用了回写式高速缓存。在目前流行的处理器中,奔腾Ⅲ和Celeron处理器拥有32KB的L1高速缓存,奔腾4为8KB,而AMD的Duron和Athlon处理器的L1高速缓存高达128KB。

L2高速缓存,指CPU第二层的高速缓存,第一个采用L2高速缓存的是奔腾 Pro处理器,它的L2高速缓存和CPU运行在相同频率下的,但成本昂贵,市场生命很短,所以其后奔腾 II的L2高速缓存运行在相当于CPU频率一半下的。接下来的Celeron处理器又使用了和CPU同速运行的L2高速缓存,现在流行的CPU,无论是AthlonXP和奔腾4,其L2高速缓存都是和CPU同速运行的。除了速度以外,L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用CPU的L2高速缓存更高达1MB-3MB。

——》1,高速缓存(Cache),全称“高速缓冲存储器”。

——》2,例如:当CPU处理数据时,它会先到高速缓存中去寻找,如果数据因之前的操作已经读取而被暂存其中,就不需要再从主内存中读取数据——由于CPU的运行速度一般比主内存快,因此若要经常存取主内存的话,就必须等待数个CPU周期从而造成浪费。

——》3,提供“高速缓存”的目的是为了让数据存取的速度适应CPU的处理速度,其基于的原理是内存中“程序执行与数据访问的局域性行为”。

——》4,现在Cache的概念已经被扩充了:不仅在CPU和主内存之间有Cache,而且在内存和硬盘之间也有Cache(磁盘高速缓存),乃至在硬盘与网络之间也有某种意义上的“Cache”(Internet临时文件夹)。

——》5,凡是位于速度相差较大的两种硬件之间的,用于协调两者数据传输速度差异的结构,均可称之为Cache。

——》6,所以硬盘和内存之间的Cache就叫做磁盘高速缓存。它是在内存中开辟一块位置,来临时存取硬盘中的数据。
这项技术可使计算机读写时的存储系统平均数据传输率提高5-10倍,适应了当前激增的海量数据存储需求。

——》7,在DOS时代,我们用:
smartdrv 内存容量 命令来加载硬盘高速缓存。自从有了Windows后,我们就不需要加载硬盘高速缓存了,因为Windows本身有自己的高速缓存管理单元,如果强行使用smartdrv命令加载,反而会影响Windows的性能。

——》8,我们在用硬盘安装Win2000/XP时候,系统会提示加载高速缓存,这是因为在安装的初期还是DOS操作,所以为了达到读存的速度,安装程序要求加载高速缓存。

F5 BIG-IP软件实现快速缓存——高达9倍的服务器容量提升
F5 BIG-IP的智能缓存功能通过从Web应用服务器下载重复性流量,实现了巨大的扩展性及费用节省。它也是唯一能够提供多存储缓存的解决方案对每个应用或部门的具体高速缓存进行管理,从而实现对优先级应用的准备与智能的控制。

7. 高速缓存Cache问题

本题高速缓冲存储器地址映像与变换的内容

高速缓冲存储器(Cache)简称高速缓存,它的功能是提高CPU数据输入输出的速率,突破所谓的“冯·诺依曼瓶颈”。使用高速缓存改善系统性能的依据是程序的局部性原理。如果CPU需要访问的内容大多能在高速缓存中找到(称为访问命中,hit)则可大大提高系统的性能

1、高速缓存Cache的存储系统的平均存储时间可以表示为:t3=h*t1+(1-h)*t2.其中,Cachce的存取时间t1、主存的存取时间t2及平均存取时间为t3已知后,可以求出Cache的命中率h为99%

2、高速缓存与主存之间有多种地址映射方式。常见的有直接映射方式、全相联映射方式和组相联映射方式。

全相联映射方式的基本单元分为两部分:地址部分和数据部分、数据部分用于存放数据,而地址部分用于存放该数据的存储器地址。

当进行映射时,相联存储器把CPU发出的存储器地址与高速缓存内所有的地址信息同时进行比较,已确定是否命中。

全相联映射方式的主存地址构成为:块内地址+区号+块号。高速缓存Cache的地址构成为:块号+块内地址。

将主存地址8888888H从十六进制转换为二进制为:1000100010001000100010001000B

即块内地址为10001000100010001000B,相联存储器中区号为100010B,区块号为00B,所以相联存储器中存储的是10001000B=88H。由相联存储器的地址变换表查出88H块号为01B。最后根据Cache的地址构成,把Cache块号与块内地址连接起来后得到高速缓存Cache的地址为0110001000100010001000B,转换为十六进制后即188888H

8. 高速缓存的容量为4MB,分为4 块,每块1MB,主存容量为256MB

首先,您看的解析并非是数值28,而是2^8,即用于表示256的指数形式。先为您解答最开始的难点。
然而,我印象中这道题目采用的是全相联映射,所以您说的解析256/1压根没意义,在全相联映射中,主存地址=块号+块内地址。题目给出的主存容量为256M=2^28,也就是说主存地址有28位,对应的十六进制应该是7位,如题给的8888888H。通过最重要的一点,主存单位块容量和缓存单位块容量必须相同的概念可知:此主存的块内地址为Log2 (1M)=20,换成十六进制是5位,也就是说题目中给的那7个8的主存地址,后五位都是块内地址,前两位是块号88。
最后,通过主缓存块号映射表知道对应的缓存块号为1,根据公式cache缓存地址=块号+块内地址 = 188888H
注意:上述所说的相关公式仅是在全相联映射的情况下适用,同类型的映射还有直接映射和组相连映射,它们的计算方式有些许差异。

9. 何谓’高速缓存’高速缓存=RAM吗详见问题补充说明

1,高速缓存(Cache),全称“高速缓冲存储器”。

2,例如:当CPU处理数据时,它会先到高速缓存中去寻找,如果数据因之前的操作已经读取而被暂存其中,就不需要再从主内存中读取数据——由于CPU的运行速度一般比主内存快,因此若要经常存取主内存的话,就必须等待数个CPU周期从而造成浪费。

3,提供“高速缓存”的目的是为了让数据存取的速度适应CPU的处理速度,其基于的原理是内存中“程序执行与数据访问的局域性行为”。

4,现在Cache的概念已经被扩充了:不仅在CPU和主内存之间有Cache,而且在内存和硬盘之间也有Cache(磁盘高速缓存),乃至在硬盘与网络之间也有某种意义上的“Cache”(Internet临时文件夹)。

5,凡是位于速度相差较大的两种硬件之间的,用于协调两者数据传输速度差异的结构,均可称之为Cache。

6,所以硬盘和内存之间的Cache就叫做磁盘高速缓存。它是在内存中开辟一块位置,来临时存取硬盘中的数据。这项技术可使计算机读写时的存储系统平均数据传输率提高5-10倍,适应了当前激增的海量数据存储需求。

7,在DOS时代,我们用:
smartdrv 内存容量
命令来加载硬盘高速缓存。自从有了Windows后,我们就不需要加载硬盘高速缓存了,因为Windows本身有自己的高速缓存管理单元,如果强行使用smartdrv命令加载,反而会影响Windows的性能。

8,我们在用硬盘安装Win2000/XP时候,系统会提示加载高速缓存,这是因为在安装的初期还是DOS操作,所以为了达到读存的速度,安装程序要求加载高速缓存。

10. 请问高速缓存是什么意思恳请高手指点!回答正确即可被采纳!

高速缓存

缓存(Cache memory)是硬盘控制器上的一块内存芯片,具有极快的存取速度,它是硬盘内部存储和外界接口之间的缓冲器。由于硬盘的内部数据传输速度和外界接口传输速度不同,缓存在其中起到一个缓冲的作用。缓存的大小与速度是直接关系到硬盘的传输速度的重要因素,能够大幅度地提高硬盘整体性能。当硬盘存取零碎数据时需要不断地在硬盘与内存之间交换数据,如果有大缓存,则可以将那些零碎数据暂存在缓存中,减小外系统的负荷,也提高了数据的传输速度。

硬盘的缓存主要起三种作用:一是预读取。当硬盘受到CPU指令控制开始读取数据时,硬盘上的控制芯片会控制磁头把正在读取的簇的下一个或者几个簇中的数据读到缓存中(由于硬盘上数据存储时是比较连续的,所以读取命中率较高),当需要读取下一个或者几个簇中的数据的时候,硬盘则不需要再次读取数据,直接把缓存中的数据传输到内存中就可以了,由于缓存的速度远远高于磁头读写的速度,所以能够达到明显改善性能的目的;二是对写入动作进行缓存。当硬盘接到写入数据的指令之后,并不会马上将数据写入到盘片上,而是先暂时存储在缓存里,然后发送一个“数据已写入”的信号给系统,这时系统就会认为数据已经写入,并继续执行下面的工作,而硬盘则在空闲(不进行读取或写入的时候)时再将缓存中的数据写入到盘片上。虽然对于写入数据的性能有一定提升,但也不可避免地带来了安全隐患——如果数据还在缓存里的时候突然掉电,那么这些数据就会丢失。对于这个问题,硬盘厂商们自然也有解决办法:掉电时,磁头会借助惯性将缓存中的数据写入零磁道以外的暂存区域,等到下次启动时再将这些数据写入目的地;第三个作用就是临时存储最近访问过的数据。有时候,某些数据是会经常需要访问的,硬盘内部的缓存会将读取比较频繁的一些数据存储在缓存中,再次读取时就可以直接从缓存中直接传输。

缓存容量的大小不同品牌、不同型号的产品各不相同,早期的硬盘缓存基本都很小,只有几百KB,已无法满足用户的需求。2MB和8MB缓存是现今主流硬盘所采用,而在服务器或特殊应用领域中还有缓存容量更大的产品,甚至达到了16MB、64MB等。

大容量的缓存虽然可以在硬盘进行读写工作状态下,让更多的数据存储在缓存中,以提高硬盘的访问速度,但并不意味着缓存越大就越出众。缓存的应用存在一个算法的问题,即便缓存容量很大,而没有一个高效率的算法,那将导致应用中缓存数据的命中率偏低,无法有效发挥出大容量缓存的优势。算法是和缓存容量相辅相成,大容量的缓存需要更为有效率的算法,否则性能会大大折扣,从技术角度上说,高容量缓存的算法是直接影响到硬盘性能发挥的重要因素。更大容量缓存是未来硬盘发展的必然趋势。