① 我问下,电脑的硬盘和内存的区别
电脑的硬盘和内存是不一样的。在电脑刚刚发明的年代,电脑是没有硬盘的,当时的电脑只有内存,内存就是电脑进行数据运算的地方,电脑本身就是一个运算器,它需要内存这个舞台来发挥它的运算功能。内存是很多集成的存储单元组成,它主要靠电流来维持CUP在它上面运算的数据,停电以后数据就马上丢失了,但是它的速度很快,可以满足CPU的高速运算。人们为了让计算机停电后仍然可以记住数据,发明了磁介质的存储器,首先用的是磁带,这个磁带的外观看起来有点像电影的胶片卷,它的工作原理与我们平时用的磁带录音机是一样的,它把电脑的数据转换成磁信息,通过磁头记录在磁带上,但是它的速度太慢了,后来人们又发明了在一个高速转动的硬盘上涂上磁粉,用一个磁头在上面读取和记录磁信息,看起来有点像古老的唱片机,不过体积要小得多,把这个硬盘和磁头封在一个盒子里,装在电脑上,这就是硬盘。硬盘的作用就像一个仓库,计算机的数据可以存放在硬盘中,使用的时候再从硬盘中读取出来。在关机停电以后,因为硬盘上的磁道已经记录了数据的信息,下次开机的时候仍然可以原样加载进入内存,这样数据就可以反复使用了。
MP3用的闪存最初是从关闭电源后数据也不会丢失的只读内存ROM派生出来的。通电后可改写ROM的是EEPROM(电可擦可编程序只读存储器)。这么说可能有些复杂,形象的说吧,一个闪存里面是由千千万万个小灯泡组成的,通电的时候这些小灯泡亮的就是1,不亮的就是0,很多很多1和0就组成了计算机要存储的数据。当计算机要保存数据的时候,就用一个写电流去改写闪存,将要保存0的小灯泡烧掉,这样即使后面通了电,这些小灯泡也不会亮了。当闪存拿到别的机子或在MP3闪通电的时候,根据这些小灯泡亮不亮,读取的芯片就知道这些数据是0或是1,就可以读出数据来了。
如果要重新改写上面的数据,计算机可以用一个改电压将所有的小灯泡全部复位,小灯泡都可以用了,再用写电压去烧掉一定的小灯泡,这样又保存数据了。当然小灯泡不是可以无限的烧下去,一般的寿命是100万次。
我上面的比喻不是很正确,不过原理应该说明白了。下面是正是一点的解释,可能看起来比较头晕:在闪存中,起着小灯泡作用的是一些类似二极管的在源极和漏极之间电流单向传导的半导体上形成贮存电子的浮动棚。浮动栅包裹着一层硅氧化膜绝缘体。它的上面是在源极和漏极之间控制传导电流的控制栅。数据是0或1取决于在硅底板上形成的浮动栅中是否有电子。有电子为0,无电子为1。
闪存就如同其名字一样,写入前删除数据进行初始化。具体说就是从所有浮动栅中导出电子。即将有所数据归“1”。
写入时只有数据为0时才进行写入,数据为1时则什么也不做。写入0时,向栅电极和漏极施加高电压,增加在源极和漏极之间传导的电子能量。这样一来,电子就会突破氧化膜绝缘体,进入浮动栅。
读取数据时,向栅电极施加一定的电压,电流大为1,电流小则定为0。浮动栅没有电子的状态(数据为1)下,在栅电极施加电压的状态时向漏极施加电压,源极和漏极之间由于大量电子的移动,就会产生电流。而在浮动栅有电子的状态(数据为0)下,沟道中传导的电子就会减少。因为施加在栅电极的电压被浮动栅电子吸收后,很难对沟道产生影响。
② 移动硬盘与U盘有什么区别
一、主体不同
1、移动硬盘:采用USB或IEEE1394接口,可以随时插上或拔下,小巧而便于携带的硬盘存储器。
2、U盘:使用USB接口的无须物理驱动器的微型高容量移动存储产品,通过USB接口与电脑连接实现即插即用。
二、容量不同
1、移动硬盘:移动硬盘能提供320GB、500GB、600G、640GB、900GB、1000GB(1TB)、1.5TB、2TB、2.5TB、3TB、3.5TB、4TB等容量,最高可达12TB的容量。
2、U盘:U盘容量有1G、2G、4G、8G、16G等。
三、结构不同
1、移动硬盘:外壳一般是铝合金或者塑料材质,起到抗压、抗震、防静电、防摔、防潮、散热等作用;控制芯片控制移动硬盘的读/写性能。
2、U盘:机芯包括一块PCB+USB主控芯片+晶振+贴片电阻、电容+USB接口+贴片LED(不是所有的U盘都有)+FLASH(闪存)芯片。
③ 什么是U盘
U盘,和硬盘、光盘一样,都是存储数字信息的硬件,只是存储原理不一样.
U盘的区别与其它存储设备存储原理是:计算机把二进制数字信号转为复合二进制数字信号(加入分配、核对、堆栈等指令)读写到USB芯片适配接口,通过芯片处理信号分配给EPROM2存储芯片的相应地址存储二进制数据,实现数据的存储。
EPROM2数据存储器,其控制原理是电压控制栅晶体管的电压高低值(高低电位),栅晶体管的结电容可长时间保存电压值,也就是为什么USB断电后能保存数据的原因。
目前改进磁盘存取速度的方式主要有两种。一是磁盘快取控制(disk cache controller),它将从磁盘读取的数据存在快取内存(cache memory)中以减少磁盘存取的次数,数据的读写都在快取内存中进行,大幅增加存取的速度,如要读取的数据不在快取内存中,或要写数据到磁盘时,才做磁盘的存取动作。这种方式在单工期环境(single-tasking envioronment)如DOS之下,对大量数据的存取有很好的性能(量小且频繁的存取则不然),但在多工(multi-tasking)环境之下(因为要不停的作数据交换(swapping)的动作)或数据库(database)的存取(因每一记录都很小)就不能显示其性能。这种方式没有任何安全保障。
其一是使用磁盘阵列的技术。磁盘阵列是把多个磁盘组成一个阵列,当作单一磁盘使用,它将数据以分段(striping)的方式储存在不同的磁盘中,存取数据时,阵列中的相关磁盘一起动作,大幅减低数据的存取时间,同时有更佳的空间利用率。磁盘阵列所利用的不同的技术,称为RAID level,不同的level针对不同的系统及应用,以解决数据安全的问题。
一般高性能的磁盘阵列都是以硬件的形式来达成,进一步的把磁盘快取控制及磁盘阵列结合在一个控制器(RAID controler)或控制卡上,针对不同的用户解决人们对磁盘输出/入系统的四大要求:
(1) 增加存取速度。
(2) 容错(fault tolerance),即安全性。
(3) 有效的利用磁盘空间。
(4) 尽量的平衡CPU,内存及磁盘的性能差异,提高电脑的整体工作性能。
磁盘阵列原理
1987年,加州伯克利大学的一位人员发表了名为\"磁盘阵列研究\"的论文,正式提到了RAID也就是磁盘阵列,论文提出廉价的5.25〃及3.5〃的硬盘也能如大机器上的8〃盘能提供大容量、高性能和数据的一致性,并详述了RAID1至5的技术。
磁盘阵列针对不同的应用使用的不同技术,称为RAID level,RAID是Red-
undant Array of Inexpensive Disks的缩写,而每一level代表一种技术,目前业界公认的标准是RAID0~RAID5。这个level并不代表技术的高低,level5并不高于level3,level1也不低于level4,至于要选择哪一种RAID level的产品,纯视用户的操作环境(operating environment)及应用(application)而定,与level的高低没有必然的关系。RAID0没有安全的保障,但其快速,所以适合高速I/O的系统;RAID1适用于需安全性又要兼顾速度的系统,RAID2及RAID3适用于大型电脑及影像、CAD/CAM等处理;RAID5多用于OLTP,因有金融机构及大型数据处理中心的迫切需要,故使用较多而较有名气,但也因此形成很多人对磁盘阵列的误解,以为磁盘阵列非要RAID5不可;RAID4较少使用,和RAID5有其共同之处,但RAID4适合大量数据的存取。其他如RAID6,RAID7,乃至RAID10、50、100等,都是厂商各做各的,并无一致的标准,在此不作说明。
RAID1
RAID1是使用磁盘镜像(disk muroring)的技术,磁盘镜像应用在RAID1之前就在很多系统中使用,它的方式是在工作磁盘(working disk)之外再加一额外的备份磁盘(backup disk)两个磁盘所储存的数据安全一致,数据在写入工作磁盘同时也写入备份磁盘。
RAID2
RAID2是把数据分散为位元/位元组(bit/byte)或块(block),加入海明码Hamming Code,在磁盘阵列中作间隔写入(interleaving)到每个磁盘中,而且地址(address)都一样,也就是在各个磁盘中,其数据都在相同的磁道(cylin-
der or track)及扇区中。RAID2又称为并行阵列(parallel array)其设计是使用共轴同步(spindle synchronize)的技术,存取数据时,整个磁盘阵列一起动作,在各个磁盘的相同位置作平行存取,所以有最好的存取时间(auesstime),共总线(bus)是特别的设计以大带宽并行传输所存取的数据,所以有最好的传输时间(transfer time)。在大型档案的存取应用,RAID2有最好的性能,但如果档案太小,会将其性能拉下来,因为磁盘的存取是以扇区为单位,而RAID2的存取是所有磁盘平行动作,而且是作单位元或位元组的存取,故小于一个扇区的数据量会使其性能大打折扣。RAID2是设计给需要连续且大量数据的电脑使用的,如大型电脑(mainframe to supercomputer)、作影像处理或CAD/CAM的工作站(workstation)等,并不适用于一般的多用户环境\网络服务器(network server),小型机或PC。
RAID3
RAID3的数据储存及存取方式都和RAID2一样,但在安全方面以奇偶较验(parity check)取代海明码做错误校正及检测,所以只需要一个额外的校检磁盘(parity disk)。奇偶校验值的计算是以各个磁盘的相对应位作XOR的逻辑运算,然后将结果写入奇偶校验磁盘,任何数据的修改都要做奇偶校验计算。
RAID4
RAID4也使用一个校验磁盘,但和RAID3不一样,RAID4的方式是RAID0加上一个校验磁盘。
RAID5
RAID5和RAID4相似但避免了RAID4的瓶颈,方法是不用校验磁盘而将校验数据以循环的方式放在每一个磁盘中,RAID5的控制比较复杂,尤其是利用硬件对磁盘阵列的控制,因为这种方式的应用比其他的RAID level要掌握更多的事情,有更多的输出/入需求,既要速度快,又要处理数据,计算校验值,做错误校正等,所以价格较高,其应用最好是OLTP,至于用于大型文件,不见得有最佳的性能。
RAID的性能与可用性
以上数据基于4个磁盘,传输块大小1K,75%的读概率,数据可用性的计算基于同样的损坏概率。
RAID的概述
RAID0
没有任何额外的磁盘或空间作安全准备,所以一般人不重视它,这是误解。其实它有最好的效率及空间利用率,对于追求效率的应用,非常理想,可同时用其他的RAID level或其他的备份方式以补其不足,保护重要的数据。
RAID1
有最佳的安全性,100%不停机,即使有一个磁盘损坏也能照常作业而不影响其效能(对能并行存取的系统稍有影响),因为数据是作重复储存。RAID1的并行读取几乎有RAID0的性能,因为可同时读取相互镜像的磁盘;写入也只比RAID0略逊,因为同时写入两个磁盘并没有增加多少工作。虽比RAID1要增加一倍的磁盘做镜像,但作为采用磁盘阵列的进入点,它是最便宜的一个方案,是新设磁盘阵列的用户之最佳选择。
RAID5
RAID5在不停机及容错的表现都很好,但如有磁盘故障,对性能的影响较大,大容量的快取内存有助于维持性能,但在OLTP的应用上,因为每一笔数据或记录(record)都很小,对磁盘的存取频繁,故有一定程度的影响。某一磁盘故障时,读取该磁盘的数据需把共用同一校验值分段的所有数据及校验值读出来,再把故障磁盘的数据计算出来;写入时,除了要重覆读取的程序外,还要再做校验值的计算,然后写入更新的数据及校验值;等换上新的磁盘,系统要计算整个磁盘阵列的数据以回复故障磁盘的数据,时间要很长,如系统的工作负载很重的话,有很多输出/入的需求在排队等候时,会把系统的性能拉下来。但如使用硬件磁盘阵列的话,其性能就可以得到大幅度的改进,因为硬件磁盘阵列如Arena系列本身有内置的CPU与主机系统并行运作,所有存取磁盘的输出入工作都在磁盘阵列本身完成,不花费主机的时间,配合磁盘阵列的快取内存的使用,可以提高系统的整体性能,而优越的SCSI控制更能增加数据的传输速率,即使在磁盘故障的情况下,主机系统的性能也不会有明显的降低。RAID5要做的事情太多,所以价格较贵,不适于小系统,但如果是大系统使用大的磁盘阵列的话,RAID5却是最便宜的方案。
总而言之,RAID0及RAID1最适合PC服务器及图形工作站的用户,提供最佳的性能及最便宜的价格,以低成本符合市场的需求。RAID2及RAID3适用于大档案且输入输出需求不频繁的应用如影像处理及CAD/CAM等;而RAID5则适用于银行、金融、股市、数据库等大型数据处理中心的OLTP应用;RAID4与RAID5有相同的特性及 用方式,但其较适用于大型文件的读取。
磁盘阵列的额外容错功能
事实上容错功能已成为磁盘阵列最受青睐的特性,为了加强容错的功能以及使系统在磁盘故障的情况下能迅速的重建数据,以维持系统的性能,一般的磁盘阵列系统都可使用热备份(hot spare or hot standby drive)的功能,所谓热备份是在建立(configure)磁盘阵列系统的时候,将其中一磁盘指定为后备磁盘,此一磁盘在平常并不操作,但若阵列中某一磁盘发生故障时,磁盘阵列即以后备磁盘取代故障磁盘,并自动将故障磁盘的数据重建(rebuild)在后备磁盘之上,因为反应快速,加上快取内存减少了磁盘的存取,所以数据重建很快即可完成,对系统的性能影响不大。对于要求不停机的大型数据处理中心或控制中心而言,热备份更是一项重要的功能,因为可避免晚间或无人守护时发生磁盘故障所引起的种种不便。
备份盘又有热备份与温备份之分,热备份盘和温备份盘的不同在于热备份盘和阵列一起运转,一有故障时马上备援,而温备份盘虽然带电但并不运转,需要备援时才启动。两者分别在是否运转及启动的时间,但温备份盘因不运转,理论上有较长的寿命。另一个额外的容错功能是坏扇区转移(bad sector reassignment)。坏扇区是磁盘故障的主要原因,通常磁盘在读写时发生坏扇区的情况即表示此磁盘故障,不能再作读写,甚至有很多系统会因为不能完成读写的动作而死机,但若因为某一扇区的损坏而使工作不能完成或要更换磁盘,则使得系统性能大打折扣,而系统的维护成本也未免太高了,坏扇区转移是当磁盘阵列系统发现磁盘有坏扇区时,以另一空白且无故障的扇区取代该扇区,以延长磁盘的使用寿命,减少坏磁盘的发生率以及系统的维护成本。所以坏扇区转移功能使磁盘阵列具有更好的容错性,同时使整个系统有最好的成本效益比。其他如可外接电池备援磁盘阵列的快取内存,以避免突然断电时数据尚未写回磁盘而丢失;或在RAID1时作写入一致性的检查等,虽是小技术,但亦不可忽视。
④ 硬盘使用了铁磁性材料,U盘使用了铁电性材料
硬盘使用的材料,以前主要是铝,现在已经是玻璃,不过真正起作用的不是这些主要材料,而是在盘基上的涂层,这些是铁磁性的。
U盘使用的是半导体技术,也就是硅原料,简单来说,U盘的主要记忆体是芯片,也就是跟CPU核心差不多的一种东西。当然,其实应该更倾向于像内存上的芯片,不过U盘芯片的信息在断电之后不会消失而已。
另外,现在已经有很多U盘使用了微硬盘技术,核心跟硬盘一样了
⑤ 何谓“CMOS硬盘类型”
CMOS(,本意是指互补金属氧化物半导体——一种大规模应用于集成电路芯片制造的原料)是微机主板上的一块可读写的RAM芯片,用来保存当前系统的硬件配置和用户对某些参数的设定。CMOS可由主板的电池供电,即使系统掉电,信息也不会丢失。CMOSRAM本身只是一块存储器,只有数据保存功能,而对CMOS中各项参数的设定要通过专门的程序。
在计算机领域,CMOS常指保存计算机基本启动信息(如日期、时间、启动设置等)的芯片。有时人们会把CMOS和BIOS混称,其实CMOS是主板上的一块可读写的RAM芯片,是用来保存BIOS的硬件配置和用户对某些参数的设定。CMOS可由主板的电池供电,即使系统掉电,信息也不会丢失。CMOSRAM本身只是一块存储器,只有数据保存功能。而对BIOS中各项参数的设定要通过专门的程序。BIOS设置程序一般都被厂商整合在芯片中,在开机时通过特定的按键就可进入BIOS设置程序,方便地对系统进行设置。因此BIOS设置有时也被叫做CMOS设置。
早期的CMOS是一块单独的芯片MC146818A(DIP封装),共有64个字节存放系统信息。386以后的微机一般将MC146818A芯片集成到其它的IC芯片中(如82C206,PQFP封装),586以后主板上更是将CMOS与系统实时时钟和后备电池集成到一块叫做DALLDADS1287的芯片中。随着微机的发展、可设置参数的增多,现在的CMOSRAM一般都有128字节及至256字节的容量。为保持兼容性,各BIOS厂商都将自己的BIOS中关于CMOSRAM的前64字节内容的设置统一与MC146818A的CMOSRAM格式一致,而在扩展出来的部分加入自己的特殊设置,所以不同厂家的BIOS芯片一般不能互换,即使是能互换的,互换后也要对CMOS信息重新设置以确保系统正常运行。
CMOS(本意是指互补金属氧化物半导体存储器,是一种大规模应用于集成电路芯片制造的原料)是微机主板上的一块可读写的RAM芯片,主要用来保存当前系统的硬件配置和操作人员对某些参数的设定。CMOSRAM芯片由系统通过一块后备电池供电,因此无论是在关机状态中,还是遇到系统掉电情况,CMOS信息都不会丢失。
由于CMOSRAM芯片本身只是一块存储器,只具有保存数据的功能,所以对CMOS中各项参数的设定要通过专门的程序。早期的CMOS设置程序驻留在软盘上的(如IBM的PC/AT机型),使用很不方便。现在多数厂家将CMOS设置程序做到了BIOS芯片中,在开机时通过按下某个特定键就可进入CMOS设置程序而非常方便地对系统进行设置,因此这种CMOS设置又通常被叫做BIOS设置。
可读写芯片
CMOS是主板上一块可读写的RAM芯片,用于保存当前系统的硬件配置信息和用户设定的某些参数。CMOSRAM由主板上的电池供电,即使系统掉电信息也不会丢失。对CMOS中各项参数的设定和更新可通过开机时特定的按键实现(一般是Del键)。进入BIOS设置程序可对CMOS进行设置。一般CMOS设置习惯上也被叫做BIOS设置。
CMOS的设置内容
大致都包含如下可设置的内容:
1.StandardCMOSSetup:标准参数设置,包括日期,时间和软、硬盘参数等。
2.BIOSFeaturesSetup:设置一些系统选项。
3.ChipsetFeaturesSetup:主板芯片参数设置。
4.PowerManagementSetup:电源管理设置。
5.PnP/PCIConfigurationSetup:即插即用及PCI插件参数设置。
6.IntegratedPeripherals:整合外设的设置。
7.其他:硬盘自动检测,系统口令,加载缺省设置,退出等
微电子学中的CMOS概念:
CMOS,全称,即互补金属氧化物半导体,是一种大规模应用于集成电路芯片制造的原料。采用CMOS技术可以将成对的金属氧化物半导体场效应晶体管(MOSFET)集成在一块硅片上。该技术通常用于生产RAM和交换应用系统,在计算机领域里通常指保存计算机基本启动信息(如日期、时间、启动设置等)的RAM芯片。
CMOS由PMOS管和NMOS管共同构成,它的特点是低功耗。由于CMOS中一对MOS组成的门电路在瞬间要么PMOS导通、要么NMOS导通、要么都截至,比线性的三极管(BJT)效率要高得多,因此功耗很低。
在今日,CMOS制造工艺也被应用于制作数码影像器材的感光元件,尤其是片幅规格较大的单反数码相机。虽然在用途上与过去CMOS电路主要作为固件或计算工具的用途非常不同,但基本上它仍然是采取CMOS的工艺,只是将纯粹逻辑运算的功能转变成接收外界光线后转化为电能,再透过芯片上的数码—类比转换器(ADC)将获得的影像讯号转变为数码讯号输出。
相对于其他逻辑系列,CMOS逻辑电路具有一下优点:
1、允许的电源电压范围宽,方便电源电路的设计
2、逻辑摆幅大,使电路抗干扰能力强
3、静态功耗低
4、隔离栅结构使CMOS期间的输入电阻极大,从而使CMOS期间驱动同类逻辑门的能力比其他系列强得多
⑥ 什么叫硬盘
硬盘就是一种最为常见的外存储器,它好比是数据的外部仓库一样。电脑除了要有“工作间”,还要有专门存储东西的仓库。硬盘又叫固定盘,由金属材料涂上磁性物质的盘片与盘片读写装置组成。这些盘片与读写装置(驱动器)是密封在一起的。硬盘的尺寸有5.25英寸、3.5英寸和1.8英寸等。有一类硬盘还可以通过并行口连接,作为一种方便移动的硬盘。硬盘的存储速度比起内存来说要慢,但存储量要大得多,存储容量可用兆(MB)或吉(GB)来表示,1GB=1024MB。目前,家用电脑的硬盘的大小有60GB、80GB、120GB等。
硬盘的性能指标解析:
1.硬盘的转速(Spindle Speed)
硬盘转速就是指硬盘主轴电机的转动速度,一般以每分钟多少转来表示(RpM),硬盘的主轴马达带动盘片高速旋转,产生浮力使磁头飘浮在盘片上方。要将所要存取资料的扇区带到磁头下方,转速越快,等待时间也就越短。随着硬盘容量的不断增大,硬盘的转速也在不断提高。然而,转速的提高也带来了磨损加剧、温度升高、噪声增大等一系列负面影响。
2.硬盘的数据传输率(DAtA TRAnsfeRRAte) DTR(DAtA TRAnsfeRRAte)
数据传输率,它又包括了外部数据传输率(ExteRnAlTRAnsfeR RAte,又称突发传输速率)和内部数据传输率(InteRnAl TRAnsfeR RAte)两种,我们常常说的ATA100中的100就代表着这块硬盘的外部数据传输率理论值是100MB/s,指的是电脑通过数据总线从硬盘内部缓存区中所读取数据的最高速率。而内部数据传输率可能并不被大家所熟知,但它才是一块硬盘性能好坏的重要指标,它指的是磁头至硬盘缓存间的数据传输率,具体如何分析一个硬盘的DTR曲线我们会在后文的测试过程中进行说明。
注:在一些官方资料中大家常常会发现两种不同的单位,一种是MB/s,一种是MBit/s,需要指出的是,我们不能用一般的MB和MBit的换算关系(1B=8Bit)来进行换算,比如说文档中说明内部数据传输率为570MBit/s,这里就不能把570简单的除以8来进行换算,因为这个570MBit中有很多Bit是一些辅助信息,简单的除以8得出的数值和其真实性能并不能等同。当然,持续数据传输率更需要我们去关注,也就是上图中的“27 to 44”这部分数据,不过并不是每一个硬盘厂家都会给出这项数据,这就需要我们通过测试来分析了。
3.硬盘缓存
缓存是硬盘与外部总线交换数据的场所。硬盘读数据的过程是将要读取的资料存入缓存,等缓存中填充满数据或者要读取的数据全部读完后再从缓存中以外部传输率传向硬盘外的数据总线。可以说它起到了内部和外部数据传输的平衡作用。可见,缓存的作用是相当重要的。目前主流硬盘的缓存主要有8MB和2MB两种。一般以SDRAM为主。根据写入方式的不同,有写通式和回写式两种。现在的多数硬盘都是采用的回写式。
4.平均寻道时间(AveRAGe Seek TiMe)
平均寻道时间指的是从硬盘接到相应指令开始到磁头移到指定磁道为止所用的平均时间。单位为毫秒(Ms),这是硬盘一个非常重要的指标,这个指标和后面要谈到的平均访问时间有着密切的联系。
5.柱面切换时间(也称磁道切换时间,CylindeR Switch TiMe或者TRAck to TRAck TiMe)
它指的是两个相邻的柱面进行切换所用的时间,具体到磁道上是指磁头从当前磁道上方移动到相邻的磁道上方所用的时间,单位为毫秒(Ms)。
6. 全程寻道时间(Full StRoke seek TiMe) 指的是磁头从最外圈磁道上方移动到最内圈磁道上方(或者从最内圈磁道上方移动到最外圈磁道上方)所用的时间,单位为毫秒(Ms)。
7. 平均潜伏期(AveRAGe LAtency TiMe) 它指的是磁头移动到指定磁道后,还需要多少时间指定的(即要读取或者写入的)扇区才会转到磁头下进行读取或者写入的相关操作,很明显这个时间和盘片的转速有关,平均潜伏期一般指盘片旋转一周所用时间的一半,单位为毫秒(Ms)。这样我们就可以很轻松地换算出硬盘转速和平均潜伏期的一一对应关系。
换算公式为:(60/硬盘转速×2)×1000=平均潜伏期
可以计算出来,5400转 5.556Ms,7200转 4.167Ms和10000转 3Ms
8. 平均访问时间(AveRAGe Access TiMe)
这项指标在官方技术文档中一般不会出现,它指的是从相应的读或者写指令发出开始到有指定的扇区转到磁头下等待进行读取或者写入(也有的称为从读/写指令发出到第一笔数据读/写所用的时间)为止的这段时间。一般情况下,平均访问时间约等于平均寻道时间和平均潜伏期之和(严格定义中还包括一些指令处理时间,但一般忽略不计)。其单位也为毫秒(Ms),它的值我们可以利用HdtAch 2.61和WinBench 99v2.0测试出来。
⑦ U盘/硬盘等靠近磁铁,里面的文件会损坏或丢失吗
U盘文件不会丢失 ,硬盘数据可能会丢失
1.硬盘工作原理
硬盘作为一种磁表面存储器,是在非磁性的合金材料表面涂上一层很薄的磁性材料,通过磁层的磁化来存储信息。硬盘主要由磁盘和磁头及控制电路组成,信息存储在磁盘上,磁头负责读出或写入。硬盘一开机,其磁盘就开始高速旋转。磁关可以采用轻质薄膜部件,盘片在高转下产生的气生的气流浮力迫使磁头离开盘面悬浮在盘片上方,浮力与磁头座架弹簧的反向弹力使得磁头保持平衡。这样的非接触式磁头可以有效地减小磨损和由摩擦产生的热量及阻力。
当硬盘接到一个系统读取数据指令后磁头根据给出的地址,首先按磁道号产生驱动信号进行定位然后再通过盘片的转动找到具体的扇区,最后由磁头读取指定位置的信息并传送到硬盘自带的Cache中。
2.SSD固态硬盘工作原理
传统的温彻斯特是采用金属盘片+磁性材料进行数据记录的 内部主要由马达 磁头 金属盘片 主控电路构成
而SSD固态硬盘是采用NAND型Flash颗粒作为存储介质 由控制IC(主控芯片)进行数据的读/写过程协调 内部构造与传统硬盘相比 没有马达 磁片 因此是真正的“无噪音”的静音硬盘
因此 得益于SSD硬盘天生的“无机械构件”数据读取/写入模式 SSD硬盘在数据的读取/写入 突发读取速率等方面均大幅度超过传统硬盘 并且在省电(一般SSD硬盘功耗在2.5W-5W之间) 抗震性方面也优于传统硬盘 其中Intel的 X-25M MLC SSD硬盘 的读取/写入速度达到了惊人的250MB/s 70MB/s
而SSD硬盘根据存储介质的不同分为
SLC(single layer cell)单层单元
MLC(multi-level cell) 多层单元
在性能上 由于SLC得天独厚的优势 在读写和寿命上均大幅度超过MLC 但是容量上MLC占优 SLC局限于工艺技术 无法在有限的体积内更多的集成存储芯片 导致容量一直受限
但是 随着IC主控芯片和新算法的研究 现在MLC SSD在寿命和速度上已经渐渐缩小的与SLC SSD的差距 市面上比较常见的SSD产品现在多为MLC构造的
3.U盘工作原理
U盘是采用Flash芯片存储的,Flash芯片属于电擦写电门。在通电以后改变状态,不通电就固定状态。所以断闪存芯片根本不存在导磁材料,所以也就没有磁化的问题。
闪存的记录原理为:
在源极和漏极之间电流单向传导的半导体上形成贮存电子的浮动栅,浮动栅包裹着一层硅氧化膜绝缘体。它的上面是在源极和漏极之间控制传导电流的控制栅。数据是0或1取决于在硅底板上形成的浮动栅中是否有电子,有电子为0,无电子为1。
由此可以看出,磁场是不会破坏闪存芯片中存储的数据的。电以后资料能够保存。
⑧ U盘是什么是做什么用的/
u盘就是优盘,是移动存储设备。用于存放资料。优盘产生后基本就没有人用软盘了。容量一般为128m 256m 512m 1G.市面上的优盘外形大多和打火机比较像。使用时直接插到电脑的usb接口上,xp系统会自动识别。其他系统则需要安装驱动程序。价钱比较便宜,几十块钱就能买一个128m 的。
⑨ 聊一聊固态硬盘和机械硬盘
今天我们聊一聊机械硬盘真的比固态差吗?以及它们的比较
一般机械硬盘正面贴有产品标签,主要包括厂家信息和产品信息,如商标、型号、序列号、容量、参数等。这些信息是硬盘的基本依据,下面将逐步介绍它们的含义。硬盘背面则可以看到背部的控制电路板和接口部件等组。控制电路板上主要有硬盘BIOS、硬盘缓存和主控芯片等单元。上面的就是硬盘的接口。硬盘接口包括电源接口和数据接口。
硬盘BIOS芯片的作用,是用来存储硬盘各项数据信息的。像接口啊,容量啊这些。如果BIOS出问题,那就可能导致电脑认不出硬盘,或者认错,等等故障。
缓存芯片的作用。就是为了协调硬盘与主机在数据处理速度上的差异而设计的,在硬盘中,主要负责给数据提供暂存空间,提高硬盘的读写效率,把数据从内存写入硬盘时,由于硬盘较缓慢,需要等待较长的时间才能完成写入。有了缓存芯片,数据就可以先写入到缓存里,随后硬盘自己再从缓存写入到盘片。就不需要我们再傻等了。所以缓存越大就代表硬盘的性能越好。
主控芯片则是负责数据写入硬盘时和读取时的方式,等等。相当于硬盘的大脑了。一个好的主控,他就能让硬盘更快速有效的工作。找数据非常快和准确。那你说这大脑都不行了,东西放在硬盘的那个位置他都不知道了,那硬盘能好使么。
接口处的电源插座连接电源,为硬盘工作提供电力保证。数据接口是硬盘与主板、内存之间进行数据交换的通道。 此外,在硬盘表面都有个透气孔,它的作用是使硬盘内部气压与外部大气压保持一致。
打开硬盘,观察内部,可以看到:里面有磁头、盘片、马达等部件
硬盘的盘片是硬质磁性合金盘片,就是存储数据的。厚一般在0.5mm左右, 这些盘片安装在马达的转轴上,在马达的带动下高速旋转,盘片的旋转配合磁头的摆动,就能读取盘片中每个地方的数据了。一般的机械硬盘都是由多组盘片和定位系统组成的。
那么,硬盘上的数据是如何组织与管理的呢?盘片首先在逻辑上被划分为磁道以及扇区。
盘片被划分成许多同心圆,这些同心圆轨迹叫做磁道。磁道从外向内从0开始顺序编号。硬盘的每一个盘面有几百到几千个磁道,越大容量硬盘每面的磁道数越多。当硬盘需要存放数据时候,都是从最外圈的磁道开始的。
而最靠近主轴的位置被称为启停区,这里是不存放任何数据的,硬盘不工作时,磁头停留在启停区。
当需要从硬盘读写数据时,磁盘开始旋转。磁头就会抬起,并与盘面保持一个微小的距离。这个距离越小,磁头读写数据的灵敏度就越高,这个距离大概是人类头发直径的千分之一那么多。 这种结构就会导致机械硬盘的工作环境,必须保持稳定。一旦有较强烈的震动,肯定会影响机械硬盘工作的。
所以一旦有小的尘埃进入硬盘密封腔内,与盘体发生碰撞,就可能造成数据丢失,形成坏块,甚至造成磁头和盘体的损坏。我们在非专业条件下绝对不能开启硬盘密封腔,否则,灰尘进入后会加速硬盘的损坏。
机械硬盘的所有的数据都是以扇区形式存储在硬盘上的,一个扇区就代表硬盘最小的存储单位(512节字)。在向盘片读取和写入数据时,就要以扇区为单位进行工作。那么每个磁道上就有了无数个扇区。那么硬盘是怎么读取数据的就好理解了。
举个例子:我要读取硬盘中存储的小姐姐。小姐姐在第(2)磁道,(2)扇区。那么读写磁头就会先移动到小姐姐所在的磁道上方,然后马达再带动盘片,将小姐姐送到磁头的下方进行读取。
磁头移动到磁道时的时间称为寻道时间(seek time)。而盘片把小姐姐旋转,带到读写磁头下方的这段时间,称为旋转延迟时间(rotational latencytime)。每次的读取,都需要寻道和旋转。
这还是一个小姐姐,如果多了的话,机械硬盘就要一个个找。这种存取方式就导致了机械硬盘一次性读写多数文件时的性能很差。
那么在了解了硬盘的基本原理之后,不难推算出,磁盘上数据读取和写入所花费的时间可以分为寻道时间和旋转延迟时间,以及数据从磁盘中输出和输入的时间,也就是传输时间,这三个部分。
在机械硬盘发展的这几十年里,在工作方式上,机械硬盘都是使用磁性介质作为数据存储介质,在数据读取和写入上,使用磁头+马达的方式进行机械寻址。因为机械硬盘靠机械驱动读写数据的限制,导致机械硬盘的性能提升遇到了瓶颈。特别是机械硬盘的随机读写能力,受其机械特性的限制,是一个巨大的瓶颈。随后还出现了一种叠瓦技术。它能在同样大小的磁盘上存储更多数据的技术。硬盘厂商虽然用这个技术增大的硬盘空间,但是会比较严重的影响到数据的可靠性和读写速度。大家购买机械硬盘之前,一定要记得上厂商官网来查询。具体内容这期视频就不多讲了。
那固态硬盘呢?固态硬盘Solid State Drive,固态硬盘跟机械硬盘同样有主控,缓存。但工作方式、形状、接口、等方面都是有别于机械硬盘的。
机械硬盘通过盘片来存储数据。而目前主流的SSD都是使用闪存来作为存储介质。 主控和缓存的作用和机械硬盘的作用基本相同。最主要就是存储介质和方式的不同。
机械硬盘的读取方式刚才已经简单了解过了,而固态硬盘的存取介质就是由无数个浮栅晶体管来负责。
浮栅晶体管最下面的是衬底,源极和漏极。衬底之上,有隧道氧化层、 (浮栅层)、氧化层、控制栅极。中间的浮栅层被绝缘层包围着,电子易进难出,通过对浮栅层充放电子,来对晶体管进行写入和擦除。
数据是以0和1二进制进行保存的,根据浮栅中有没有电子两种状态,一般把有电子的状态记为0,没有电子的状态记为1。
这样就可以进行数据的存取了。更改数据简单理解就是往浮栅晶体管上下方施加电压,当往下方施加电压时,电子会被吸入下方,检测不到浮栅层的电子时,数据就会被判断为1。
而往晶体管上方施压,则会将下方的电子吸回,一吸那不就出来了,啊不,是回来了。回来了就能检测到了。那这时候就会被判断为0。
官方把固态硬盘中的每个闪存芯片被称为die。如果把它放大。会看到,一个die中包含了两个plane
plane则是由2048个block组成。
Block中的256个颗粒是由page组成的。
Page就是最小的存储
单位了,他们分别是4k/8k/或者16K等等。
我们假设1个page为16KB,
那么根据刚才的公式就可以算出,这块颗粒的容量为16*256*2048*2等于16G。
我们再假设某个固态硬盘共有8块颗粒,每个page的容量为16K。当需要写入16K数据时,那么主控就会写入第一个颗粒中。
如果是32K,为了提高效率,主控则会将数据分成两个16K,来同时写入两个颗粒中。
那128K呢,那就可以把他拆分成8个16K,主控将会往每个颗粒中写入16k。
这样就能发挥出这个SSD主控理论最大的写入带宽,相对4KB来说最好情况下我们可以得到8倍的速度,文件大小提升了8倍,速度却还差不多。
固态硬盘这种电子擦写的过程,和电子寻址自然要比笨重的机械硬盘要快得多。而且因为结构不同,固态硬盘工作时根本没有噪音,也不怕剧烈的震动。体积小,速度快,等等都是他的优点。
但是这些固态硬盘的颗粒都是有擦写次数的限制,当超过这个次数时,这个颗粒可能就不能用了。这个最大擦写次数按颗粒的不同,还是有很大差距,同时固态硬盘有电子流失的问题,固态硬盘存储数据,如果长期不写入,会导致固态会需要更大的难度来读取,甚至无法读取。
⑩ 什么是U盘U盘做什么用
U盘,和硬盘、光盘一样,都是存储数字信息的硬件,只是存储原理不一样. U盘的区别与其它存储设备存储原理是:计算机把二进制数字信号转为复合二进制数字信号(加入分配、核对、堆栈等指令)读写到USB芯片适配接口,通过芯片处理信号分配给EPROM2存储芯片的相应地址存储二进制数据,实现数据的存储。 EPROM2数据存储器,其控制原理是电压控制栅晶体管的电压高低值(高低电位),栅晶体管的结电容可长时间保存电压值,也就是为什么USB断电后能保存数据的原因。 目前改进磁盘存取速度的方式主要有两种。一是磁盘快取控制(disk cache controller),它将从磁盘读取的数据存在快取内存(cache memory)中以减少磁盘存取的次数,数据的读写都在快取内存中进行,大幅增加存取的速度,如要读取的数据不在快取内存中,或要写数据到磁盘时,才做磁盘的存取动作。这种方式在单工期环境(single-tasking envioronment)如DOS之下,对大量数据的存取有很好的性能(量小且频繁的存取则不然),但在多工(multi-tasking)环境之下(因为要不停的作数据交换(swapping)的动作)或数据库(database)的存取(因每一记录都很小)就不能显示其性能。这种方式没有任何安全保障。 其一是使用磁盘阵列的技术。磁盘阵列是把多个磁盘组成一个阵列,当作单一磁盘使用,它将数据以分段(striping)的方式储存在不同的磁盘中,存取数据时,阵列中的相关磁盘一起动作,大幅减低数据的存取时间,同时有更佳的空间利用率。磁盘阵列所利用的不同的技术,称为RAID level,不同的level针对不同的系统及应用,以解决数据安全的问题。 一般高性能的磁盘阵列都是以硬件的形式来达成,进一步的把磁盘快取控制及磁盘阵列结合在一个控制器(RAID controler)或控制卡上,针对不同的用户解决人们对磁盘输出/入系统的四大要求: (1) 增加存取速度。 (2) 容错(fault tolerance),即安全性。 (3) 有效的利用磁盘空间。 (4) 尽量的平衡CPU,内存及磁盘的性能差异,提高电脑的整体工作性能。 磁盘阵列原理 1987年,加州伯克利大学的一位人员发表了名为\"磁盘阵列研究\"的论文,正式提到了RAID也就是磁盘阵列,论文提出廉价的5.25〃及3.5〃的硬盘也能如大机器上的8〃盘能提供大容量、高性能和数据的一致性,并详述了RAID1至5的技术。 磁盘阵列针对不同的应用使用的不同技术,称为RAID level,RAID是Red- undant Array of Inexpensive Disks的缩写,而每一level代表一种技术,目前业界公认的标准是RAID0~RAID5。这个level并不代表技术的高低,level5并不高于level3,level1也不低于level4,至于要选择哪一种RAID level的产品,纯视用户的操作环境(operating environment)及应用(application)而定,与level的高低没有必然的关系。RAID0没有安全的保障,但其快速,所以适合高速I/O的系统;RAID1适用于需安全性又要兼顾速度的系统,RAID2及RAID3适用于大型电脑及影像、CAD/CAM等处理;RAID5多用于OLTP,因有金融机构及大型数据处理中心的迫切需要,故使用较多而较有名气,但也因此形成很多人对磁盘阵列的误解,以为磁盘阵列非要RAID5不可;RAID4较少使用,和RAID5有其共同之处,但RAID4适合大量数据的存取。其他如RAID6,RAID7,乃至RAID10、50、100等,都是厂商各做各的,并无一致的标准,在此不作说明。 RAID1 RAID1是使用磁盘镜像(disk muroring)的技术,磁盘镜像应用在RAID1之前就在很多系统中使用,它的方式是在工作磁盘(working disk)之外再加一额外的备份磁盘(backup disk)两个磁盘所储存的数据安全一致,数据在写入工作磁盘同时也写入备份磁盘。 RAID2 RAID2是把数据分散为位元/位元组(bit/byte)或块(block),加入海明码Hamming Code,在磁盘阵列中作间隔写入(interleaving)到每个磁盘中,而且地址(address)都一样,也就是在各个磁盘中,其数据都在相同的磁道(cylin- der or track)及扇区中。RAID2又称为并行阵列(parallel array)其设计是使用共轴同步(spindle synchronize)的技术,存取数据时,整个磁盘阵列一起动作,在各个磁盘的相同位置作平行存取,所以有最好的存取时间(auesstime),共总线(bus)是特别的设计以大带宽并行传输所存取的数据,所以有最好的传输时间(transfer time)。在大型档案的存取应用,RAID2有最好的性能,但如果档案太小,会将其性能拉下来,因为磁盘的存取是以扇区为单位,而RAID2的存取是所有磁盘平行动作,而且是作单位元或位元组的存取,故小于一个扇区的数据量会使其性能大打折扣。RAID2是设计给需要连续且大量数据的电脑使用的,如大型电脑(mainframe to supercomputer)、作影像处理或CAD/CAM的工作站(workstation)等,并不适用于一般的多用户环境\网络服务器(network server),小型机或PC。 RAID3 RAID3的数据储存及存取方式都和RAID2一样,但在安全方面以奇偶较验(parity check)取代海明码做错误校正及检测,所以只需要一个额外的校检磁盘(parity disk)。奇偶校验值的计算是以各个磁盘的相对应位作XOR的逻辑运算,然后将结果写入奇偶校验磁盘,任何数据的修改都要做奇偶校验计算。 RAID4 RAID4也使用一个校验磁盘,但和RAID3不一样,RAID4的方式是RAID0加上一个校验磁盘。 RAID5 RAID5和RAID4相似但避免了RAID4的瓶颈,方法是不用校验磁盘而将校验数据以循环的方式放在每一个磁盘中,RAID5的控制比较复杂,尤其是利用硬件对磁盘阵列的控制,因为这种方式的应用比其他的RAID level要掌握更多的事情,有更多的输出/入需求,既要速度快,又要处理数据,计算校验值,做错误校正等,所以价格较高,其应用最好是OLTP,至于用于大型文件,不见得有最佳的性能。 RAID的性能与可用性 以上数据基于4个磁盘,传输块大小1K,75%的读概率,数据可用性的计算基于同样的损坏概率。 RAID的概述 RAID0 没有任何额外的磁盘或空间作安全准备,所以一般人不重视它,这是误解。其实它有最好的效率及空间利用率,对于追求效率的应用,非常理想,可同时用其他的RAID level或其他的备份方式以补其不足,保护重要的数据。 RAID1 有最佳的安全性,100%不停机,即使有一个磁盘损坏也能照常作业而不影响其效能(对能并行存取的系统稍有影响),因为数据是作重复储存。RAID1的并行读取几乎有RAID0的性能,因为可同时读取相互镜像的磁盘;写入也只比RAID0略逊,因为同时写入两个磁盘并没有增加多少工作。虽比RAID1要增加一倍的磁盘做镜像,但作为采用磁盘阵列的进入点,它是最便宜的一个方案,是新设磁盘阵列的用户之最佳选择。 RAID5 RAID5在不停机及容错的表现都很好,但如有磁盘故障,对性能的影响较大,大容量的快取内存有助于维持性能,但在OLTP的应用上,因为每一笔数据或记录(record)都很小,对磁盘的存取频繁,故有一定程度的影响。某一磁盘故障时,读取该磁盘的数据需把共用同一校验值分段的所有数据及校验值读出来,再把故障磁盘的数据计算出来;写入时,除了要重覆读取的程序外,还要再做校验值的计算,然后写入更新的数据及校验值;等换上新的磁盘,系统要计算整个磁盘阵列的数据以回复故障磁盘的数据,时间要很长,如系统的工作负载很重的话,有很多输出/入的需求在排队等候时,会把系统的性能拉下来。但如使用硬件磁盘阵列的话,其性能就可以得到大幅度的改进,因为硬件磁盘阵列如Arena系列本身有内置的CPU与主机系统并行运作,所有存取磁盘的输出入工作都在磁盘阵列本身完成,不花费主机的时间,配合磁盘阵列的快取内存的使用,可以提高系统的整体性能,而优越的SCSI控制更能增加数据的传输速率,即使在磁盘故障的情况下,主机系统的性能也不会有明显的降低。RAID5要做的事情太多,所以价格较贵,不适于小系统,但如果是大系统使用大的磁盘阵列的话,RAID5却是最便宜的方案。 总而言之,RAID0及RAID1最适合PC服务器及图形工作站的用户,提供最佳的性能及最便宜的价格,以低成本符合市场的需求。RAID2及RAID3适用于大档案且输入输出需求不频繁的应用如影像处理及CAD/CAM等;而RAID5则适用于银行、金融、股市、数据库等大型数据处理中心的OLTP应用;RAID4与RAID5有相同的特性及 用方式,但其较适用于大型文件的读取。 磁盘阵列的额外容错功能 事实上容错功能已成为磁盘阵列最受青睐的特性,为了加强容错的功能以及使系统在磁盘故障的情况下能迅速的重建数据,以维持系统的性能,一般的磁盘阵列系统都可使用热备份(hot spare or hot standby drive)的功能,所谓热备份是在建立(configure)磁盘阵列系统的时候,将其中一磁盘指定为后备磁盘,此一磁盘在平常并不操作,但若阵列中某一磁盘发生故障时,磁盘阵列即以后备磁盘取代故障磁盘,并自动将故障磁盘的数据重建(rebuild)在后备磁盘之上,因为反应快速,加上快取内存减少了磁盘的存取,所以数据重建很快即可完成,对系统的性能影响不大。对于要求不停机的大型数据处理中心或控制中心而言,热备份更是一项重要的功能,因为可避免晚间或无人守护时发生磁盘故障所引起的种种不便。 备份盘又有热备份与温备份之分,热备份盘和温备份盘的不同在于热备份盘和阵列一起运转,一有故障时马上备援,而温备份盘虽然带电但并不运转,需要备援时才启动。两者分别在是否运转及启动的时间,但温备份盘因不运转,理论上有较长的寿命。另一个额外的容错功能是坏扇区转移(bad sector reassignment)。坏扇区是磁盘故障的主要原因,通常磁盘在读写时发生坏扇区的情况即表示此磁盘故障,不能再作读写,甚至有很多系统会因为不能完成读写的动作而死机,但若因为某一扇区的损坏而使工作不能完成或要更换磁盘,则使得系统性能大打折扣,而系统的维护成本也未免太高了,坏扇区转移是当磁盘阵列系统发现磁盘有坏扇区时,以另一空白且无故障的扇区取代该扇区,以延长磁盘的使用寿命,减少坏磁盘的发生率以及系统的维护成本。所以坏扇区转移功能使磁盘阵列具有更好的容错性,同时使整个系统有最好的成本效益比。其他如可外接电池备援磁盘阵列的快取内存,以避免突然断电时数据尚未写回磁盘而丢失;或在RAID1时作写入一致性的检查等,虽是小技术,但亦不可忽视。
求采纳