❶ 什么是FIFO缓存队列
FIFO是英文First In First Out 的缩写,是一种先进先出的数据缓存器,他与普通存储器的区别是没有外部读写地址线,这样使用起来非常简单,但缺点就是只能顺序写入数据,顺序的读出数据,其数据地址由内部读写指针自动加1完成,不能像普通存储器那样可以由地址线决定读取或写入某个指定的地址。 FIFO一般用于不同时钟域之间的数据传输,比如FIFO的一端时AD数据采集,另一端时计算机的PCI总线,假设其AD采集的速率为16位 100K SPS,那么每秒的数据量为100K×16bit=1.6Mbps,而PCI总线的速度为33MHz,总线宽度32bit,其最大传输速率为1056Mbps,在两个不同的时钟域间就可以采用FIFO来作为数据缓冲。另外对于不同宽度的数据接口也可以用FIFO,例如单片机位8位数据输出,而DSP可能是16位数据输入,在单片机与DSP连接时就可以使用FIFO来达到数据匹配的目的。 3.FIFO的一些重要参数 FIFO的宽度:也就是英文资料里常看到的THE WIDTH,它只的是FIFO一次读写操作的数据位,就像MCU有8位和16位,ARM 32位等等,FIFO的宽度在单片成品IC中是固定的,也有可选择的,如果用FPGA自己实现一个FIFO,其数据位,也就是宽度是可以自己定义的。 FIFO的深度:THE DEEPTH,它指的是FIFO可以存储多少个N位的数据(如果宽度为N)。如一个8位的FIFO,若深度为8,它可以存储8个8位的数据,深度为12 ,就可以存储12个8位的数据,FIFO的深度可大可小,个人认为FIFO深度的计算并无一个固定的公式。在FIFO实际工作中,其数据的满/空标志可以控制数据的继续写入或读出。在一个具体的应用中也不可能由一些参数算数精确的所需FIFO深度为多少,这在写速度大于读速度的理想状态下是可行的,但在实际中用到的FIFO深度往往要大于计算值。一般来说根据电路的具体情况,在兼顾系统性能和FIFO成本的情况下估算一个大概的宽度和深度就可以了。而对于写速度慢于读速度的应用,FIFO的深度要根据读出的数据结构和读出数据的由那些具体的要求来确定。 满标志:FIFO已满或将要满时由FIFO的状态电路送出的一个信号,以阻止FIFO的写操作继续向FIFO中写数据而造成溢出(overflow)。 空标志:FIFO已空或将要空时由FIFO的状态电路送出的一个信号,以阻止FIFO的读操作继续从FIFO中读出数据而造成无效数据的读出(underflow)。 读时钟:读操作所遵循的时钟,在每个时钟沿来临时读数据。 写时钟:写操作所遵循的时钟,在每个时钟沿来临时写数据。 读指针:指向下一个读出地址。读完后自动加1。 写指针:指向下一个要写入的地址的,写完自动加1。 读写指针其实就是读写的地址,只不过这个地址不能任意选择,而是连续的。 4.FIFO的分类 根均FIFO工作的时钟域,可以将FIFO分为同步FIFO和异步FIFO。同步FIFO是指读时钟和写时钟为同一个时钟。在时钟沿来临时同时发生读写操作。异步FIFO是指读写时钟不一致,读写时钟是互相独立的。 5.FIFO设计的难点 FIFO设计的难点在于怎样判断FIFO的空/满状态。为了保证数据正确的写入或读出,而不发生益处或读空的状态出现,必须保证FIFO在满的情况下,不能进行写操作。在空的状态下不能进行读操作。怎样判断FIFO的满/空就成了FIFO设计的核心问题。由于同步FIFO几乎很少用到,这里只描述异步FIFO的空/满标志产生问题。 补充: 在用到触发器的设计中,不可避免的会遇到亚稳态的问题(关于亚稳态这里不作介绍,可查看相关资料)。在涉及到触发器的电路中,亚稳态无法彻底消除,只能想办法将其发生的概率将到最低。其中的一个方法就是使用格雷码。格雷码在相邻的两个码元之间只由一位变换(二进制码在很多情况下是很多码元在同时变化)。这就会避免计数器与时钟同步的时候发生亚稳态现象。但是格雷码有个缺点就是只能定义2^n的深度,而不能像二进制码那样随意的定义FIFO的深度,因为格雷码必须循环一个2^n,否则就不能保证两个相邻码元之间相差一位的条件,因此也就不是真正的各雷码了。第二就是使用冗余的触发器,假设一个触发器发生亚稳态的概率为P,那么两个及联的触发器发生亚稳态的概率就为P的平方。但这回导致延时的增加。亚稳态的发生会使得FIFO出现错误,读/写时钟采样的地址指针会与真实的值之间不同,这就导致写入或读出的地址错误。由于考虑延时的作用,空/满标志的产生并不一定出现在FIFO真的空/满时才出现。可能FIFO还未空/满时就出现了空/满标志。这并没有什么不好,只要保证FIFO不出现overflow or underflow 就OK了。 很多关于FIFO的文章其实讨论的都是空/满标志的不同算法问题。 在Vijay A. Nebhrajani的《异步FIFO结构》一文中,作者提出了两个关于FIFO空/满标志的算法。 第一个算法:构造一个指针宽度为N+1,深度为2^N字节的FIFO(为便方比较将格雷码指针转换为二进制指针)。当指针的二进制码中最高位不一致而其它N位都相等时,FIFO为满(在Clifford E. Cummings的文章中以格雷码表示是前两位均不相同,而后两位LSB相同为满,这与换成二进制表示的MSB不同其他相同为满是一样的)。当指针完全相等时,FIFO为空。这也许不容易看出,举个例子说明一下:一个深度为8字节的FIFO怎样工作(使用已转换为二进制的指针)。FIFO_WIDTH=8, 补充: FIFO_DEPTH= 2^N = 8,N = 3,指针宽度为N+1=4。起初rd_ptr_bin和wr_ptr_bin均为“0000”。此时FIFO中写入8个字节的数据。wr_ptr_bin =“1000”,rd_ptr_bin=“0000”。当然,这就是满条件。现在,假设执行了8次的读操作,使得rd_ptr_bin =“1000”,这就是空条件。另外的8次写操作将使wr_ptr_bin 等于“0000”,但rd_ptr_bin 仍然等于“1000”,因此FIFO为满条件。 显然起始指针无需为“0000”。假设它为“0100”,并且FIFO为空,那么8个字节会使wr_ptr_bin =“1100”,, rd_ptr_bin 仍然为“0100”。这又说明FIFO为满。若写指针的高两位MSB大于读指针的高两位MSB则FIFO为“几乎空”。 在Vijay A. Nebhrajani的《异步FIFO结构》第三部分的文章中也提到了一种方法,那就是方向标志与门限。设定了FIFO容量的75%作为上限,设定FIFO容量的25%为下限。当方向标志超过门限便输出满/空标志,这与Clifford E. Cummings的文章中提到的STYLE #2可谓是异曲同工。他们都属于保守的空满判断。其实这时输出空满标志FIFO并不一定真的空/满。 说到此,我们已经清楚地看到,FIFO设计最关键的就是产生空/满标志的算法的不同产生了不同的FIFO。
❷ 硬盘缓存有什么作用
硬盘的缓存主要起三种作用:
1预读取
当硬盘受到CPU指令控制开始读取数据时,硬盘上的控制芯片会控制磁头把正在读取的簇的下一个或者几个簇中的数据读到缓存中(由于硬盘上数据存储时是比较连续的,所以读取命中率较高),当需要读取下一个或者几个簇中的数据的时候,硬盘则不需要再次读取数据,直接把缓存中的数据传输到内存中就可以了,由于缓存的速度远远高于磁头读写的速度,所以能够达到明显改善性能的目的。
对写入动作进行缓存
2是对写入动作进行缓存。当硬盘接到写入数据的指令之后,并不会马上将数据写入到盘片上,而是先暂时存储在缓存里,然后发送一个“数据已写入”的信号给系统,这时系统就会认为数据已经写入,并继续执行下面的工作,而硬盘则在空闲(不进行读取或写入的时候)时再将缓存中的数据写入到盘片上。虽然对于写入数据的性能有一定提升,但也不可避免地带来了安全隐患——如果数据还在缓存里的时候突然掉电,那么这些数据就会丢失。对于这个问题,硬盘厂商们自然也有解决办法:掉电时,磁头会借助惯性将缓存中的数据写入零磁道以外的暂存区域,等到下次启动时再将这些数据写入目的地。
临时存储最近访问过的数据
3是临时存储最近访问过的数据。有时候,某些数据是会经常需要访问的,硬盘内部的缓存会将读取比较频繁的一些数据存储在缓存中,再次读取时就可以直接从缓存中直接传输。缓存就像是一台计算机的内存一样,在硬盘读写数据时,负责数据的存储、寄放等功能。这样一来,不仅可以大大减少数据读写的时间以提高硬盘的使用效率。同时利用缓存还可以让硬盘减少频繁的读写,让硬盘更加安静,更加省电。更大的硬盘缓存,你将读取游戏时更快,拷贝文件时候更快,在系统启动中更为领先……
❸ 什么是数据缓冲区
这个嘛!简单点说就是像一条只能同时通过200辆车的路,但现在来了250辆车但这条路只能过200辆那该怎么办呢!那你一定会说把那多出的50辆车先放在一边等200辆车过了在过对不。“数据缓冲区”就是这样的道理他将处理不过来的切并不重要的数据先放到一个地方等重要的数据处理完了,再来处理这些数据。以便提高处理数据的处理速度和资源的利用率!
可能答得并不是很好@_@但大体也差不多!!!希望能对你所帮助!!!
❹ 编写一个环形缓冲circularbuffer
private FileOutputStream fos = null;
public void wit(String s, File f) throws IOException{
if(fos==null){
fos = new FileOutputStream(f);
}
byte[] b = s.getBytes();
fos.write(b, 0, b.length);
fos.flush();
}
wit里面要传的s是要写入的字符串,f是要写如那个文件的文件对象
第二个方法的问题你能不能再详细点 没明白
❺ 数据缓冲器和数据缓存器的区别
这位知道朋友你好!关于缓冲器与缓存器的区别回答如下,请参考:缓存是硬盘控制器上的一块内存芯片,具有极快的存取速度,它是硬盘内部存储和外界接口之间的缓冲器。由于硬盘的内部数据传输速度和外界接口传输速度不同,缓存在其中起到一个缓冲的作用。缓存的大小与速度是直接关系到硬盘的传输速度的重要因素,能够大幅度地提高硬盘整体性能。当硬盘存取零碎数据时需要不断地在硬盘与内存之间交换数据,如果有大缓存,则可以将那些零碎数据暂存在缓存中,减小外系统的负荷,也提高了数据的传输速度。
缓冲器的特点是:系统自动地在内存区为每一个正在使用的文件开辟一个缓冲
区。从磁盘向内存读入数据时,则一次从磁盘文件将一些数据输入到内存缓冲区(充满缓
冲区),然后再从缓冲区逐个地将数据送给接收变量;向磁盘文件输出数据时,先将数据
送到内存中的缓冲区,装满缓冲区后才一起送到磁盘去。用缓冲区可以一次读入一批数据,
或输出一批数据,而不是执行一次输入或输出函数就去访问一次磁盘,这样做的目的是减
少对磁盘的实际读写次数,因为每一次读写都要移动磁头并
寻找磁道扇区,花费一定的时
间。缓冲区的大小由各个具体的C
版本确定,一般为512
字节。
❻ 缓冲区是什么
指由多个以不同速度或优先级运行的硬件或程序进程共享的数据存储区,在其中暂时保存数据。缓冲区使进程之间的相互等待变少了。先结束的进程可以把结果放入缓冲区内,进行下面的工作,而后做完的进程可以从缓冲区内取出原来的数据继续工作。缓冲区的作用是:在高速和低速设备之间起一个速度平滑作用;暂时存储数据;经常访问的数据可以放进缓冲区,减少对慢速设备的访问以提高系统的效率。
❼ 计算机里面的缓冲和缓存是什么意思
缓冲器相当于一个寄存器,暂时保存数据。缓冲区是内存中存放数据的地方。在程序试图将数据放到机器内存中的某一个位 置的时候,因为没有足够的空间就会发生缓冲区溢出。而人为的溢出则是有一定企图的,攻击者写一个超过缓冲区长度的字符串,然后植入到缓冲区,而再向一个有 限空间的缓冲区中植入超长的字符串可能会出现两个结果,一是过长的字符串覆盖了相邻的存储单元,引起程序运行失败,严重的可导致系统崩溃;另有一个结果就 是利用这种漏洞可以执行任意指令,甚至可以取得系统root特级权限。大多造成缓冲区溢出的原因是程序中没有仔细检查用户输入参数而造成的。
缓冲区是程序运行的时候机器内存中的一个连续块,它保存了给定类型的数据,随着动态分配变量会出现问题。大多时为了不占用太多的内存,一个有动态分配变量 的程序在程序运行时才决定给它们分配多少内存。这样想下去的话,如果说要给程序在动态分配缓冲区放入超长的数据,它就会溢出了。一个缓冲区溢出程序使用这 个溢出的数据将汇编语言代码放到机器的内存里,通常是产生root权限的地方,这就不是什么好现象了。仅仅就单个的缓冲区溢出惹眼,它并不是最大的问题根 本所在。但如果溢出送到能够以root权限运行命令的区域,一旦运行这些命令,那可就等于把机器拱手相让了。
缓存:它事实上相当于一个临时仓库。每次打开一个网页,IE会自动创建一份该网页文字和图像的缓存文件(一个临时副本)。当再次打开该页时,IE会检查网 站服务器上该页的变化。如果页面变化了,IE从网络上重新下载新的网页。如果该页面没有变化,IE就从内存或硬盘上使用缓存中的临时复本来显示它。
IE会在缓存中保留网页到硬盘,直到各自的缓存占满空间;IE则根据网页的时间和空间来向下取舍。这样设计的目的是为了更快地装载页面。
缓存不仅可以用来加快网页加载速度,而且当需要查看以前看过的网页时,还可以无需驱动“小猫”,只需单击IE上的“文件→脱机工作”菜单命令,然后单击工具栏上的“历史”按钮,即可方便地进行浏览。
既然IE缓存有这个妙处,那自然应该共享它了。除了直接复制缓存文件的方法外,还有大搬家—更改IE缓存的保存路径法: 首先打开IE浏览器,单击“工具→Internet选项”菜单命令,打开“Internet选项”对话框。在“常规”选项卡中单击“Internet临时 文件”部分的“设置”按钮,打开“设置”对话框,单击“移动文件夹”按钮,在打开的“浏览文件夹”对话框里定位到另一个分区下的某个路径,然后单击“确定 ”按钮即可
❽ 数据缓冲区的缓冲区的分类
缓冲分为两类,完全缓冲和行缓冲。对于完全缓冲来说,缓冲区满时,缓冲区会被清空。此时缓冲区中的内容也会发往目的地。这种类型的缓冲通常出现在文件输入中。缓冲区的大小取决于系统。但512和4096字节的缓冲区大小比较常见,对于行缓冲来说,遇到一个换行字符时,缓冲区中的内容就会被清空。键盘输入是标准的行缓冲。因此按下回车,缓冲就会被清空。
❾ 环形缓冲区为什么是lock-free的
回答这个问题之前,首先解释一下,什么叫lock-free?lock-free就是绝对无锁。那么为什么在环形缓冲区中不需要上锁呢?下面我将从三个方面来解释这个问题,首先先解释什么是环形缓冲区,然后再来了解lock-free的三个必要前提,最后才解释在环形缓冲区绝对无锁的原因。
环形缓冲区的本质
所谓的环形缓冲区,其实就是使用一个环形的缓冲区域作为数据循环结构。可以插入数据、删除数据,通过改变了队列中的首尾来达到空间的分配和释放。
lock-free的三个前提
这其中有三个前提,一是cpu支持内存栅栏,二是数据的地址必须是四对齐的,三是必须是一个生产者对应一个消费者。这三个必要前提缺一不可,否则就没有办法实现lock-free了。
以上就是我对这个问题的简单解释。因个人经验有限,所以其中有问题的地方,也欢迎大家指出。