当前位置:首页 » 文件传输 » 实现储存器访问的完全控制过程
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

实现储存器访问的完全控制过程

发布时间: 2022-09-28 19:34:08

A. 比较动态存储器dram和静态存储器sram的异同点

SRAM中文含义为静态随机访问存储器,它是一种类型的半导体存储器。“静态”是指只要不掉电,存储在SRAM中的数据就不会丢失。这一点与动态RAM(DRAM)不同,DRAM需要进行周期性的刷新操作。然后,我们不应将SRAM与只读存储器(ROM)和Flash Memory相混淆,因为SRAM是一种易失性存储器,它只有在电源保持连续供应的情况下才能够保持数据。“随机访问”是指存储器的内容可以以任何顺序访问,而不管前一次访问的是哪一个位置。

SRAM中的每一位均存储在四个晶体管当中,这四个晶体管组成了两个交叉耦合反向器。这个存储单元具有两个稳定状态,通常表示为0和1。另外还需要两个访问晶体管用于控制读或写操作过程中存储单元的访问。因此,一个存储位通常需要六个MOSFET。对称的电路结构使得SRAM的访问速度要快于DRAM。SRAM比DRAM访问速度快的另外一个原因是SRAM可以一次接收所有的地址位,而DRAM则使用行地址和列地址复用的结构。

SRAM不应该与SDRAM相混淆,SDRAM代表的是同步DRAM,这与SRAM是完全不同的。SRAM也不应该与PSRAM相混淆,PSRAM是一种伪装成SRAM的DRAM。

从晶体管的类型分,SRAM可以分为双极性与CMOS两种。从功能上分,SRAM可以分为异步SRAM和同步SRAM(SSRAM)。异步SRAM的访问独立于时钟,数据输入和输出都由地址的变化控制。同步SRAM的所有访问都在时钟的上升/下降沿启动。地址、数据输入和其它控制信号均于时钟信号相关。

DRAM:动态随机存取存储器,需要不断的刷新,才能保存数据。而且是行列地址复用的,许多都有页模式。

SRAM:静态的随机存取存储器,加电情况下,不需要刷新,数据不会丢失,而且,一般不是行列地址复用的。

SDRAM:同步的DRAM,即数据的读写需要时钟来同步。主要是存储单元结构不同导致了容量的不同。一个DRAM存储单元大约需要一个晶体管和一个电容(不包括行读出放大器等),而一个SRAM存储单元大约需要六个晶体管。DRAM和SDRAM由于实现工艺问题,容量较SRAM大,但是读写速度不如SRAM。一个是静态的,一个是动态的,静态的是用的双稳态触发器来保存信息,而动态的是用电子,要不时的刷新来保持。 内存(即随机存贮器RAM)可分为静态随机存储器SRAM,和动态随机存储器DRAM两种。我们经常说的“ 内存”是指DRAM。而SRAM大家却接触的很少。

SRAM其实是一种非常重要的存储器,它的用途广泛。SRAM的速度非常快,在快速读取和刷新时能够保 持数据完整性。SRAM内部采用的是双稳态电路的形式来存储数据。所以SRAM的电路结构非常复杂。制造相同容量的SRAM比DRAM的成本高的多。正因为如此,才使其发展受到了限制。因此目前SRAM基本上只用于CPU 内部的一级缓存以及内置的二级缓存。仅有少量的网络服务器以及路由器上能够使用SRAM

B. 根据“存储程序”的工作原理,说明计算机的工作过程

“存储程序”原理,是将根据特定问题编写的程序存放在计算机存储器中,然后按存储器中的存储程序的首地址执行程序的第一条指令,以后就按照该程序的规定顺序执行其他指令,直至程序结束执行。
1945年,美藉匈牙利科学家冯·诺依曼(J.Von Neumann)提出的,是现代计算机的理 存储程序
论基础。现代计算机已经发展到第四代,但仍遵循着这个原理。 存储程序和程序控制原理的要点是,程序输入到计算机中,存储在内存储器中(存储原理),在运行时,控制器按地址顺序取出存放在内存储器中的指令(按地址顺序访问指令),然后分析指令,执行指令的功能,遇到转移指令时,则转移到转移地址,再按地址顺序访问指令(程序控制)。
编辑本段技术特点
计算机系统由硬件系统和软件系统两大部分组成。冯·诺依曼结构(John von Neumann)也就是存储程序奠定了现代计算机的基本结构,其特点是: 1)使用单一的处理部件来完成计算、存储以及通信的工作。 2)存储单元是定长的线性组织。 3)存储空间的单元是直接寻址的。 4)使用低级机器语言,指令通过操作码来完成简单的操作。 5)对计算进行集中的顺序控制。 6)计算机硬件系统由运算器、存储器、控制器、输入设备、输出设备五大部件组成并规定了它们的基本功能。 7)彩二进制形式表示数据和指令。 8)在执行程序和处理数据时必须将程序和数据道德从外存储器装入主存储器中,然后才能使计算机在工作时能够自动调整地从存储器中取出指令并加以执行。
编辑本段发展历程
“电子计算机之父”的桂冠,被戴在数学家 冯·诺依曼(J.Von Neumann)头上, 而不是ENIAC的两位实际研究者,这是因为冯·诺依曼提出了现代电脑的体系结构。 1944年夏,戈德斯坦在阿贝丁车站等候去费城的火车,偶然邂逅数学家冯·诺依曼教授。戈德斯坦告诉他莫尔学院的电子计算机项目。
开始研究
从1940年起,冯·诺依曼就是阿贝丁试炮场的顾问。他向戈德斯坦表示,希望亲自到莫尔学院看看那台正在研制之中的机器。从此,冯· 诺依曼成为了莫尔小组的实际顾问,与小组成员频繁地交换意见。年轻人机敏地提出各种设想,冯·诺依曼则运用他渊博的学识,把讨论引向深入,并逐步形成电子计算机的系统 设计思想。 在ENIAC尚未投入运行前, 冯·诺依曼就看出这台机器致命的缺陷,主要弊端是程序 与计算两分离。程序指令存放在机器的外部电路里,需要计算某个题目,必须首先用人工 接通数百条线路,需要几十人干好几天之后,才可进行几分钟运算。 冯·诺依曼决定起草一份新的设计报告,对电子计算机进行脱胎换骨的改造。他把新 机器的方案命名为“离散变量自动电子计算机”,英文缩写是“EDVAC”。 1945年6月,冯 ·诺依曼与戈德斯坦、勃克斯等人,联名发表了一篇长达101页纸的报告,即计算机史上着名的“101页报告”,直到今天,仍然被认为是现代电脑科学发展里程碑式的文献。报告明确规定出计算机的五大部件,并用二进制替代十进制运算。EDVAC方案的革命意义在 于“存储程序”,以便电脑自动依次执行指令。人们后来把这种“存储程序”体系结构的 机器统称为“诺依曼机”。由于种种原因,莫尔小组发生令人痛惜的分裂,EDVAC机器无法被立即研制。1946年6月, 冯·诺依曼和戈德斯坦、 勃克斯回到普林斯顿大学高级研究院,先期完成了另一台 ISA电子计算机(ISA是高级研究院的英文缩写),普林斯顿大学也成为电子计算机的研究中心。
宣告完成
直到1951年,在极端保密情况下,冯·诺依曼主持的EDVAC计算机才宣告完成,它不仅可应用于科学计算,而且可用于信息检索等领域,主要缘于“存储程序”的威力。 EDVAC只用了3563只电子管和1万只晶体二极管,以1024个44比特水银延迟线来储存程序和 数据,消耗电力和占地面积只有ENIAC的1/3。 最早问世的内储程序式计算机既不是ISA,也不是EDVAC,英国剑桥大学威尔克斯(M.Wilkes)教授,抢在冯·诺依曼之前捷足先登。 威尔克斯1946年曾到宾夕法尼亚大学参加冯·诺依曼主持的培训班,完全接受了冯· 诺依曼内储程序的设计思想。回国后,他立即抓紧时间,主持新型电脑的研制,并于1949 年5月,制成了一台由3000只电子管为主要元件的计算机,命名为“EDSAC”(电子储存程序计算机)。威尔克斯后来还摘取了1967年度计算机世界最高奖——“图林奖”。
荣誉
在冯·诺依曼研制ISA电脑的期间,美国涌现了一批按照普林斯顿大学提供的ISA照片 结构复制的计算机。 如:洛斯阿拉莫斯国家实验室研制的MANIAC,伊利诺斯大学制造的 ILLAC。雷明顿·兰德公司科学家沃尔(W. Ware)甚至不顾冯·诺依曼的反对,把他研制 的机器命名为JOHNIAC(“约翰尼克” ,“约翰”即冯·诺依曼的名字)。冯·诺依曼的大名已经成为现代电脑的代名词,1994年,沃尔被授予计算机科学先驱奖,而冯·诺依曼本人则被追授予美国国家基础科学奖。
编辑本段主要成果
“英国剑桥大学威尔克斯(M.Wilkes)研制的EDSAC”(电子储存程序计算机)。 洛斯阿拉莫斯国家实验室研制的MANIAC。 伊利诺斯大学制造的 ILLAC。雷明顿·兰德公司科学家沃尔(W. Ware)研制的机器JOHNIAC 以及早期的微处理器大多采用冯诺依曼结构,典型代表是Intel公司的X86微处理器。取指和去操作数都在同一总线上,通过分时服用的方式进行的。缺点是在高速运行时,不能达到同时取指令和取操作数,从而形成了传输过程的瓶颈。

C. 构造虚拟储存器必须具备哪些条件

cache存储器、主存和辅存是构成虚拟存储器的重要部分,cache和主存构成了系统的内存,而主存和辅存依靠辅助软硬件的支持构成了虚拟存储器。
一、异构体系

从虚存的概念可以看出,主存-辅存的访问机制与cache-主存的访问机制是类似的。这是由cache存储器、主存和辅存构成的三级存储体系中的两个层次。cache和主存之间以及主存和辅存之间分别有辅助硬件和辅助软硬件负责地址变换与管理,以便各级存储器能够组成有机的三级存储体系。cache和主存构成了系统的内存,而主存和辅存依靠辅助软硬件的支持构成了虚拟存储器。
在三级存储体系中,cache-主存和主存-辅存这两个存储层次有许多相同点:
(1)出发点相同:二者都是为了提高存储系统的性能价格比而构造的分层存储体系,都力图使存储系统的性能接近高速存储器,而价格和容量接近低速存储器。
(2)原理相同:都是利用了程序运行时的局部性原理把最近常用的信息块从相对慢速而大容量的存储器调入相对高速而小容量的存储器。
但cache-主存和主存-辅存这两个存储层次也有许多不同之处:
(1)侧重点不同:cache主要解决主存与CPU的速度差异问题;而就性能价格比的提高而言,虚存主要是解决存储容量问题,另外还包括存储管理、主存分配和存储保护等方面。
(2)数据通路不同:CPU与cache和主存之间均有直接访问通路,cache不命中时可直接访问主存;而虚存所依赖的辅存与CPU之间不存在直接的数据通路,当主存不命中时只能通过调页解决,CPU最终还是要访问主存。
(3)透明性不同:cache的管理完全由硬件完成,对系统程序员和应用程序员均透明;而虚存管理由软件(操作系统)和硬件共同完成,由于软件的介入,虚存对实现存储管理的系统程序员不透明,而只对应用程序员透明(段式和段页式管理对应用程序员"半透明")。
(4)未命中时的损失不同:由于主存的存取时间是cache的存取时间的5~10倍,而主存的存取速度通常比辅存的存取速度快上千倍,故主存未命中时系统的性能损失要远大于cache未命中时的损失。
二、关键问题

(1)调度问题:决定哪些程序和数据应被调入主存。
(2)地址映射问题:在访问主存时把虚地址变为主存物理地址(这一过程称为内地址变换);在访问辅存时把虚地址变成辅存的物理地址(这一过程称为外地址变换),以便换页。此外还要解决主存分配、存储保护与程序再定位等问题。
(3)替换问题:决定哪些程序和数据应被调出主存。
(4)更新问题:确保主存与辅存的一致性。
在操作系统的控制下,硬件和系统软件为用户解决了上述问题,从而使应用程序的编程大大简化。
三、工作原理

虚拟存储器是由硬件和操作系统自动实现存储信息调度和管理的。它的工作过程包括6个步骤:
①中央处理器访问主存的逻辑地址分解成组号a和组内地址b,并对组号a进行地址变换,即将逻辑组号a作为索引,查地址变换表,以确定该组信息是否存放在主存内。
②如该组号已在主存内,则转而执行④;如果该组号不在主存内,则检查主存中是否有空闲区,如果没有,便将某个暂时不用的组调出送往辅存,以便将这组信息调入主存。
③从辅存读出所要的组,并送到主存空闲区,然后将那个空闲的物理组号a和逻辑组号a登录在地址变换表中。
④从地址变换表读出与逻辑组号a对应的物理组号a。
⑤从物理组号a和组内字节地址b得到物理地址。
⑥根据物理地址从主存中存取必要的信息。

D. 存储电路是如何工作的

存储器分为RAM(数据存储器)和ROM(程序存储器),他们工作原理都是一样的,即实现对电平0和1的存储。

存储电路的工作原理见下图,你可以把它看懂用自己的语言描述出来,这样你的报告就可以写出来了,然后大规模的存储电路集成起来可以构成存储器。

如果是应付写报告,我给你概括下吧,存储电路的工作原理是:存储电路是把送来的地址信号通过地址译码电路,在存储矩阵中选中相应的存储单元,将该单元存储的数据送到输出端口,为了实现存储器的扩展往往在存储器上加使能信号EN.大规模的存储电路集成封装起来就组成存储器。

E. 计算机的存储器主要功能是什么

存储器是计算机实现记忆功能的一个重要组成部分。计算机的记忆是通过存储器对信息的存储来实现的。存储器用来保存计算机工作所必需的程序和数据。

在计算机系统中的存储器不是由单一器件或单一装置构成,而是由不同材料、不同特性、不同管理方式的存储器类型构成的一个存储器系统。

计算机技术的发展使存储器的地位不断得到提升,计算机系统由最初的以运算器为核心逐渐转变成以存储器为核心。这就对存储器技术提出了更高的要求。

不仅要使一类存储器能够具有更高的性能,而且能通过硬件、软件或软硬件结合的方式将不同类型的存储器组合在一起来获得更高的性价比,这就是存储系统。

为了提高计算机系统的性能,要求存储器具有尽可能高的存取速度、尽可能大的存储容量和尽可能低的价位。但是,这三个性能指标是相互矛盾的。

(5)实现储存器访问的完全控制过程扩展阅读

存储器的分类

1、按存储介质分类

(1)半导体存储器用半导体器件组成的存储器称为半导体存储器;特点:集成度高、容量大、体积小、存取速度快、功耗低、价格便宜、维护简单。主要分两大类:双极型存储器:TTL型和ECL型.金属氧化物半导体存储器(简称MOS存储器):静态MOS存储器和动态MOS存储器。

(2)磁表面存储器用磁性材料做成的存储器称为磁表面存储器,简称磁存储器。它包括磁盘存储器、磁带存储器等。特点:体积大、生产自动化程度低、存取速度慢,但存储容量比半导体存储器大得多且不易丢失。

(3)激光存储器信息以刻痕的形式保存在盘面上,用激光束照射盘面,靠盘面的不同反射率来读出信息。光盘可分为只读型光盘(CD-ROM)、只写一次型光盘(WORM)和磁光盘(MOD)三种。

2、按存取方式分类

(1)随机存储器(RAM):如果存储器中任何存储单元的内容都能被随机存取,且存取时间与存储单元的物理位置无关,则这种存储器称为随机存储器(RAM)。

RAM主要用来存放各种输入/输出的程序、数据、中间运算结果以及存放与外界交换的信息和做堆栈用。随机存储器主要充当高速缓冲存储器和主存储器。

(2)串行访问存储器(SAS):如果存储器只能按某种顺序来存取,也就是说,存取时间与存储单元的物理位置有关,则这种存储器称为串行访问存储器。串行存储器又可分为顺序存取存储器(SAM)和直接存取存储器(DAM)。

顺序存取存储器是完全的串行访问存储器,如磁带,信息以顺序的方式从存储介质的始端开始写入(或读出);直接存取存储器是部分串行访问存储器,如磁盘存储器,它介于顺序存取和随机存取之间。

(3)只读存储器(ROM):只读存储器是一种对其内容只能读不能写入的存储器,即预先一次写入的存储器。通常用来存放固定不变的信息。如经常用作微程序控制存储器。

目前已有可重写的只读存储器。常见的有掩模ROM(MROM),可擦除可编程ROM(EPROM),电可擦除可编程ROM(EEPROM).ROM的电路比RAM的简单、集成度高,成本低,且是一种非易失性存储器,计算机常把一些管理、监控程序、成熟的用户程序放在ROM中。

3、按信息的可保存性分类

非永久记忆的存储器:断电后信息就消失的存储器,如半导体读/写存储器RAM。

永久性记忆的存储器:断电后仍能保存信息的存储器,如磁性材料做成的存储器以及半导体ROM.

4、按在计算机系统中的作用分

根据存储器在计算机系统中所起的作用,可分为主存储器、辅助存储器、高速缓冲存储器、控制存储器等。为了解决对存储器要求容量大,速度快,成本低三者之间的矛盾,目前通常采用多级存储器体系结构,即使用高速缓冲存储器、主存储器和外存储器。

高速缓存存储器:主要用途是高速存取指令和数据,存取速度快,但存取容量小;主存储器:存放计算机运行期间的大量程序和数据,存取速度快,存储容量不大;外存储器:存放系统程序和大型数据文件及数据库,存储容量大,成本较低。

F. 计算机储存原理

动态存储器(DRAM)的工作原理

动态存储器每片只有一条输入数据线,而地址引脚只有8条。为了形成64K地址,必须在系统地址总线和芯片地址引线之间专门设计一个地址形成电路。使系统地址总线信号能分时地加到8个地址的引脚上,借助芯片内部的行锁存器、列锁存器和译码电路选定芯片内的存储单元,锁存信号也靠着外部地址电路产生。

当要从DRAM芯片中读出数据时,CPU首先将行地址加在A0-A7上,而后送出RAS锁存信号,该信号的下降沿将地址锁存在芯片内部。接着将列地址加到芯片的A0-A7上,再送CAS锁存信号,也是在信号的下降沿将列地址锁存在芯片内部。然后保持WE=1,则在CAS有效期间数据输出并保持。

当需要把数据写入芯片时,行列地址先后将RAS和CAS锁存在芯片内部,然后,WE有效,加上要写入的数据,则将该数据写入选中的存贮单元。

由于电容不可能长期保持电荷不变,必须定时对动态存储电路的各存储单元执行重读操作,以保持电荷稳定,这个过程称为动态存储器刷新。PC/XT机中DRAM的刷新是利用DMA实现的。

首先应用可编程定时器8253的计数器1,每隔1⒌12μs产生一次DMA请求,该请求加在DMA控制器的0通道上。当DMA控制器0通道的请求得到响应时,DMA控制器送出到刷新地址信号,对动态存储器执行读操作,每读一次刷新一行。

(6)实现储存器访问的完全控制过程扩展阅读

描述内、外存储容量的常用单位有:

1、位/比特(bit):这是内存中最小的单位,二进制数序列中的一个0或一个1就是一比比特,在电脑中,一个比特对应着一个晶体管。

2、字节(B、Byte):是计算机中最常用、最基本的存在单位。一个字节等于8个比特,即1 Byte=8bit。

3、千字节(KB、Kilo Byte):电脑的内存容量都很大,一般都是以千字节作单位来表示。1KB=1024Byte。

4、兆字节(MBMega Byte):90年代流行微机的硬盘和内存等一般都是以兆字节(MB)为单位。1 MB=1024KB。

5、吉字节(GB、Giga Byte):市场流行的微机的硬盘已经达到430GB、640GB、810GB、1TB等规格。1GB=1024MB。

6、太字节(TB、Tera byte):1TB=1024GB。最新有了PB这个概念,1PB=1024TB。

G. 计算机硬件由哪几部分组成各部分的作用是什么各部分之间是怎样联系的

计算机由运算器、控制器、存储器、输入设备和输出设备等五个逻辑部件组成。

1、运算器

运算器由算术逻辑单元(ALU)、累加器、状态寄存器、通用寄存器组等组成。算术逻辑运算单元(ALU)的基本功能为加、减、乘、除四则运算,与、或、非、异或等逻辑操作,以及移位、求补等操作。

运算器包括寄存器、执行部件和控制电路3个部分。在典型的运算器中有3个寄存器:接收并保存一个操作数的接收寄存器;保存另一个操作数和运算结果的累加寄存器;在进行乘、除运算时保存乘数或商数的乘商寄存器。

执行部件包括一个加法器和各种类型的输入输出门电路。控制电路按照一定的时间顺序发出不同的控制信号,使数据经过相应的门电路进入寄存器或加法器完成规定的操作。为了减少对存储器的访问,计算机的运算器设有较多的寄存器,存放中间结果,以便在后面的运算中直接用作操作数。

作用:为计算机提供加减乘除运算的基本功能基础。

与其他部分的联系:计算机运行时,运算器的操作和操作种类由控制器决定。运算器处理的数据来自存储器;处理后的结果数据通常送回存储器,或暂时寄存在运算器中。与Control Unit共同组成了CPU的核心部分。

2、控制器

控制器(Control Unit),是整个计算机系统的控制中心,它指挥计算机各部分协调地工作,保证计算机按照预先规定的目标和步骤有条不紊地进行操作及处理。控制器由指令寄存器IR、程序计数器PC和操作控制器0C三个部件组成,对协调整个电脑有序工作极为重要。

作用:指挥计算机各部分协调地工作,分析每条指令规定的是什么操作以及所需数据的存放位置等,然后根据分析的结果向计算机其它部件发出控制信号,保证计算机按照预先规定的目标和步骤有条不紊地进行操作及处理。

与其他部分的联系:根据指令操作码和时序信号,产生各种操作控制信号,以便正确地建立数据通路,从而完成取指令和执行指令的控制。控制器与运算器合称为中央处理器(CPU)。它是计算机的核心设备。它的性能,主要是工作速度和计算精度,对机器的整体性能有全面的影响。

3、存储器

存储器(Memory)是计算机系统中的记忆设备,用来存放程序和数据。存储器的主要功能是存储程序和各种数据,并能在计算机运行过程中高速、自动地完成程序或数据的存取。存储器是具有“记忆”功能的设备,它采用具有两种稳定状态的物理器件来存储信息。

构成存储器的存储介质,存储元,它可存储一个二进制代码。由若干个存储元组成一个存储单元,然后再由许多存储单元组成一个存储器。一个存储器包含许多存储单元,每个存储单元可存放一个字节(按字节编址)。

作用:它根据控制器指定的位置存入和取出信息。

与其他部分的联系:有了存储器,计算机才有记忆功能,才能保证正常工作。外存通常是磁性介质或光盘等,能长期保存信息。内存指主板上的存储部件,用来存放当前正在执行的数据和程序,但仅用于暂时存放程序和数据,关闭电源或断电,数据会丢失。

4、输入设备

向计算机输入数据和信息的设备。键盘,鼠标,摄像头,扫描仪,光笔,手写输入板,游戏杆,语音输入装置等都属于输入设备。

作用:使得用户和计算机系统之间可以进行信息交换,把原始数据和处理这些数的程序输入到计算机中。

与其他部分的联系:输入设备是用户和计算机系统之间进行信息交换的主要装置之一。计算机能够接收各种各样的数据,通过不同类型的输入设备输入到计算机中,进行存储、处理和输出。

5、输出设备

输出设备(Output Device)是计算机的终端设备。输出设备种类也很多,计算机常用的输出设备有各种打印机、凿孔输出设备、显示设备和绘图机等。打印机和显示设备已成为每台计算机和大多数终端所必需的设备。

作用:用于接收计算机数据的输出显示、打印、声音、控制外围设备操作等,把各种计算结果数据或信息以数字、字符、图像、声音等形式表示出来。

与其他部分的联系:输出设备将内存中计算机处理后的信息以能为人或其它设备所接受的形式输出,将处理结果返回给外部世界,这些返回结果又可能再一次作为该计算机所控制的其他设备的输入。

H. 高分请教!存储器方面

第二章 企业信息的储存和处理
信息时代的核心无疑是信息技术,而信息技术的核心则在于信息的处理与存储。

2.1 数据表示
2.1.1 信息、数字和字符的表示
1.信息表示
存储数据的逻辑部件有两种状态,即高电位和低电位,分别与"1"和"0"相对应。在计算机中,如果一种电位状态表示一个信息单元,那么一位二进制数可以表示两个信息单元。若使用2位二进制数,则可以表示4个信息单元;使用3位二进制数,可以表示8个信息单元。二进制数的位数和可以表示的信息单元之间存在着幂次数的关系。也就是说,当用n位二进制数时,可表示的不同信息单元个数为2 个。

反之,如果有18个信息单元需要表示,那么应该用几位二进制数呢?若用4位二进制数,可表示的信息单元为16个;若用5位二进制数,可表示的信息为32个单元。所以要表示18个信息单元的数据,至少需要用5位二进制数。

计算机在存储数据时,常常把8位二进制数看作一个存储单元,或称为一个字节。用2 来计算存储容量,把 (即1024)个存储单元称为1K字节;把 K(即1024 K)个存储单元称为1M字节;把 M(即1024M)个存储单元称为1G字节。

2.数字表示
通过二进制格式来存储十进制数字,也即存储数值型数据。表示一个数值型数据,需要解决三个问题。

首先,要确定数的长度。在数学中,数的长度一般指它用十进制表示时的位数,例如258为3位数、124578为6位数等。在计算机中,数的长度按二进制位数来计算。但由于计算机的存储容量常以字节为计量单位,所以数据长度也常按字节计算。需要指出的是,在数学中数的长度参差不一,有多少位就写多少位。在计算机中,如果数据的长度也随数而异,长短不齐,无论存储或处理都很不便。所以在同一计算机中,数据的长度常常是统一的,不足的部分用"0" 填充。

其次,数有正负之分。在计算机中,总是用最高位的二进制数表示数的符号,并约定以"0"代表正数,以"1"代表负数,称为数符;其余仍表示数值。通常,把在机器内存放的正负号数码化的数称为机器数,把机器外部由正负号表示的数称为真值数。若一个数占8位,真值数为(-0101100)B,其机器数为10101100,存放在机器中的见图2.1.1

图2.1.1 存放在机器中的数
机器数表示的范围受到字长和数据的类型的限制。字长和数据类型确定了,机器数能表示的范围也定了。例如,若表示一个整数,字长为8位,最大值01111111,最高位为符号位,因此此数的最大值为127。若数值超出127,就要"溢出"。

再者是小数点的表示。在计算机中表示数值型数据,小数点的位置总是隐含的,以便节省存储空间。隐含的小数点位置可以是固定的,也可以是可变的。前者称为定点数,后者称为浮点数。

1) 定点数表示方法:
定点整数,即小数点位置约定在最低数值位的后面,用于表示整数。

整数分为带符号和不带符号的两类。对于为带符号的整数,符号位放在最高位。整数表示的数是精确的,但数的范围是有限的。根据存放的字长,它们可以用8、16、32位等表示,各自表示数的范围见表2.1.1。
表2.1.1 不同位数和数的表示范围
二进制位数 无符号整数的表示范围 有符号整数的表示范围
8
16
32

如果把有符号整数的长度扩充为4字节,则整数表示范围可从±32767扩大到±2147483647≈0.21×1010,即21亿多。但每个数占用的存储空间也增加了一倍。

定点小数,即小数点位置约定在最高数值位的前面,用于表示小于1的纯小数。

如用定点数表示十进制纯小数-0.6876,则为-0.101100000000011…。数字-0.6876的二进制数为无限小数,故存储时只能截取前15位,第16位开始略去。

若2个字节长度用来表示定点小数,则最低位的权值为2-15(在10-4 ~10-5之间),即至多准确到小数点后的第4至第5位(按十进制计算)。这样的范围和精度,即使在一般应用中也难以满足需要。为了表示较大或较小的数,用浮点数表示。

2)浮点数表示方法:
在科学计算中,为了能表示特大或特小的数,采用"浮点数"或称"科学表示法"表示实数,"浮点数"由两部分组成,即尾数和阶码。例如, ,则0.23456为尾数,5是阶码。

在浮点表示方法中,小数点的位置是浮动的,阶码可取不同的数值。为了便于计算机中小数点的表示,规定将浮点数写成规格化的形式,即尾数的绝对值大于等于0.1并且小于1,从而唯一规定了小数点的位置。尾数的长度将影响数的精度,其符号将决定数的符号。浮点数的阶码相当于数学中的指数,其大小将决定数的表示范围。

同样,任意二进制规格化浮点数的表示形式为:

其中 是尾数,前面的" "表示数符; 是阶码,前面的" "表示阶符。它在计算机内的存储形式如图2.1.2所示。

阶符 阶码 数符 尾数
图2.1.2 浮点数的存储格式
例如,设尾数为8位,阶码为6位;则二进制数 ,浮点数的存放形式见图2.1.3。

图2.1.3 的存放
3)原码、反码和补码表示法
"原码"编码方式
以上介绍的定点和浮点表示,都是用数据的第一位表示数的符号,用其后的各位表示数(包括尾数与阶码)的绝对值。这种方法简明易懂,但因运算器既要能作加法,又要能作减法,操作数中既有正数,又有负数,所以原码运算时常伴随许多判断。例如两数相加,若符号不同,实际要做减法;两数相减,若符号相异,实际要做加法,等等。其结果是,增加运算器的复杂性,并增加运算的时间。

"补码"和"反码"编码方式
怎样处理负数?由此提出了"补码"、"反码"等编码方法.补码运算的主要优点,是通过对负数的适当处理,把减法转化为加法。不论求和求差,也不论操作数为正为负,运算时一律只做加法,从而大大简化加减运算。补码运算通常通过反码运算实现。所以对算术运算的完整讨论不仅应包括数值,还应该包括码制(原、反、补码等)。

3.字符表示:
字符编码是指用一系列的二进制数来表示非数值型数据(如字符、标点符号等)的方法,简称为编码。表示26个英文字母,用5个二进制位已足够表示26个字符了。但是,每个英文字母有大小写之分,还有大量的标点符号和其他一些特殊符号(如$、#、@、&、+等)。把所有的符号计算在一起,总共有95个不同的字符需要表示。使用最广泛的三种编码方式是ASCII、ANSI和EBCDIC码,第四种编码方式Unicode码正在发展中。

1) ASCII(American Standard Code for Information Interchange,美国信息交换标准码)是使用最广的。使用ASCII码编码的文件称为ASCII文件。标准的ASCII编码使用7个二进制数来表示128个符号,包括英文大小写字母、标点符号、数字和特殊控制符。

2) ANSI(American National Institute,美国国家标准协会)编码使用8位二进制数来表示每个字符。8个二进制数能表示256个信息单元,因此,该编码可以对256个字符、符号等进行编码。ANSI开始的128个字符的编码和ASCII定义的一样,只是在最高位上加个0。例如,在ASCII编码中,字符"A"表示为1000001,而在ANSI编码中,则用01000001表示。除了表示ASCII编码中的128个字符外,ANSI编码还有128个符号可以表示,如版权符、英镑符、外国语言字符等。

3)EBCDIC(Extended Binary-Coded Decimal Interchange Code,扩展二、十进制交换码)是IBM公司为它的大型机开发的8位字符编码。值得注意的是,在EBCDIC编码开始的128个字符中,EBCDIC的编码和ASCII或ANSI的编码并不相同。

总的来说,标准的ASCII编码定义的128个字符,对于表示数字、字符、标点符号和特殊字符来说是足够了。ANSI编码表示了所有的ASCII编码所表示的128个字符,并且还表示了欧洲语言中的字符。EBCDIC编码表示了标准的字符和控制代码。但是,没有一种编码方案支持可选的字符集,也不支持非字母组合起来的语言,如汉语、日语等。

4)Unicode编码是一组16位编码,可以表示超过65000个不同的信息单元。从原理上讲,Unicode可以表示现在正在使用的、或者已经不再使用的任何语言中的字符。对于国际商业和通信来说,这种编码方式是非常有用的,因为在一个文件中可能需要包含有汉语、日语、英语等不同的语种。并且,Unicode编码还适用于软件的本地化,即可以针对特定的国家修改软件。另外,使用Unicode编码,软件开发人员可以修改屏幕的提示、菜单和错误信息提示等,来适用于不同国家的语言文字。

2.1.2图像数据和视频数据的表示
两种非常不同的图形编码方式,即位图编码和矢量编码方式。两种编码方式的不同,影响到图像的质量、存储图像的空间大小、图像传送的时间和修改图像的难易程度。视频是图像数据的一种,由若干有联系的图像数据连续播放而形成。人们一般讲的视频信号为电视信号,是模拟量;而计算机视频信号则是数字量。

1.位图图像:
位图图像是以屏幕上的像素点位置来存储图像的。 最简单的位图图像是单色图像。单色图像只有黑白两种颜色,如果某像素点上对应的图像单元为黑色,则在计算机中用0来表示;如果对应的是白色,则在计算机中用1来表示。

对于单色图像,用来表示满屏图像的图像单元数正好与屏幕的像素数相等。如果水平分辨率为640,垂直分辨率为480,将屏幕的水平分辨率与垂直分辨率相乘: 640×480=307200,则屏幕的像素数为307200个,因为单色图像使用一位二进制数来表示一个像素,所以存储一幅满屏的位图图像的字节数也就能计算出来: 307200÷8=38400,因此分辨率为640×480的满屏单色图像需要38400个字节来存储,这个存储空间不算大。但是单色图像看起来不太真实,很少使用。

灰度图像要比单色图像看起来更真实些。灰度图像用灰色按比例显示图像,使用的灰度级越多,图像看起来越真实。 通常计算机用256级灰度来显示图像。在256级灰度图像中,每个像素可以是白色、黑色或灰度中256级中的任何一个,也就是说,每个像素有256种信息表示的可能性。所以在灰度图像中,存储一个像素的图像需要256个信息单元,即需要一个字节的存储空间。因此,一幅分辨率为640×480、满屏的灰度图像需要307200个字节的存储空间。

计算机可以使用16、256或1,670万种颜色来显示彩色图像,用户将会得到更为真实的图像。

16色的图像中,每个像素可以有16种颜色。那么为了表示16个不同的信息单元,每个像素需要4位二进制数来存储信息。因此,一幅满屏的16色位图图像需要的存储容量为153600个字节。

256色的位图图像,每个像素可以有256种颜色。为了表示256个不同的信息单元,每个像素需要8位二进制数来存储信息,即一个字节。因此,一幅满屏的256色位图图像需要的存储容量为307200个字节,是16色的两倍,与256级灰度图像相同。

1,670万色的位图图像称为24位图像或真彩色图像。其每个像素可以有1.670万种颜色。为了表示这1,670万种不同的信息单元,每个像素需要24位二进制数来存储信息,即3个字节。显然,一幅满屏的真彩色图像需要的存储容量更大。

包含图像的文件都很大,需要很大容量的存储器来存储,并且传输和下载的时间也很长。例如,从因特网上下载一幅分辨率为640×480的256色图像至少需要1分钟;一幅16色的图像需要一半的时间;而一幅真彩色图像则会需要更多的时间。

有两种技术可以用来减少图像的存储空间和传输时间,即数据压缩技术和图像抖动技术。数据压缩技术随后介绍,而图像抖动技术主要是采用减少图像中的颜色数来减小文件存储容量的。抖动技术是根据人眼对颜色和阴影的分辨率,通过由两个或多个颜色组成的模式产生附加的颜色和阴影来实现。例如,256色图像上的一片琥珀色区域,可以通过抖动技术转换为16色图像上的黄红色小点模式。在因特网的Web页面上,抖动技术是用来减少图像存储容量的常用技术。

位图图像常用来表现现实图像,其适合于表现比较细致、层次和色彩比较丰富、包含大量细节的图像。例如扫描的图像,摄像机、数字照相机拍摄的图像,戓帧捕捉设备获得的数字化帧画面。经常使用的位图图像文件扩展名有:.bmp、.pcx、.tif、.jpg和.gif等。

由像素矩阵组成的位图图像可以修改戓编辑单个像素,即可以使用位图软件(也称照片编辑软件戓绘画软件)来修改位图文件。可用来修改戓编辑位图图像的软件如:Microsoft Paint、 PC Paintbrush、Adobe Photoshop、Micrografx Picture Publisher等,这些软件能够将图片的局部区域放大,而后进行修改。

2.矢量图像
矢量图像是由一组存储在计算机中,描述点、线、面等大小形状及其位置、维数的指令组成,而不是真正的图像。它是通过读取这些指令并将其转换为屏幕上所显示的形状和颜色的方式来显示图像的,矢量图像看起来没有位图图像真实。用来生成矢量图像的软件通常称为绘图软件,如常用的有:Micrographx Designer和CorelDRAW。

矢量图像的优缺点
优点:
存储空间比位图图像小。矢量图像的存储空间依赖于图像的复杂性,每条指令都需要存储空间,所以图像中的线条、图形、填充模式越多,需要的存储空间越大。但总的来说,由于矢量图像存储的是指令,要比位图图像文件小得多。

矢量图像可以分别控制处理图中的各个部分,即把图像的一部分当作一个单独的对象,单独加以拉伸、缩小、变形、移动和删除,而整体图像不失真。不同的物体还可以在屏幕上重叠并保持各自的特性,必要时仍可分开。所以,矢量图像主要用于线性图画、工程制图及美术字等。经常使用的矢量图像文件扩展名有:.wmf、.dxf、.mgx和.cgm等。

缺点:
处理起来比较复杂,用矢量图格式表示一复杂图形需花费程序员和计算机的大量时间,比较费时,所以通常先用矢量图形创建复杂的图,再将其转换为位图图像来进行处理。

位图图像和矢量图像的比较:
显示位图图像要比显示矢量图像快,但位图图像所要求的存储空间大,因为它要指明屏幕上每一个像素的信息。总之,矢量图像的关键技术是图形的制作和再现,而位图图像的关键技术则是图像的扫描、编辑、无失真压缩、快速解压和色彩一致性再现等。

3.数字视频:
视频信息实际上是由许多幅单个画面所构成的。电影、电视通过快速播放每帧画面,再加上人眼的视觉滞留效应便产生了连续运动的效果。视频信号的数字化是指在一定时间内以一定的速度对单帧视频信号进行捕获、处理以生成数字信息的过程。

与模拟视频相比,数字视频的优点为:
1)数字视频可以无失真地进行无限次拷贝,而模拟视频信息每转录一次,就会有一次误差积累,产生信息失真。

2)可以用许多新方法对数字视频进行创造性的编辑,如字幕、电视特技等。

3)使用数字视频可以用较少的时间和费用创作出用于培训教育的交互节目, 可以真正实现将视频融进计算机系统中以及可以实现用计算机播放电影节目等。

数字视频的缺点为:
因为数字视频是由一系列的帧组成,每个帧是一幅静止的图像,并且图像也使用位图文件形式表示。通常,视频每秒钟需要显示30帧,所以数字视频需要巨大的存储容量。

例如:一幅全屏的、分辨率为640×480的256色图像需要有307200字节的存储容量。那么一秒钟数字视频需要的存储空间是30乘上这个数,即9216000个字节,约为9兆。两小时的电影需要66 355 200 000个字节,超过66G字节。这样大概只有使用超级计算机才能播放。所以在存储和传输数字视频过程中必须使用压缩编码。

2.1.3 声音数据的表示
计算机可以记录、存储和播放声音。在计算机中声音可分成数字音频文件和MIDI文件。

1.数字音频
复杂的声波由许许多多具有不同振幅和频率的正弦波组成,这些连续的模拟量不能由计算机直接处理,必须将其数字化才能被计算机存储和处理

计算机获取声音信息的过程就是声音信号的数字化处理过程。经过数字化处理之后的数字声音信息能够像文字和图像信息一样被计算机存储和处理。模拟声音信号转化为数字音频信号的大致过程:

用数字方式记录声音,首先需对声波进行采样。声波采样前后波形如图2.1.4所示(其中横轴表示时间,纵轴表示振幅):

图2.1.4 声波采样前后波形
采样频率指的是在采样声音的过程中,每秒钟对声音测量的次数。采样频率以Hz为单位。如果提高采样频率,单位时间内所得到的振幅值就多,也即采样频率越高,对原声音曲线的模拟就越精确。然后再把足够多的振幅值以同样的采样频率转换为电压值去驱动扬声器,则可听到和原波形一样的声音。这种技术称为脉冲编码调制技术(PCM)。

声音文件
存储在计算机上的声音文件的扩展名为:.wav,.mod,.au和.voc。要记录和播放声音文件,需要使用声音软件,声音软件通常都要使用声卡。

2.MIDI文件
乐器数字接口--MIDI(Musical Instrument Digital Interface),是电子乐器与计算机之间的连接界面和信息交流方式。MIDI格式的文件扩展名为.mid,通常把MIDI格式的文件简称为"MIDI文件"。

MIDI是数字音乐国际标准。数字式电子乐器的出现,为计算机处理音乐创造了极为有利的条件。MIDI声音与数字化波形声音完全不同,它不是对声波进行采样、量化和编码。它实际上是一串时序命令,用于纪录电子乐器键盘弹奏的信息,包括键、力度、时值长短等。这些信息称之为MIDI消息,是乐谱的一种数字式描述。当需要播放时,只需从相应的MIDI文件中读出MIDI消息,生成所需要的乐器声音波形,经放大后由扬声器输出。

MIDI文件的存储容量较数字音频文件小得多。如3分钟的MIDI音乐仅仅需要10KB的存储空间,而3分钟的数字音频信号音乐需要15MB的存储容量。

2.2 数据压缩
对数据重新进行编码,以减少所需要的存储空间。数据压缩必须是可逆的,也即压缩过的数据必须可以恢复成原状,其逆过程称为解压缩。
当数据压缩后,文件的大小变小了,可以用压缩比来衡量压缩的数量。例如,压缩比为20:1,表明压缩后的文件大小是原文件的1/20。压缩编码方法有无损压缩法(冗余压缩法)和有损压缩法。后者允许有一定程度的失真,可用于对图像、声音、数字视频等数据的压缩。其中用这种方法压缩数据时,数字视频图像的压缩比可达到100:1~200:1。

数据压缩可以由特殊的计算机硬件实现或完全由软件来实现,也可以软、硬件相结合的方法来实现 。常用的压缩软件由Winzip等。

2.2.1文本文件压缩
自适应式替换压缩技术
扫描整个文本并且寻找两个或多个字节组成的模式。一旦发现一个新的模式,会用文件中其他地方没有用过的字节来代替这个模式,并在字典中加入一个入口。例如:有这样一段文本
"the rain in Spain stays mainly on the plain, but the rain in Maine falls again and again"

其中:"the" 是一种模式,在文中出现3次,若用"#"来替换,可以压缩6个字节;"ain"出现8次,若用"@"来替换,可以压缩16个字节;"in" 出现2次,若用"$"来替换,可以压缩2个字节等。可见,文件越长,包含重复信息的可能越大,压缩比也越大。

扫描整个文档,并寻找重复的单词。当一个单词出现的次数多于一次时,那么从第二次及以后出现的该单词都会用一个数字来替换。这个数字称为原单词的指针。例如:上例中的文本可以压缩为:"the rain in Spain stays mainly on #1 plain, but #1 #2 #3 Maine falls again and #16"可见,只压缩了6个字节,文件越大,单词重复的频率越高,因而压缩效果也越好。

2.2.2图象数据压缩
游程编码是针对于图形文件的压缩技术,它是一种寻找字节模式并用一个可以描述这个模式的消息进行替代的压缩技术。

例如:假设图像中有一个191个像素的白色区域,并且每个像素用一个字节来表示。经过游程编码压缩后,这串191个字节的数据被压缩成2个字节。

扩展名为.bmp的位图文件是没有压缩过的文件。扩展名为.tif、.pcx、.jpg的位图文件是已经压缩过的文件。以.tif为文件扩展名的文件使用的是TIFF(即带标志的图像文件格式)格式。以.pcx为文件扩展名的文件使用的是 PCX格式。以.jpg为文件扩展名的文件使用的是有损失的JPEG(Joint Photographic Experts Group,联合图像专家组)格式。人们往往对图像实行有损压缩。

2.2.3视频数据压缩
视频由一系列的帧组成,每一帧又是一幅位图图像,故视频文件需要巨大的存储容量。

人们通过减少每秒钟的播放帧数、减少视频窗口的大小或者只对每帧之间变化的内容进行编码等技术,来减少视频信号的存储容量。

数字视频常常采用的格式有:Video for Windows、QuickTime和MPEG格式,其文件的扩展名分别为:.avi、.mov、.mpg其中.mpg是一种压缩文件。MPEG格式可以将两个小时的视频信息压缩到几个GB。

视频压缩中还可以用运动补偿技术来减少存储容量。这种技术只存储每一帧之间变化的数据,而不需要存储每一帧中所有的数据。当某个视频片断每帧之间的变化不大时,用运动补偿技术非常有效。例如:一个说话人的头部,只有嘴和眼睛在变化,而背景却保持相当的稳定。此时计算机只需计算出两帧之间的差别,只存储改变的内容即可。根据数据的不同,运动补偿的压缩比可以达到200:1。另外,每秒钟的播放帧数直接影响到视频的播放质量。减小图像的大小也是一种有效的减少存储容量的好方法。一般可以综合以上几种压缩技术来达到减小视频文件存储容量的目的。

2.2.4 音频数据压缩
音频数据最突出的问题是信息量大。音频信息文件所需存储空间的计算公式为 :

存储容量(字节)= 采样频率×采样精度/8×声道数×时间

例如:一段持续1分钟的双声道音乐,若采样频率为44.1KHz,采样精度为16位,数字化后需要的存储容量为:44.1×103×16/8×2×60=10.584MB 。

数字音频的编码必须具有压缩声音信息的能力,最常用的方法是自适应脉冲编码调制法,即ADPCM压缩编码。

ADPCM压缩编码方案信噪比高,数据压缩倍率达2~5倍而不会明显失真,因此,数字化声音信息大多使用这种压缩技术。

2.3 信息加工
中央处理单元通常指为完成基本信息处理循环部件的总和。中央处理单元是计算机系统硬件的核心,它主要包括中央处理器(Central Processing Unit,CPU)、内存储器(Memory)、系统总线(System Bus)和控制部件等,通过这些部件的协同动作完成对信息的处理。

2.3.1 CPU
CPU是计算机系统的核心部件,它的工作就是处理信息、完成计算。CPU的种类很多。微型机的CPU也被称为"微处理器",是采用最先进技术生产的超大规模集成电路芯片。在这种芯片中通常集成了数百万计的晶体管电子元件,具有非常复杂的功能。比微型计算机性能更强的各种计算机,例如用于高性能网络服务器的计算机等,它们的CPU常常由一组高性能芯片构成,具有更强的计算能力。此外在各种现代化设备,例如各种机器设备、仪器、交通工具等内部都安装有所谓"嵌入式"的CPU芯片,几乎所有的高档电器内部也都装备了一片甚至几片CPU芯片。

2.3.2 内存储器
内存储器又称为主存储器(Main Memory),简称为内存或主存。内存是计算机工作中用于保存信息的主要部件,在一个计算机系统中起着极为重要的作用,它的工作速度和存储容量对系统的整体性能、对系统解决问题的规模和效能影响都非常大。对于内存储器,除了容量以外,另一个重要的性能指标就是它的访问速度。内存速度用进行一次读或写操作所花费的"访问时间"来衡量。

内存储器的基本存储单位称为存储单元,今天的计算机内存小存储器单元的结构模式,每个单元正好存储一个字节的信息(8位二进制代码)。每个单元对应了一个唯一的编号,由此形成的单元编号称为存储单元的地址。计算机中央处理单元中的各部件通过一条公共信息通路连接,这条信息通路称为系统总线。CPU和内存之间的信息交换是通过数据总线和地址总线进行的。内存是按照地址访问的,给出即可得到存储在具有这个地址的内存单元里的信息。CPU可以随即访问任何内存单元的信息。且访问时间的长短不依赖所访问的地址。

2.3.3 指令和程序
CPU的基本功能由它所提供的指令确定。当CPU得到一条指令以后,控制单元就解释这条指令,指挥其他部件完成这条指令。虽然有很多不同的CPU,但它们的基本指令具有共同性。CPU的基本指令主要包括以下几大类:

1) 存储器访问类指令

2) 算术运算和逻辑运算类指令

3) 条件判断和逻辑运算类指令

4) 输入输出指令

5) 控制和系统指令

指令也是在计算机里存在并需要在计算机里传输的一类信息,所以指令也必须采用二进制方式编码,以二进制形式在计算机里保存和传输。当CPU得到一条指令以后,控制单元就解释这条指令,指挥其他部件完成这条指令。

所谓"程序"就是为完成某种特定工作而实现的、由一系列计算机指令构成的序列。简单的说,程序就是指令的序列。一种具体的计算机的程序就是这种计算机的CPU能够执行的指令作为基本元素构成的序列。程序也可以看作是被计算机的CPU处理的一类信息,它实际上是被CPU的控制单元处理的,而不象一般数据那样被CPU的运算部件处理和使用。计算机基本工作循环由两个基本步骤组成:一个是取指令,另一个是执行指令。程序控制器是实现这个基本循环的主体。

人们在分析了在程序中需要实现的各种计算过程的需要之后,提出了程序的三种基本逻辑结构,称为程序的三种"基本控制结构",即"顺序结构"、"分支结构"和"循环结构",已经在理论上证明了这三种结构的能力是充分的,任何程序都能仅仅用这三种结构构造起来。三种基本控

I. 什么是同步形态储存器特点是什么

嵌入式简而言之,就是微微型的计算机。特点就是一个“小”。应用非常广泛,通信,航空,工业,等等,无处不在。

J. 冯*诺依曼的存储程序原理是什么

冯诺依曼理论的要点是:数字计算机的数制采用二进制;计算机应该按照程序顺序执行。
其主要内容是:
1.计算机由控制器、运算器、存储器、输入设备、输出设备五大部分组成。
2.程序和数据以二进制代码形式不加区别地存放在存储器中,存放位置由地址确定。
3.控制器根据存放在存储器中地指令序列(程序)进行工作,并由一个程序计数器控制指令地执行。控制器具有判断能力,能根据计算结果选择不同的工作流程。

计算机必须具备五大基本组成部件,包括:

输入数据和程序的输入设备;
记忆程序和数据的存储器;
完成数据加工处理的运算器;
控制程序执行的控制器;
输出处理结果的输出设备