当前位置:首页 » 文件传输 » jvm对象访问定位
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

jvm对象访问定位

发布时间: 2022-08-26 19:29:20

㈠ jvm高手来啊,xms和xmx一样出现问题.

这句话里“内存不停的涨”的意思是在Xmx的范围内内存的占用会不停的涨,但是一旦涨到达到Xmx值的时候就会进行垃圾回收了,内存分配不会超过这个值的,如果进行垃圾回收后仍然不够用,就会报内存溢出的错误。

附:
JVM申请一块内存的过程:
A. JVM会试图为相关Java对象在Eden中初始化一块内存区域
B. 当Eden空间足够时,内存申请结束。否则到下一步
C. JVM试图释放在Eden中所有不活跃的对象(这属于1或更高级的垃圾回收);释放后若Eden空间仍然不足以放入新对象,则试图将部分Eden中活跃对象放入Survivor区/OLD区
D. Survivor区被用来作为Eden及OLD的中间交换区域,当OLD区空间足够时,Survivor区的对象会被移到Old区,否则会被保留在Survivor区
E. 当OLD区空间不够时,JVM会在OLD区进行完全的垃圾收集(0级)
F. 完全垃圾收集后,若Survivor及OLD区仍然无法存放从Eden复制过来的部分对象,导致JVM无法在Eden区为新对象创建内存区域,则出现”out of memory错误”

另:
xms/xmx:定义YOUNG+OLD段的总尺寸,ms为JVM启动时YOUNG+OLD的内存大小;mx为最大可占用的YOUNG+OLD内存大小。在用户生产环境上一般将这两个值设为相同,以减少运行期间系统在内存申请上所花的开销。

㈡ JVM原理是什么

首先这里澄清两个概念:JVM实例和JVM执行引擎实例,JVM实例对应了一个独立运行的Java程序,而JVM执行引擎实例则对应了属于用户运行程序的线程;也就是JVM实例是进程级别,而执行引擎是线程级别的。JVM是什么?—JVM的生命周期JVM实例的诞生:当启动一个Java程序时,一个JVM实例就产生了,任何一个拥有publicstaticvoidmain(String[]args)函数的class都可以作为JVM实例运行的起点,既然如此,那么JVM如何知道是运行classA的main而不是运行classB的main呢?这就需要显式的告诉JVM类名,也就是我们平时运行Java程序命令的由来,如JavaclassAhelloworld,这里Java是告诉os运行SunJava2SDK的Java虚拟机,而classA则指出了运行JVM所需要的类名。JVM实例的运行:main()作为该程序初始线程的起点,任何其他线程均由该线程启动。JVM内部有两种线程:守护线程和非守护线程,main()属于非守护线程,守护线程通常由JVM自己使用,Java程序也可以标明自己创建的线程是守护线程。JVM实例的消亡:当程序中的所有非守护线程都终止时,JVM才退出;若安全管理器允许,程序也可以使用Runtime类或者System.exit()来退出。JVM是什么?—JVM的体系结构粗略分来,JVM的内部体系结构分为三部分,分别是:类装载器(ClassLoader)子系统,运行时数据区,和执行引擎。下面将先介绍类装载器,然后是执行引擎,最后是运行时数据区1、类装载器,顾名思义,就是用来装载.class文件的。JVM的两种类装载器包括:启动类装载器和用户自定义类装载器,启动类装载器是JVM实现的一部分,用户自定义类装载器则是Java程序的一部分,必须是ClassLoader类的子类。(下面所述情况是针对SunJDK1.2)动类装载器:只在系统类(JavaAPI的类文件)的安装路径查找要装入的类用户自定义类装载器:系统类装载器:在JVM启动时创建,用来在CLASSPATH目录下查找要装入的类其他用户自定义类装载器:这里有必要先说一下ClassLoader类的几个方法,了解它们对于了解自定义类装载器如何装载.class文件至关重要。(Stringname,bytedata[],intoffset,intlength) (Stringname,bytedata[],intoffset,intlength,);(Stringname) (Classc) defineClass用来将二进制class文件(新类型)导入到方法区,也就是这里指的类是用户自定义的类(也就是负责装载类)findSystemClass通过类型的全限定名,先通过系统类装载器或者启动类装载器来装载,并返回Class对象。ResolveClass:让类装载器进行连接动作(包括验证,分配内存初始化,将类型中的符号引用解析为直接引用),这里涉及到Java命名空间的问题,JVM保证被一个类装载器装载的类所引用的所有类都被这个类装载器装载,同一个类装载器装载的类之间可以相互访问,但是不同类装载器装载的类看不见对方,从而实现了有效的屏蔽。2、执行引擎:它或者在执行字节码,或者执行本地方法要说执行引擎,就不得不的指令集,每一条指令包含一个单字节的操作码,后面跟0个或者多个操作数。(一)指令集以栈为设计中心,而非以寄存器为中心这种指令集设计如何满足Java体系的要求:平台无关性:以栈为中心使得在只有很少register的机器上实现Java更便利compiler一般采用stack向连接优化器传递编译的中间结果,若指令集以stack为基础,则有利于运行时进行的优化工作与执行即时编译或者自适应优化的执行引擎结合,通俗的说就是使编译和运行用的数据结构统一,更有利于优化的开展。网络移动性:class文件的紧凑性。安全性:指令集中绝大部分操作码都指明了操作的类型。(在装载的时候使用数据流分析期进行一次性验证,而非在执行每条指令的时候进行验证,有利于提高执行速度)。(二)执行技术主要的执行技术有:解释,即时编译,自适应优化、芯片级直接执行其中解释属于第一代JVM,即时编译JIT属于第二代JVM,自适应优化(目前Sun的HotspotJVM采用这种技术)则吸取第一代JVM和第二代JVM的经验,采用两者结合的方式自适应优化:开始对所有的代码都采取解释执行的方式,并监视代码执行情况,然后对那些经常调用的方法启动一个后台线程,将其编译为本地代码,并进行仔细优化。若方法不再频繁使用,则取消编译过的代码,仍对其进行解释执行。3、运行时数据区:主要包括:方法区,堆,Java栈,PC寄存器,本地方法栈(1)方法区和堆由所有线程共享堆:存放所有程序在运行时创建的对象方法区:当JVM的类装载器加载.class文件,并进行解析,把解析的类型信息放入方法区。(2)Java栈和PC寄存器由线程独享,在新线程创建时间里(3)本地方法栈:存储本地方法调用的状态上边总体介绍了运行时数据区的主要内容,下边进行详细介绍,要介绍数据区,就不得不说明JVM中的数据类型。JVM中的数据类型:JVM中基本的数据单元是word,而word的长度由JVM具体的实现者来决定数据类型包括基本类型和引用类型,(1)基本类型包括:数值类型(包括除boolean外的所有的Java基本数据类型),boolean(在JVM中使用int来表示,0表示false,其他int值均表示true)和returnAddress(JVM的内部类型,用来实现finally子句)。(2)引用类型包括:数组类型,类类型,接口类型前边讲述了JVM中数据的表示,下面让我们输入到JVM的数据区首先来看方法区:上边已经提到,方法区主要用来存储JVM从class文件中提取的类型信息,那么类型信息是如何存储的呢?众所周知,Java使用的是大端序(big?endian:即低字节的数据存储在高位内存上,如对于1234,12是高位数据,34为低位数据,则Java中的存储格式应该为12存在内存的低地址,34存在内存的高地址,x86中的存储格式与之相反)来存储数据,这实际上是在class文件中数据的存储格式,但是当数据倒入到方法区中时,JVM可以以任何方式来存储它。类型信息:包括class的全限定名,class的直接父类,类类型还是接口类型,类的修饰符(public,等),所有直接父接口的列表,Class对象提供了访问这些信息的窗口(可通过Class.forName(“”)或instance.getClass()获得),下面是Class的方法,相信大家看了会恍然大悟,(原来如此J)getName(),getSuperClass(),isInterface(),getInterfaces(),getClassLoader();static变量作为类型信息的一部分保存指向ClassLoader类的引用:在动态连接时装载该类中引用的其他类指向Class类的引用:必然的,上边已述该类型的常量池:包括直接常量(String,integer和floatpoint常量)以及对其他类型、字段和方法的符号引用(注意:这里的常量池并不是普通意义上的存储常量的地方,这些符号引用可能是我们在编程中所接触到的变量),由于这些符号引用,使得常量池成为Java程序动态连接中至关重要的部分字段信息:普通意义上的类型中声明的字段方法信息:类型中各个方法的信息编译期常量:指用final声明或者用编译时已知的值初始化的类变量class将所有的常量复制至其常量池或者其字节码流中。方法表:一个数组,包括所有它的实例可能调用的实例方法的直接引用(包括从父类中继承来的)除此之外,若某个类不是抽象和本地的,还要保存方法的字节码,操作数栈和该方法的栈帧,异常表。举例:classLava{ privateintspeed=5; voidflow(){} classVolcano{ publicstaticvoidmain(String[]args){ Lavalava=newLava(); lava.flow(); } } 运行命令JavaVolcano;(1)JVM找到Volcano.class倒入,并提取相应的类型信息到方法区。通过执行方法区中的字节码,JVM执行main()方法,(执行时会一直保存指向Vocano类的常量池的指针)(2)Main()中第一条指令告诉JVM需为列在常量池第一项的类分配内存(此处再次说明了常量池并非只存储常量信息),然后JVM找到常量池的第一项,发现是对Lava类的符号引用,则检查方法区,看Lava类是否装载,结果是还未装载,则查找“Lava.class”,将类型信息写入方法区,并将方法区Lava类信息的指针来替换Volcano原常量池中的符号引用,即用直接引用来替换符号引用。(3)JVM看到new关键字,准备为Lava分配内存,根据Volcano的常量池的第一项找到Lava在方法区的位置,并分析需要多少对空间,确定后,在堆上分配空间,并将speed变量初始为0,并将lava对象的引用压到栈中(4)调用lava的flow()方法好了,大致了解了方法区的内容后,让我们来看看堆Java对象的堆实现:Java对象主要由实例变量(包括自己所属的类和其父类声明的)以及指向方法区中类数据的指针,指向方法表的指针,对象锁(非必需),等待集合(非必需),GC相关的数据(非必需)(主要视GC算法而定,如对于标记并清除算法,需要标记对象是否被引用,以及是否已调用finalize()方法)。那么为什么Java对象中要有指向类数据的指针呢?我们从几个方面来考虑首先:当程序中将一个对象引用转为另一个类型时,如何检查转换是否允许?需用到类数据其次:动态绑定时,并不是需要引用类型,而是需要运行时类型,这里的迷惑是:为什么类数据中保存的是实际类型,而非引用类型?这个问题先留下来,我想在后续的读书笔记中应该能明白指向方法表的指针:这里和C++的VTBL是类似的,有利于提高方法调用的效率对象锁:用来实现多个线程对共享数据的互斥访问等待集合:用来让多个线程为完成共同目标而协调功过。(注意Object类中的wait(),notify(),notifyAll()方法)。Java数组的堆实现:数组也拥有一个和他们的类相关联的Class实例,具有相同dimension和type的数组是同一个类的实例。数组类名的表示:如[[LJava/lang/Object表示Object[][],[I表示int[],[[[B表示byte[][][]至此,堆已大致介绍完毕,下面来介绍程序计数器和Java栈程序计数器:为每个线程独有,在线程启动时创建,若thread执行Java方法,则PC保存下一条执行指令的地址。若thread执行native方法,则Pc的值为undefinedJava栈:Java栈以帧为单位保存线程的运行状态,Java栈只有两种操作,帧的压栈和出栈。每个帧代表一个方法,Java方法有两种返回方式,return和抛出异常,两种方式都会导致该方法对应的帧出栈和释放内存。帧的组成:局部变量区(包括方法参数和局部变量,对于instance方法,还要首先保存this类型,其中方法参数按照声明顺序严格放置,局部变量可以任意放置),操作数栈,帧数据区(用来帮助支持常量池的解析,正常方法返回和异常处理)。本地方法栈:依赖于本地方法的实现,如某个JVM实现的本地方法借口使用C连接模型,则本地方法栈就是C栈,可以说某线程在调用本地方法时,就进入了一个不受JVM限制的领域,也就是JVM可以利用本地方法来动态扩展本身。相信大家都明白JVM是什么了吧。原文链接: http://www.cnblogs.com/chenzhao/archive/2011/08/14/2137713.html

㈢ jvm的理解

1
JVM内存区域

我们在编写程序时,经常会遇到OOM(out of Memory)以及内存泄漏等问题。为了避免出现这些问题,我们首先必须对JVM的内存划分有个具体的认识。JVM将内存主要划分为:方法区、虚拟机栈、本地方法栈、堆、程序计数器。JVM运行时数据区如下:

1.1
程序计数器
程序计数器是线程私有的区域,很好理解嘛~,每个线程当然得有个计数器记录当前执行到那个指令。占用的内存空间小,可以把它看成是当前线程所执行的字节码的行号指示器。如果线程在执行Java方法,这个计数器记录的是正在执行的虚拟机字节码指令地址;如果执行的是Native方法,这个计数器的值为空(Undefined)。

此内存区域是唯一一个在Java虚拟机规范中没有规定任何OutOfMemoryError情况的区域。

1.2
Java虚拟机栈
与程序计数器一样,Java虚拟机栈也是线程私有的,其生命周期与线程相同。

如何理解虚拟机栈呢?

本质上来讲,就是个栈。里面存放的元素叫栈帧,栈帧好像很复杂的样子,其实它很简单!它里面存放的是一个函数的上下文,具体存放的是执行的函数的一些数据。执行的函数需要的数据无非就是局部变量表(保存函数内部的变量)、操作数栈(执行引擎计算时需要),方法出口等等。

执行引擎每调用一个函数时,就为这个函数创建一个栈帧,并加入虚拟机栈。换个角度理解,每个函数从调用到执行结束,其实是对应一个栈帧的入栈和出栈。

注意这个区域可能出现的两种异常:

一种是StackOverflowError,当前线程请求的栈深度大于虚拟机所允许的深度时,会抛出这个异常。制造这种异常很简单:将一个函数反复递归自己,最终会出现栈溢出错误(StackOverflowError)。

另一种异常是OutOfMemoryError异常,当虚拟机栈可以动态扩展时(当前大部分虚拟机都可以),如果无法申请足够多的内存就会抛出OutOfMemoryError,如何制作虚拟机栈OOM呢,参考一下代码:

这段代码有风险,可能会导致操作系统假死,请谨慎使用~~~

1.3
本地方法栈
本地方法栈与虚拟机所发挥的作用很相似,他们的区别在于虚拟机栈为执行Java代码方法服务,而本地方法栈是为Native方法服务。与虚拟机栈一样,本地方法栈也会抛出StackOverflowError和OutOfMemoryError异常。

1.4
Java堆
Java堆可以说是虚拟机中最大一块内存了。它是所有线程所共享的内存区域,几乎所有的实例对象都是在这块区域中存放。当然,随着JIT编译器的发展,所有对象在堆上分配渐渐变得不那么“绝对”了。

Java堆是垃圾收集器管理的主要区域。由于现在的收集器基本上采用的都是分代收集算法,所有Java堆可以细分为:新生代和老年代。在细致分就是把新生代分为:Eden空间、From Survivor空间、To Survivor空间。当堆无法再扩展时,会抛出OutOfMemoryError异常。

1.5
方法区
方法区存放的是类信息、常量、静态变量等。方法区是各个线程共享区域,很容易理解,我们在写Java代码时,每个线程度可以访问同一个类的静态变量对象。由于使用反射机制的原因,虚拟机很难推测那个类信息不再使用,因此这块区域的回收很难。另外,对这块区域主要是针对常量池回收,值得注意的是JDK1.7已经把常量池转移到堆里面了。同样,当方法区无法满足内存分配需求时,会抛出OutOfMemoryError。

制造方法区内存溢出,注意,必须在JDK1.6及之前版本才会导致方法区溢出,原因后面解释,执行之前,可以把虚拟机的参数-XXpermSize和-XX:MaxPermSize限制方法区大小。

运行后会抛出java.lang.OutOfMemoryError:PermGen space异常。

解释一下,String的intern()函数作用是如果当前的字符串在常量池中不存在,则放入到常量池中。上面的代码不断将字符串添加到常量池,最终肯定会导致内存不足,抛出方法区的OOM。

下面解释一下,为什么必须将上面的代码在JDK1.6之前运行。我们前面提到,JDK1.7后,把常量池放入到堆空间中,这导致intern()函数的功能不同,具体怎么个不同法,且看看下面代码:

这段代码在JDK1.6和JDK1.7运行的结果不同。

JDK1.6结果是:false,false ,JDK1.7结果是true, false。

原因是:JDK1.6中,intern()方法会吧首次遇到的字符串实例复制到常量池中,返回的也是常量池中的字符串的引用,而StringBuilder创建的字符串实例是在堆上面,所以必然不是同一个引用,返回false。

在JDK1.7中,intern不再复制实例,常量池中只保存首次出现的实例的引用,因此intern()返回的引用和由StringBuilder创建的字符串实例是同一个。为什么对str2比较返回的是false呢?这是因为,JVM中内部在加载类的时候,就已经有"java"这个字符串,不符合“首次出现”的原则,因此返回false。

㈣ java对象静态变量放在jvm的什么区域

从JVMS角度而言是在方法区(Method Area),对于特定的实现的话,例如Oracle HotSpot而言是在持久区(Permanent Area),HotSpot后续版本中会移除掉持久区的概念。 对于JVM内存区的划分可参考 不会,因为类的静态变量是此类的所有实例化对象全局共享的,即指向同一块内存,只要一个对象更改了静态变量,其他对象读到的都是更改后的静态变量,从设计上而言,也很容易理解,静态变量也称之为类变量,可以直接使用类名访问而不需要通过类对象访问,一楼所言有误。 这要看你的业务需求,原则上是尽量减少不必要的静态变量,对于一直常量类的话,你的变量就要包含静态变量了。

㈤ JVM是如何工作的呢

Java虚拟机
一、什么是Java虚拟机

Java虚拟机是一个想象中的机器,在实际的计算机上通过软件模拟来实现。Java虚拟机有自己想象中的硬件,如处理器、堆栈、寄存器等,还具有相应的指令系统。

1.为什么要使用Java虚拟机

Java语言的一个非常重要的特点就是与平台的无关性。而使用Java虚拟机是实现这一特点的关键。一般的高级语言如果要在不同的平台上运行,至少需要编译成不同的目标代码。而引入Java语言虚拟机后,Java语言在不同平台上运行时不需要重新编译。Java语言使用模式Java虚拟机屏蔽了与具体平台相关的信息,使得Java语言编译程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台上不加修改地运行。Java虚拟机在执行字节码时,把字节码解释成具体平台上的机器指令执行。

2.谁需要了解Java虚拟机

Java虚拟机是Java语言底层实现的基础,对Java语言感兴趣的人都应对Java虚拟机有个大概的了解。这有助于理解Java语言的一些性质,也有助于使用Java语言。对于要在特定平台上实现Java虚拟机的软件人员,Java语言的编译器作者以及要用硬件芯片实现Java虚拟机的人来说,则必须深刻理解Java虚拟机的规范。另外,如果你想扩展Java语言,或是把其它语言编译成Java语言的字节码,你也需要深入地了解Java虚拟机。

3.Java虚拟机支持的数据类型

Java虚拟机支持Java语言的基本数据类型如下:

byte://1字节有符号整数的补码
short://2字节有符号整数的补码
int://4字节有符号整数的补码
long://8字节有符号整数的补码
float://4字节IEEE754单精度浮点数
double://8字节IEEE754双精度浮点数
char://2字节无符号Unicode字符

几乎所有的Java类型检查都是在编译时完成的。上面列出的原始数据类型的数据在Java执行时不需要用硬件标记。*作这些原始数据类型数据的字节码(指令)本身就已经指出了*作数的数据类型,例如iadd、ladd、fadd和dadd指令都是把两个数相加,其*作数类型别是int、long、 float和double。虚拟机没有给boolean(布尔)类型设置单独的指令。boolean型的数据是由integer指令,包括integer 返回来处理的。boolean型的数组则是用byte数组来处理的。虚拟机使用IEEE754格式的浮点数。不支持IEEE格式的较旧的计算机,在运行 Java数值计算程序时,可能会非常慢。

虚拟机支持的其它数据类型包括:
object//对一个Javaobject(对象)的4字节引用
returnAddress//4字节,用于jsr/ret/jsr-w/ret-w指令
注:Java数组被当作object处理。

虚拟机的规范对于object内部的结构没有任何特殊的要求。在Sun公司的实现中,对object的引用是一个句柄,其中包含一对指针:一个指针指向该object的方法表,另一个指向该object的数据。用Java虚拟机的字节码表示的程序应该遵守类型规定。Java虚拟机的实现应拒绝执行违反了类型规定的字节码程序。Java虚拟机由于字节码定义的限制似乎只能运行于32位地址空间的机器上。但是可以创建一个Java虚拟机,它自动地把字节码转换成64位的形式。从Java虚拟机支持的数据类型可以看出,Java对数据类型的内部格式进行了严格规定,这样使得各种Java虚拟机的实现对数据的解释是相同的,从而保证了Java的与平台无关性和可
移植性。

二、Java虚拟机体系结构

Java虚拟机由五个部分组成:一组指令集、一组寄存器、一个栈、一个无用单元收集堆(Garbage-collected-heap)、一个方法区域。这五部分是Java虚拟机的逻辑成份,不依赖任何实现技术或组织方式,但它们的功能必须在真实机器上以某种方式实现。

1.Java指令集

Java虚拟机支持大约248个字节码。每个字节码执行一种基本的CPU运算,例如,把一个整数加到寄存器,子程序转移等。Java指令集相当于Java程序的汇编语言。
Java指令集中的指令包含一个单字节的*作符,用于指定要执行的*作,还有0个或多个*作数,提供*作所需的参数或数据。许多指令没有*作数,仅由一个单字节的*作符构成。 虚拟机的内层循环的执行过程如下:

do{
取一个*作符字节;
根据*作符的值执行一个动作;
}while(程序未结束)

由于指令系统的简单性,使得虚拟机执行的过程十分简单,从而有利于提高执行的效率。指令中*作数的数量和大小是由*作符决定的。如果*作数比一个字节大,那么它存储的顺序是高位字节优先。例如,一个16位的参数存放时占用两个字节,其值为:

第一个字节*256+第二个字节字节码指令流一般只是字节对齐的。指令tableswitch和lookup是例外,在这两条指令内部要求强制的4字节边界对齐。

2.寄存器

Java虚拟机的寄存器用于保存机器的运行状态,与微处理器中的某些专用寄存器类似。

Java虚拟机的寄存器有四种:
pc:Java程序计数器。
optop:指向*作数栈顶端的指针。
frame:指向当前执行方法的执行环境的指针。
vars:指向当前执行方法的局部变量区第一个变量的指针。

Java虚拟机

Java虚拟机是栈式的,它不定义或使用寄存器来传递或接受参数,其目的是为了保证指令集的简洁性和实现时的高效性(特别是对于寄存器数目不多的处理器)。
所有寄存器都是32位的。

3.栈

Java虚拟机的栈有三个区域:局部变量区、运行环境区、*作数区。

(1)局部变量区 每个Java方法使用一个固定大小的局部变量集。它们按照与vars寄存器的字偏移量来寻址。局部变量都是32位的。长整数和双精度浮点数占据了两个局部变量的空间,却按照第一个局部变量的索引来寻址。(例如,一个具有索引n的局部变量,如果是一个双精度浮点数,那么它实际占据了索引n和n+1所代表的存储空间。)虚拟机规范并不要求在局部变量中的64位的值是64位对齐的。虚拟机提供了把局部变量中的值装载到*作数栈的指令, 也提供了把*作数栈中的值写入局部变量的指令。

(2)运行环境区 在运行环境中包含的信息用于动态链接,正常的方法返回以及异常传播。

·动态链接
运行环境包括对指向当前类和当前方法的解释器符号表的指针,用于支持方法代码的动态链接。方法的class文件代码在引用要调用的方法和要访问的变量时使用符号。动态链接把符号形式的方法调用翻译成实际方法调用,装载必要的类以解释还没有定义的符号,并把变量访问翻译成与这些变量运行时的存储结构相应的偏移地址。动态链接方法和变量使得方法中使用的其它类的变化不会影响到本程序的代码。

·正常的方法返回
如果当前方法正常地结束了,在执行了一条具有正确类型的返回指令时,调用的方法会得到一个返回值。执行环境在正常返回的情况下用于恢复调用者的寄存器,并把调用者的程序计数器增加一个恰当的数值,以跳过已执行过的方法调用指令,然后在调用者的执行环境中继续执行下去。

·异常和错误传播
异常情况在Java中被称作Error(错误)或Exception(异常),是Throwable类的子类,在程序中的原因是:①动态链接错,如无法找到所需的class文件。②运行时错,如对一个空指针的引用

·程序使用了throw语句。
当异常发生时,Java虚拟机采取如下措施:
·检查与当前方法相联系的catch子句表。每个catch子句包含其有效指令范围,能够处理的异常类型,以及处理异常的代码块地址。
·与异常相匹配的catch子句应该符合下面的条件:造成异常的指令在其指令范围之内,发生的异常类型是其能处理的异常类型的子类型。如果找到了匹配的catch子句,那么系统转移到指定的异常处理块处执行;如果没有找到异常处理块,重复寻找匹配的catch子句的过程,直到当前方法的所有嵌套的 catch子句都被检查过。
·由于虚拟机从第一个匹配的catch子句处继续执行,所以catch子句表中的顺序是很重要的。因为Java代码是结构化的,因此总可以把某个方法的所有的异常处理器都按序排列到一个表中,对任意可能的程序计数器的值,都可以用线性的顺序找到合适的异常处理块,以处理在该程序计数器值下发生的异常情况。
·如果找不到匹配的catch子句,那么当前方法得到一个"未截获异常"的结果并返回到当前方法的调用者,好像异常刚刚在其调用者中发生一样。如果在调用者中仍然没有找到相应的异常处理块,那么这种错误传播将被继续下去。如果错误被传播到最顶层,那么系统将调用一个缺省的异常处理块。
(3)*作数栈区 机器指令只从*作数栈中取*作数,对它们进行*作,并把结果返回到栈中。选择栈结构的原因是:在只有少量寄存器或非通用寄存器的机器(如Intel486)上,也能够高效地模拟虚拟机的行为。*作数栈是32位的。它用于给方法传递参数,并从方法接收结果,也用于支持*作的参数,并保存*作的结果。例如,iadd指令将两个整数相加。相加的两个整数应该是*作数栈顶的两个字。这两个字是由先前的指令压进堆栈的。这两个整数将从堆栈弹出、相加,并把结果压回到*作数栈中。

每个原始数据类型都有专门的指令对它们进行必须的*作。每个*作数在栈中需要一个存储位置,除了long和double型,它们需要两个位置。* 作数只能被适用于其类型的*作符所*作。例如,压入两个int类型的数,如果把它们当作是一个long类型的数则是非法的。在Sun的虚拟机实现中,这个限制由字节码验证器强制实行。但是,有少数*作(*作符pe和swap),用于对运行时数据区进行*作时是不考虑类型的。

4.无用单元收集堆

Java的堆是一个运行时数据区,类的实例(对象)从中分配空间。Java语言具有无用单元收集能力:它不给程序员显式释放对象的能力。Java不规定具体使用的无用单元收集算法,可以根据系统的需求使用各种各样的算法。

5.方法区

方法区与传统语言中的编译后代码或是Unix进程中的正文段类似。它保存方法代码(编译后的java代码)和符号表。在当前的Java实现中,方法代码不包括在无用单元收集堆中,但计划在将来的版本中实现。每个类文件包含了一个Java类或一个Java界面的编译后的代码。可以说类文件是Java 语言的执行代码文件。为了保证类文件的平台无关性,Java虚拟机规范中对类文件的格式也作了详细的说明。其具体细节请参考Sun公司的Java虚拟机规范。

内容来源于网上。

㈥ 深入理解jvm原理之逃逸分析

最近一直在学习Java虚拟机原理,觉得有意思的地方就写个文章记录下来。优胜劣汰是自然界的发展,适用到Java虚拟机也不为过,jvm过了生存下去,一直在自我进化,Java虚拟机也在不停的进化和优化,有的是基于执行代码的优化,例如指令重排序等等;有的是基于分析技术,例如关系分析或者逃逸分析等等,今天就重点介绍一下jvm中的分析技术优化---逃逸分析;内容大部分源自于《深入理解Java虚拟机》;

逃逸分析一般分为两种:一种基本行为就是分析对象的动态作用域,当一个对象在方法中定义后,它可能被外部的方法所引用,例如作为调用参数传入了其他对象中,称为方法逃逸;甚至被外部线程所引用,例如赋值给变量或可以在其他线程中访问的变量,这种优化行为称为线程逃逸;

概念归概念,最终效果怎么样,肯定还需要是骡子是马拉出来遛遛,总牛的理论需要落地检验,说程序员的话,也就是一个对象不会逃逸到方法或者线程之外后,这个变量会进行一些高效的优化;实现方式一般有下面几种;

栈上分配:无论是C#还是Java的程序员,大家都知道,对象会创建在Java堆上,而Java堆中的对象对线程(Java线程)是共享和可见的,而虚拟机的垃圾回收就是回收对象不再适用的对象,无论哪种垃圾回收器,都需要需要筛选和整理可回收的对象,回收和整理要耗费很长时间,如果确定一个方法不会逃逸出方法之外,那就让这个对象直接分配在栈上,而对象所占用的空间也会随着帧栈的出栈而销毁,垃圾回收系统的压力会就变的小了;

消除同步:线程同步本身就是一个相对耗时的过程(至于为什么耗时,可以查询用户线程和内核线程相关知识),如果确认一个对象不会被其他线程访问;那么变量的读写就不会和其他线程竞争,对于这种变量实施的同步可以消除;

标量替换:标量又称scalar是指一个数据已经无法再分解成更小的数据来表示了,Java虚拟机中的原始数据例如int,long,等值类型以及reference类型,都不能再进一步分解,他们就可以称为标量,相对的,它们如果可以继续分解,那就是称为聚合量又称Aggregate,Java对象就是典型的聚合量,如果把一个对象拆散,根据程序访问情况,将其使用到的成员变量类型变成基本类型代替,如果jvm逃逸分析中发现这个对象不会外部对象使用,那程序执行的就不会创建该对象,为改为创建它的若干个被这个方法使用的成员变量来代替(栈上创建的数据,又很大的概率会被jvm分配至物理机的高速寄存器中存储),这个也为后续进一步的优化创造了条件;

逃逸分析很多优势还在陆陆续续发现,Java8已经默认开启了逃逸分析, -XX:+DoEscapeAnalysis 开启或者关闭这个选项;都是干活,后续上带么和截图来验证一下;

㈦ 请问两年半的JAVA程序员面试会遇到哪些问题

J2SE基础:

1. 九种基本数据类型的大小,以及他们的封装类。
2. Switch能否用string做参数?
3. equals与==的区别。
4. Object有哪些公用方法?
5. Java的四种引用,强弱软虚,用到的场景。
6. Hashcode的作用。
7. ArrayList、LinkedList、Vector的区别。
8. String、StringBuffer与StringBuilder的区别。
9. Map、Set、List、Queue、Stack的特点与用法。
10. HashMap和HashTable的区别。
11. HashMap和ConcurrentHashMap的区别,HashMap的底层源码。
12. TreeMap、HashMap、LindedHashMap的区别。
13. Collection包结构,与Collections的区别。
14. try catch finally,try里有return,finally还执行么?
15. Excption与Error包结构。OOM你遇到过哪些情况,SOF你遇到过哪些情况。
16. Java面向对象的三个特征与含义。
17. Override和Overload的含义去区别。
18. Interface与abstract类的区别。
19. Static class 与non static class的区别。
20. java多态的实现原理。
21. 实现多线程的两种方法:Thread与Runable。
22. 线程同步的方法:sychronized、lock、reentrantLock等。
23. 锁的等级:方法锁、对象锁、类锁。
24. 写出生产者消费者模式。
25. ThreadLocal的设计理念与作用。
26. ThreadPool用法与优势。
27. Concurrent包里的其他东西:ArrayBlockingQueue、CountDownLatch等等。
28. wait()和sleep()的区别。
29. foreach与正常for循环效率对比。
30. Java IO与NIO。
31. 反射的作用于原理。
32. 泛型常用特点,List<String>能否转为List<Object>。
33. 解析XML的几种方式的原理与特点:DOM、SAX、PULL。
34. Java与C++对比。
35. Java1.7与1.8新特性。
36. 设计模式:单例、工厂、适配器、责任链、观察者等等。
37. JNI的使用。

JVM:
1. 内存模型以及分区,需要详细到每个区放什么。
2. 堆里面的分区:Eden,survival from to,老年代,各自的特点。
3. 对象创建方法,对象的内存分配,对象的访问定位。
4. GC的两种判定方法:引用计数与引用链。
5. GC的三种收集方法:标记清除、标记整理、复制算法的原理与特点,分别用在什么地方,如果让你优化收集方法,有什么思路?
6. GC收集器有哪些?CMS收集器与G1收集器的特点。
7. Minor GC与Full GC分别在什么时候发生?
8. 几种常用的内存调试工具:jmap、jstack、jconsole。
9. 类加载的五个过程:加载、验证、准备、解析、初始化。
10. 双亲委派模型:Bootstrap ClassLoader、Extension ClassLoader、ApplicationClassLoader。
11. 分派:静态分派与动态分派。
(来源:面试心得与总结---BAT、网易、蘑菇街)

总体来说java考察内容包括以下这些:
1,面向对象的一些基本概念:继承,多态之类的
2, 抽象类和接口
3, 静态类,内部类
4, Java集合类,同步和异步
5, Java类加载机制
6, Java内存模型和垃圾回收算法
7, 线程同步机制(voliate,synchronized,重入锁,threadlocal),线程间通信(wait,notify)
8, 异常处理
9, 多线程同步问题,生产者消费者,读者写者,哲学家就餐,用java实现
10, 了解java中设计模式的思想,用了哪些设计模式,有什么好处

作者:Doing
链接:https://www.hu.com/question/29800631/answer/109486025
来源:知乎

㈧ 对象和内存溢出怎么处理

1. 对象。
A.创建。首先检查指令的参数能不能在常量区找到类的符号引用,并检查这个类是否加载、解析和初始化过,如果没有就执行类的加载过程。其次是内存分配,类加载之后就知道要分配的内存大小,分配方法有两种,一种是指针碰撞,就是一块内存是使用过的,一块是未使用的,用一个指针分割,新分配的内存指针就向空闲的挪动,compact功能的虚拟机是用指针碰撞;另一种是空闲列表,就是一个列表记录空闲的内存块,不断更新列表,新分配的内存在列表中寻找一个合适大小的内存块,sweep功能的虚拟机是使用空闲列表。第三,在分配内存空间的时候,还要考虑并发性。有两个方法,一种是同步处理,如采用CAS和失败重试的方法;另外一种是把内存分配动作按照线程划分在不同的空间之中,每个线程在堆中预先分配一小块内存,本地线程分配缓冲TLAB,那个线程需要分配内存在那个TLAB上分配,只有TLAB用完了,才要同步锁定,重新分配。第四、对对象进行必要设置,比方说对象属于那个类,如何找到类的元数据信息和对象hashcode以及对象GC分代年龄等。
B.对象的内存布局。分为对象头、实例数据和对齐填充。对象头包括两部分,第一部分是存储对象自身信息,如hashcode,GC分代年龄,锁状态等;第二部分是类型指针,对象指向它的类的元数据的指针,虚拟机通过这个指针确定这是那个类的实例。
C.对象访问定位。两种方式,一种是句柄访问,句柄池有访问对象实例数据的指针和访问对象数据类型的指针。这个访问最大好处是reference是稳定的句柄池地址,对象改变都是改变句柄池里面的指针,而reference本身不动。另外一种就是直接指针,它有到对象类型数据的指针和实例数据。这个访问的好处是速度更快,节省了一次指针定位的开销。
2. 内存溢出OOM。
A.堆溢出。堆存放的是对象实例,只要不断创建对象,并且保证GC Root到对象有可大路径避免被垃圾回收清除掉对象,那么对象数量达到最大堆容量限制就会OOM。用内存映象分析工具,Eclipse Memory Analyzer分析一下。
B.虚拟机栈和本地方法栈溢出。分为两种,一种是如果线程请求的栈深度大于虚拟机所允许的最大深度,抛出StackOverFlowError异常;另一种是如果虚拟机在扩展栈时无法申请到足够内存空间,抛出OutOfMemoryError异常。可以减小最大堆和栈容量来获取更多的线程数量。
C.方法区和常量池溢出。会有额外提示 PermGen space。
D.本机直接内存溢出。这个Heap Dump文件看不到内存占用,但是如果有直接或简介使用了NIO,那有可能就是本机直接内存溢出了。

㈨ JVM 内存分哪⼏个区,每个区的作⽤是什么

从JVM的观点来看,它位于方法区域,对于具体的实现,如Oracle热点,它位于永久区域,持久性的概念在热点的后续版本中被删除。
JVM内存区域的分区不能被引用,因为类的静态变量是由类的所有实例化对象(即指向同一块内存)全局共享的。
只要一个对象改变静态变量,其他对象就读取改变的静态变量。
从设计的角度来看,静态变量也很容易理解。
也称为类变量,可以直接使用类名访问,而不需要通过类对象访问,第一层是错误的。
这取决于您的业务需求,原则上最小化不必要的静态变量。
对于常数类,变量包含静态变量。