当前位置:首页 » 文件传输 » lan访问控制方法
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

lan访问控制方法

发布时间: 2022-06-24 21:25:01

1. 局域网基本技术中有哪几种媒体访问控制方法

计算机局域网一般采用共享介质,这样可以节约局域网的造价。对于共享介质,关键问题是当多个站点要同时访问介质时,如何进行控制,这就涉及到局域网的介质访问控制(Medium Access Control,MAC)协议。在网络中服务器和计算机众多,每台设备随时都有发送数据的需求,这就需要有某些方法来控制对传输媒体的访问,以便两个特定的设备在需要时可以交换数据。传输媒体的访问控制方式与局域网的拓扑结构、工作过程有密切关系。目前,计算机局域网常用的访问控制方式有3种,分别是载波多路访问/冲突检测(CSMA/CD)、令牌环访问控制法(Token Ring)和令牌总线访问控制法(Toking Bus)。其中,载波多路访问/冲突检测(CSMA/CD)是由ALOHA随机访问控制技术发展而来的,在此,对ALOHA随机访问控制技术简要介绍一下。
1.ALOHA协议
ALOHA协议是20世纪70年代在夏威夷大学由Norman Abramson及其同事发明的,目的是为了解决地面无线电广播信道的争用问题。ALOHA协议分为纯ALOHA和分槽ALOHA两种。
(1)纯ALOHA
ALOHA协议的思想很简单,只要用户有数据要发送,就尽管让他们发送。当然,这样会产生冲突从而造成帧的破坏。但是,由于广播信道具有反馈性,因此发送方可以在发送数据的过程中进行冲突检测,将接收到的数据与缓冲区的数据进行比较就可以知道数据帧是否遭到破坏。同样的道理,其他用户也是按照此过程工作。如果发送方知道数据帧遭到破坏(检测到冲突),那么它可以等待一段随机长的时间后重发该帧。对于局域网LAN,反馈信息很快就可以得到;而对于卫星网,发送方要在270ms后才能确认数据发送是否成功。通过研究证明,纯ALOHA协议的信道利用率最大不超过18%(1/2e)。
(2)分槽ALOHA
1972年,Roberts发明了一种能把信道利用率提高一倍的信道分配策略,即分槽ALOHA协议。其思想是用时钟来统一用户的数据发送。办法是将时间分为离散的时间片,用户每次必须等到下一个时间片才能开始发送数据,从而避免了用户发送数据的随意性,减少了数据产生冲突的可能性,提高了信道的利用率。在分槽ALOHA系统中,计算机并不是在用户按下回车键后就立即发送数据,而是要等到下一个时间片开始时才发送。这样,连续的纯ALOHA就变成离散的分槽ALOHA。由于冲突的危险区平均减少为纯ALOHA的一半,因此分槽ALOHA的信道利用率可以达到36%(1/e),是纯ALOHA协议的两倍。对于分槽ALOHA,用户数据的平均传输时间要高于纯ALOHA系统。
2.载波侦听多路访问/冲突检测(CSMA/CD)
CSMA/CD是Carrier Sense Multiple Access With Collision Detection的缩写,含有两方面的内容,即载波侦听(CSMA)和冲突检测(CD)。CSMA/CD访问控制方式主要用于总线型和树状网络拓扑结构、基带传输系统。信息传输是以“包”为单位,简称信包,发展为IEEE 802.3基带CSMA/CD局域网标准。
(1)CSMA/CD介质访问控制方案
先听后发,工作站在每次发送前,先侦听总线是否空闲,如发现已被占用,便推迟本次的发送,仅在总线空闲时才发送信息。介质的最大利用率取决于帧的长度和传播时间,与帧长成正比,与传播时间成反比。
载波监听多路访问CSMA的技术也称做先听后说LBT(Listen Before Talk)。要传输数据的站点首先对媒体上有无载波进行监听,以确定是否有别的站点在传输数据。如果媒体空闲,该站点便可传输数据;否则,该站点将避让一段时间后再做尝试。这就需要有一种退避算法来决定避让的时间,常用的退避算法有非坚持、1-坚持、P-坚持3种。
① 非坚持算法。算法规则如下:
如果媒本是空闲的,则可以立即发送。
如果媒体是忙的,则等待一个由概率分布决定的随机重发延迟后,再重复前一个步骤。
采用随机的重发延迟时间可以减少冲突发生的可能性。
非坚持算法的缺点是:即使有几个着眼点位都有数据要发送,但由于大家都在延迟等待过程中,致使媒体仍可能处于空闲状态,使利用率降低。
② 1-坚持算法。算法规则如下:
如果媒体是空闲的,则可以立即发送。
如果媒体是忙的,则继续监听,直至检测到媒体是空闲,立即发送。
如果有冲突(在一段时间内未收到肯定的回复),则等待一个随机量的时间,重复前两步。
这种算法的优点是:只要媒体空闲,站点就可立即发送,避免了媒体利用率的损失。
其缺点是:假若有两个或两个以上的站点有数据要发送,冲突就不可避免。
③ P-坚持算法。算法规则如下:
监听总线,如果媒体是空闲的,则以P的概率发送,而以(1–P)的概率延迟一个时间单位。一个时间单位通常等于最大传播时延的2倍。
延迟一个时间单位后,再重复第一步。
如果媒体是忙的,继续监听直至媒体空闲并重复第一步。
P-坚持算法是一种既能像非坚持算法那样减少冲突,又能像1-坚持算法那样减少媒体空闲时间的折中方案。问题在于如何选择P的值,这要考虑到避免重负载下系统处于的不稳定状态。假如媒体忙时,有N个站有数据等待发送,一旦当前的发送完成,将要试图传输的站的总期望数为NP。如果选择P过大,使NP>1,表明有多个站点试图发送,冲突就不可避免。最坏的情况是,随着冲突概率的不断增大,而使吞吐量降低到零。所以必须选择适当P值使NP<1。当然P值选得过小,则媒体利用率又会大大降低。
(2)二进制指数退避算法
重发时间均匀分布在0~TBEB之间,TBEB=2i–1(2a),a为端-端的传输延迟,i为重发次数。该式表明,重发延迟将随着重发次数的增加而按指数规律迅速地延长。
(3)CSMA/CD
载波监听多路访问/冲突检测方法是提高总线利用率的一种CSMA改进方案。该方法为:使各站点在发送信息时继续监听介质,一旦检测到冲突,就立即停止发送,并向总线发送一串阻塞信号,通知总线上的各站点冲突已发生。
采用CSMA/CD介质访问控制方法的总线型局域网中,每一个结点在利用总线发送数据时,首先要侦听总线的忙、闲状态。如果总线上已经有数据信号传输,则为总线忙;如果总线上没有数据信号传输,则为总线空闲。由于Ethernet的数据信号是按差分曼彻斯特方法编码,因此如果总线上存在电平跳变,则判断为总线忙;否则判断为总线空。如果一个结点准备好发送的数据帧,并且此时总线空闲,它就可以启动发送。同时也存在着这种可能,那就是在几乎相同的时刻,有两个或两个以上结点发送了数据帧,那么就会产生冲突,所以结点在发送数据的同时应该进行冲突检测。
(4)CSMA/CD方式的主要特点
原理比较简单,技术上较易实现,网络中各工作站处于同等地位,不要集中控制,但这种方式不能提供优先级控制,各结点争用总线,不能满足远程控制所需要的确定延时和绝对可靠性的要求。此方式效率高,但当负载增大时,发送信息的等待时间较长。
3.令牌环(Token Ring)访问控制
Token Ring是令牌传输环(Token Passing Ring)的简写。令牌环介质访问控制方法是通过在环状网上传输令牌的方式来实现对介质的访问控制。只有当令牌传输至环中某站点时,它才能利用环路发送或接收信息。当环线上各站点都没有帧发送时,令牌标记为01111111,称为空标记。当一个站点要发送帧时,需等待令牌通过,并将空标记置换为忙标记01111110,紧跟着令牌,用户站点把数据帧发送至环上。由于是忙标记,所以其他站点不能发送帧,必须等待。
发送出去的帧将随令牌沿环路传输下去。在循环一周又回到原发送站点时,由发送站点将该帧从环上移去,同时将忙标记换为空标记,令牌传至后面站点,使之获得发送的许可权。发送站点在从环中移去数据帧的同时还要检查接收站载入该帧的应答信息,若为肯定应答,说明发送的帧已被正确接收,完成发送任务。若为否定应答,说明对方未能正确收到所发送的帧,原发送站点需要在带空标记的令牌第二次到来时,重发此帧。采用发送站从环上收回帧的策略,不仅具有对发送站点自动应答的功能,而且还具有广播特性,即可有多个站点接收同一个数据帧。
接收帧的过程与发送帧不同,当令牌及数据帧通过环上站点时,该站将帧携带的目标地址与本站地址相比较。若地址符合,则将该帧复制下来放入接收缓冲器中,待接收站正确接收后,即在该帧上载入肯定应答信号;若不能正确接收则载入否定应答信号,之后再将该帧送入环上,让其继续向下传输。若地址不符合,则简单地将数据帧重新送入环中。所以当令牌经过某站点而它既不发送信息,又无处接收时,会稍经延迟,继续向前传输。
在系统负载较轻时,由于站点需等待令牌到达才能发送或接收数据,因此效率不高。但若系统负载较重,则各站点可公平共享介质,效率较高。为避免所传输数据与标记形式相同而造成混淆,可采用位填入技术,以区别数据和标记。
使用令牌环介质访问控制方法的网络,需要有维护数据帧和令牌的功能。例如,可能会出现因数据帧未被正确移去而始终在环上传输的情况;也可能出现令牌丢失或只允许一个令牌的网络中出现了多个令牌等异常情况。解决这类问题的办法是在环中设置监控器,对异常情况进行检测并消除。令牌环网上的各个站点可以设置成不同的优先级,允许具有较高优先权的站申请获得下一个令牌权。
归纳起来,在令牌环中主要有下面3种操作。
截获令牌并且发送数据帧。如果没有结点需要发送数据,令牌就由各个结点沿固定的顺序逐个传递;如果某个结点需要发送数据,它要等待令牌的到来,当空闲令牌传到这个结点时,该结点修改令牌帧中的标志,使其变为“忙”的状态,然后去掉令牌的尾部,加上数据,成为数据帧,发送到下一个结点。
接收与转发数据。数据帧每经过一个结点,该结点就比较数据帧中的目的地址,如果不属于本结点,则转发出去;如果属于本结点,则复制到本结点的计算机中,同时在帧中设置已经复制的标志,然后向下一个结点转发。
取消数据帧并且重发令牌。由于环网在物理上是个闭环,一个帧可能在环中不停地流动,所以必须清除。当数据帧通过闭环重新传到发送结点时,发送结点不再转发,而是检查发送是否成功。如果发现数据帧没有被复制(传输失败),则重发该数据帧;如果发现传输成功,则清除该数据帧,并且产生一个新的空闲令牌发送到环上。
4.令牌总线访问控制法(Token Bus)
Token Bus是令牌通行总线(Token Passing bus)的简写。这种方式主要用于总线型或树状网络结构中。1976年美国Data Point公司研制成功的ARCnet(Attached Resource Computer)网络,它综合了令牌传递方式和总线网络的优点,在物理总线结构中实现令牌传递控制方法,从而构成一个逻辑环路。此方式也是目前微机局域中的主流介质访问控制方式。
ARCnet网络把总线或树状传输介质上的各工作站形成一个逻辑上的环,即将各工作站置于一个顺序的序列内(例如可按照接口地址的大小排列)。方法可以是在每个站点中设一个网络结点标识寄存器NID,初始地址为本站点地址。网络工作前,要对系统初始化,以形成逻辑环路,其过程主要是:网中最大站号n开始向其后继站发送“令牌”信包,目的站号为n+1,若在规定时间内收到肯定的信号ACK,则n+1站连入环路,否则在n+1继续向下询问(该网中最大站号为n=255,n+1后变为0,然后1、2、3、…递增),凡是给予肯定回答的站都可连入环路并将给予肯定回答的后继站号放入本站的NID中,从而形成一个封闭逻辑环路,经过一遍轮询过程,网络各站标识寄存器NID中存放的都是其相邻的下游站地址。
逻辑环形成后,令牌的逻辑中的控制方法类似于Token Ring。在Token Bus中,信息是按双向传送的,每个站点都可以“听到”其他站点发出的信息,所以令牌传递时都要加上目的地址,明确指出下一个将到控制的站点。这种方式与CSMA/CD方式的不同在于除了当时得到令牌的工作站之外,所有的工作站只收不发,只有收到令牌后才能开始发送,所以拓扑结构虽是总线型但可以避免冲突。
Token Bus方式的最大优点是具有极好的吞吐能力,且吞吐量随数据传输速率的增高而增加,并随介质的饱和而稳定下来但并不下降;各工作站不需要检测冲突,故信号电压容许较大的动态范围,联网距离较远;有一定实时性,在工业控制中得到了广泛应用,如MAP网就是用的宽带令牌总线。其主要缺点在于其复杂性和时间开销较大,工作站可能必须等待多次无效的令牌传送后才能获得令牌。
应该指出,ARCnet网实际上采用称为集中器的硬件联网,物理拓扑上有星状和总线型两种连接方式。

2. 局域网适用的介质访问控制方法是如何分类的

逻辑链路 Logical Links
Logical Links 逻辑链路逻辑链路是实际电路或逻辑电路上交换通信信息的两个端系统之间的一种协议驱动通信会话。协议栈定义了两个系统在某种介质上的通信。在协议栈低层定义可用的多种不同类型的通信协议,如局域网络(LAN)、城域网(MAN)和象X.25或帧中继这样的分组交换网络。逻辑链路在物理链路(可以是铜线、光纤或其他介质)上的两个通信系统之间形成。根据OSI协议模型,这些逻辑链路只在物理层以上存在。你可以认为逻辑链路是存在于网络两个末断系统间的线路。
面向连接的服务 为了保证可靠的通信,需要建立逻辑线路,但在两个端系统间要维持会话。
面向需要应答连接的服务 分组传输并有返回信号的逻辑线路。这种服务产生更大的开销,但更加可靠。
无应答不连接服务 无需应答和预先的传送。在端系统间没有会话。
OSI协议栈中的数据链路层可进一步细分为较低的介质访问控制(MAC)子层和较高的逻辑链路控制(LLC)子层。当它接收到一个分组后,它从MAC子层向上传送。如果有多个网络和设备相连,LLC层可能将分组送给另一个网络。例如,在一个NetWare服务器上,你可能既安装了以太网络适配器又安装了令牌网络适配器,NetWare自动地在连接到适配器的网络间桥接,这样原来在以太网上的分组就可以传送到令牌网上的目的地了,LLC层就象网络段间的交换或链路中继,它将以太网的帧重装成令牌环网的帧。
相关条目:Connection-Oriented and Connectionless Protocols面向连接和无连接协议;Data-Link Layer OSI Model OSI模型的数据链路层;Layered Architecture分层体系结构;Open Systems Interconnection Model 开放式系统互联模型;Protocol Stack协议栈。

3. 局域网的访问控制有哪几种,分别适用于哪些网络

1、冲突检测的载波侦听多路访问法:适用于所有局域网。

2、令牌环访问控制法:只适用于环形拓扑结构的局域网。

3、令牌总线访问控制法:主要用于总线形或树形网络结构中。


(3)lan访问控制方法扩展阅读

令牌总线访问控制方式类似于令牌环,但把总线形或树形网络中的各个工作站按一定顺序如按接口地址大小排列形成一个逻辑环。只有令牌持有者才能控制总线,才有发送信息的权力。信息是双向传送,每个站都可检测到站点发出的信息。

CSMA/CD要解决的另一主要问题是如何检测冲突。当网络处于空闲的某一瞬间,有两个或两 个以上工作站要同时发送信息,同步发送的信号就会引起冲突。

4. 总线型网络和星型网络一般采用 介质访问控制方法。

注:网上找的,你看是否是你想要的
介质访问控制方法,也就是信道访问控制方法,可以简单地把它理解为如何控制网络节点何时能够发送数、如何传输及怎样介质上接收数据的。IEEE802规定了局域网中最常用的介质访问控制方法:IEEE802载波监听多路访问/冲突检测(CSMA/CD)、IEEE802.5令牌环(Token Ring)、IEEE802.4令牌总线(Token Bus)。

CSMA/CD介质访问控制方法
总线型LAN中,所有的节点都直接连到同一条物理信道上,并在该信道中发送和接收数据,因此对信道的访问是以多路访问方式进行的。任一节点检测到该数据帧的目的地址(MAC地址)
为本节点地址时, 就继续接收该帧中包含的数据,同时给源节点返回一个响应。当有两个或更多的节点在同一时间都发送了数据,在信道上就造成了帧的重叠,导致冲突出现。为了克服这种冲突,在总线LAN中常采用CSMA/CD协议,即带有冲突检测的载波侦听多路访问协议,它是一种随机争用型的介质访问控制方法。
CSMA/CD协议起源于ALOHA协议,是Xerox(施乐)公司吸取了ALOHA技术的思想而研制出的一种采用随机访问技术的竟争型媒体访问控制方法,后来成为IEEE802标准之一即MAC的IEEE802标准。
CSMA/CD协议的工作过程为:由于整个系统不时采用集中式的控制方式,且总线上每个节噗发送信息要自行控制,所以各个节点在发送信息之前,首先要侦听总线上是否有信息在媒介体上传送,若有,则其它各节点不发送信息,发免破坏传送,若侦听到总线上没有信息传送,则可以发送信息到总线上。当一个节点占用总线发送信息后,要一边发送一边检测总线,看是否有冲突产生。发送节点检测到冲突产生后,就立即停止发送信息,并发送强化冲突息号,然后采用某种算法等待一段时间后再重新侦听线路,准备重新发送该信息。对CSMA/CD协议的工作过程通常可以概括为"先听后发、边听边发、冲突停发、随机重发"。
冲突产生的原因可能是在同一时刻两个节噗同时侦听到线路“空闲”,又同时发送信息所以产生了冲突,使数据发送失败。也可能是一个节点刚刚发送信息,还没有传送到目的节点,而另一个节点检测到线路空闲,将数据发送到总线上,导致冲突的产生。
CSMA/CD一般应用于总线型网络或用于信道使用半双工的网络环境,对于使用全双工的网络环境无需采用这种介质访问控制技术。

5. LAN是什么意思

LAN(Local Area Network)是中国电信提供光纤到小区,网线到户的宽带接入方式,可以满足千兆到小区、百兆到楼道、十兆到户,用户只需一台电脑和一块网卡就可轻松接入中国电信宽带互联网,具有速度快、稳定性好、安装方便等特点。LAN典型组网图如下:

6. 如何访问同一个局域网内其他计算机

具体解决方法操作步骤如下:

1、首先打开电脑,在桌面选择”网络“图标。

(6)lan访问控制方法扩展阅读

局域网一般为一个部门或单位所有,建网、维护以及扩展等较容易,系统灵活性高。其主要特点是:

1、覆盖的地理范围较小,只在一个相对独立的局部范围内联,如一座或集中的建筑群内。

2、使用专门铺设的传输介质进行联网,数据传输速率高(10Mb/s~10Gb/s)

3、通信延迟时间短,可靠性较高

4、局域网可以支持多种传输介质

局域网的类型很多,若按网络使用的传输介质分类,可分为有线网和无线网;若按网络拓扑结构分类,可分为总线型、星型、环型、树型、混合型等;若按传输介质所使用的访问控制方法分类,又可分为以太网、令牌环网、FDDI网和无线局域网等。其中,以太网是当前应用最普遍的局域网技术。

7. 如何管理嵌入式Wi-Fi设备的访问控制

使用WPA2-Personal来控制嵌入式Wi-Fi设备

在嵌入式无线LAN设备访问控制方法中,WPA2-Personal是一种经常被忽视的方法:Pre-Shared Key (PSK)
验证和AES加密。“个人版(Personal)”表示这种方法不是针对企业无线LAN而设计的策略,
PSK也不建议用来控制那些可以由WPA2-Enterprise有效控制的设备。然而,对于不支持WPA2-Enterprise或设备认证的消费电子
产品,PSK是一种可行的替代方法。

现在,所有支持Wi-Fi的消费电子产品都必须支持WPA2-Personal;有超过1800种设备支持Wi-Fi Protected Setup (WPS)。WPS是一种简单的方法,它以包含少量或不包含数据项的相对较严格的方式启用WPA2-Personal。

为了使用WPS,我们需要查找印在客户端设备的包装或LCD安装面板上的唯一的WPS
PIN码。通过PIN码进入AP或控制器的WPS安装页面。通讯双方将完成一次安全握手,在这个过程中客户端会得到一个随机PSK。有一些WPS客户端也
支持使用自动化或Near-Field Communication
(NFC)安装作为基于PIN安装的替代方法。无论是哪种一方法,WPS都不仅能够实现自动的PSK安装,还能够生成足以对抗攻击的较长随机PSK。

当嵌入式设备通过这种方式验证后,一般的策略都可用来控制流量流。各个SSID会映射到VLAN上,并根据协议进行优先级划分和过滤,以适应不同类
型的设备和业务用途。例如,您可以只允许通过打印协议连接无线打印机,而不支持Telnet、SNMP或其他可能会攻击这些嵌入式设备的未知数据包。

使用Wi-Fi Direct管理来自嵌入式Wi-Fi设备的流量

从一开始,WPS就没有得到企业AP和控制器的广泛支持。然而,每一个Wi-Fi
Direct认证产品都要求支持WPS。这种端到端Wi-Fi联盟规范支持简单的设备到设备的直连,不需要AP或传统的Wi-Fi点对点模式。支持Wi-
Fi Direct的设备能够发现其他设备,形成由两个或多个设备组成的Wi-Fi
Direct“分组”。这些自我组织的分组是为了简化通信所需要的Wi-Fi连接,如消费电子产品之间的文件共享和打印。

为了方便使用和流量分离,企业可能希望有选择性地授权Wi-Fi
Direct使用。例如,网络团队需要不通过企业网络就能够给用户授权无线打印功能。为了与企业无线LAN共存,Wi-Fi
Direct定义了一个“托管设备”选项,IT可使用这个选项来控制Wi-Fi
Direct频道和功率。然而,支持这个选项的产品还没有,现在谈论Wi-Fi Direct对企业无线LAN的实际影响还为时过早。

更多嵌入式Wi-Fi设备的验证方法

为了支持WPA2-Enterprise验证,嵌入式Wi-Fi设备还需要无用户干预的802.1X证书,如设备证书。这些证书还没有在消费电子设
备中广泛使用,但是一些更高端的设备可支持EAP-TLS,它使用了企业发布的证书。例如,有一些设备可能提供了TPM芯片以实现密钥存储安全,或者它们
可能有一个特殊插槽,支持外接带有证书的智能卡或USB。

此外,实现了Cisco Compatible Extensions
(CCX)的Wi-Fi设备也支持EAP-FAST。这种EAP允许企业发布受保护访问证书(PAC),它可用于保护不使用电子证书的非交互802.1X
验证的安全。目前的CCX认证设备包括Wi-Fi语音手持设备、便携式电脑、加固耐用手持设备和一些智能手机。

GSM智能手机可选择的另一个验证方法是EAP-SIM,这是一种通过它的用户身份模块(SIM)来识别设备的EAP类型。对于UMTS智能手机,
类似的功能是由EAP-AKA提供的。这些证书可能更多的是被移动运营商使用,而不是一般企业,但是它们还有一个有趣的角色——Wi-Fi/3G漫游。特
别是,Wi-Fi Alliance现在正在开发一种热点认证项目,它基于IEEE
802.11u的,帮助整合的移动设备实现透明漫游(例如,智能手机和平板电脑)。认证的设备可能能够发现附近的最佳热点,并使用带有EAP-SIM或
EAP-AKA的WPA2-Enterprise连接热点,而不会出现中断,也不需要用户干预。实际上,运营商可能会使用漫游协议来实现呼叫/会话切换和
计费,从而实现与现在的无线语音漫游类似的用户体验。

嵌入式Wi-Fi设备仍然参差不齐,而且它们很大程度上受到设备类型、Wi-Fi安全功能(包括EAP类型)和目标业务用途的影响。注意,设备指纹
识别也可能在这里发挥作用——如果只是为了不需要进行IT操作就实现嵌入式设备的可见性。企业应该保持对这个问题的关注,并且可以考虑使用创造性“开箱即
用”的策略来解决访问控制需求,而不将企业无线LAN暴露于重大风险之下。

8. 局域网lan设置

设置方法:
1、首先把两台电脑,都用网线连接在一个路由器或者是交换机的lan口上,然后设置路由器(交换机)的网关。
2、比如设置成 192.168.1.1,然后在两台电脑上,打开网络连接,本地连接,属性,internet协议(tcp/ip),属性然后设置成手动设置ip。
3、在ip地址中填192.168.1.3(另一台电脑填192.168.1.4)这两台电脑的ip前面三段必须一样,192.168.1 两台电脑ip这三段一样,然后最后一段不要设置一样,一台电脑为4.另外一台电脑为5。
4、鼠标点子网掩码,会自动填出子网掩码(一般为255.255.255.0)然后网关填192.168.1.1 然后点击确定,然后点击关闭。
5、在桌面,我的电脑上右击。打开属性,然后在 计算机名 里面点击 设置,把两台电脑计算机名称改成不一样的,工作组名称改成一样点确定,。
6、电脑会要求重启电脑,重启电脑后两台电脑就再一个局域网了。
注意:路由器或者交换机要开着。两台电脑建议用路由器。