当前位置:首页 » 数据仓库 » 飞机大气数据库
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

飞机大气数据库

发布时间: 2022-06-01 06:22:13

① 飞机能在夜里安全飞行,难道不是靠雷达吗

飞机在夜里要安全飞行,肯定是要靠雷达的,这是必须的,但民航飞机需要靠预定的航线图飞行 ,同时还有地面导航,而这些也都要靠雷达的帮助。能在夜里飞行放心是很安全的。现代民航客机飞行可靠安全性靠多种组合导航手段保障。

飞行员可以在完全看不到外部景物的情况下,通过雷达、地面导航、GPS卫星定位等方式,清楚地知道现在所处位置,以及附近是否有另一架飞机在飞行、距离如何等信息。所以夜间正常飞行不靠飞行员眼睛,基本完全看雷达等仪器仪表。



(1)飞机大气数据库扩展阅读:

航空雷达新技术特点:

广泛采用数字技术,可编程序信号处理机,故障的自检与隔离,使MTBF达100~200小时。可编程序处理机的优点是可以通过软件变化,实现各共用硬件功能的重新配置,硬件不作变动就可组成新的系统,即以“软”代“硬”的阶段。

使雷达的组合、元器件数大为减少,体积、重量减轻;结构简单,易于维护,可靠性和可维护性空前提高。具有多目标能力,最多可跟踪24个目标,并可同时攻击6个目标。采用激光电子装置,这是一种超灵敏度的能在夜间摄取极弱的星光、外景并分辨出目标。

② 一般情况下飞机是在哪个大气层飞行呢

平流层
平流层的温度先是随高度增加不改变,或变化很小,到30~35公里高度均保持在-55℃左右,再向上温度则随高度而增加,到平流层顶温度升至-3℃以上。平流层温度的升高主要是由于臭氧层的臭氧吸收来自太阳的紫外线,同时以热的形式释放出大量的能量。由于平流层内垂直对流运动很小,多为平流运动,没有对流层中那种云、雨等天气现象,尘埃也很少,大气透明度好,因此是现代超音速飞机飞行的理想场所。

③ 请问长弓阿帕奇直升机的详细数据与功能

所谓AH-64D“长弓阿帕奇”,就是因为换装了“长弓”毫米波雷达。该雷达为l72公斤.雷达天线安装在主旋翼轴的顶部,可进行360度的全方位连续扫描,也可以对某个扇形区进行重点扫描。一架装备“长弓”雷达的AH—64D能为整个攻击中队提供空中警戒。

"长弓阿帕奇"的设计特点

从外表上看,除了旋翼轴顶上多了个扁圆形的天线罩以外,“长弓阿帕奇”与“阿帕奇”似乎没有什么区别,但实际上“长弓阿帕奇”技术水平和综合作战能力都有显着的提高,难怪麦道公司(现并人波音公司)正雄心勃勃,不但要将现役的AH-64A全部改装成AH-64C/D,而且还扩大生产新的AH- 64G/D供应国外客户,以便与欧洲直升机公司的“虎”式、贝尔公司的“超级眼镜蛇”、阿古斯塔公司的“猫鼬”以及南非和俄罗斯生产的武装直升机进行竞争。现在英国已订购91架AH-64G/D,荷兰、韩国等也都先后订购“长弓阿帕奇”。这说明经改型后,AH-64D确实有了较大提高,其更新的方面概括起来主要有以下内容:

(l)换装“长弓”雷达

之所以将AH-64D命名为“长弓阿帕奇”就是因为换装了“长弓”毫米波雷达。该雷达原理样机重226公斤,生产型已降为l72公斤。雷达天线安装在主旋翼轴的顶部,可进行360度的全方位连续扫描,也可以对某个扇形区进行重点扫描。“长弓”雷达发射波具有脉冲短、不易探测的波形、小的旁瓣和一定程度的频率捷变能力,不易被截获和干扰。当直升机在复杂地形的掩护下,这种雷达波可以穿过恶劣大气环境,发现机载红外设备发现不了的伪装在地面杂彼中的目标,并可以通过目标探测和分类设备将雷达探到的目标信号特性与数据库的资料进行比较,依次排列出对载机的威胁等级。在跟踪瞄准目标时,不但速度快(比现在的瞄准手段减少70%的瞄准时间),而且可以瞄准多个目标。

“长弓”雷达具有多种工作方式,在空地方式时可探测空中目标,但在空空方式时不能探测地面目标。

一架装备“长弓”雷达的AH-64D能为整个攻击中队提供空中警戒。“长弓”雷达还具有地形跟踪能力,这种方式一般在飞行员的夜视设备和夜视镜(NVG)不好使的情况下使用。

(2)装备“长弓海尔法”导弹

以前的AH-64A只能携带半主动激光制导的“海尔法”反坦克导弹,整个发射过程需要载机对目标进行照射指引,影响了直升机的安全。而AH-64D则可装备AGM-114L“长弓海尔法”导弹,由于它采用了主动雷达制导方式,对于目标的特征和位置信息可被导弹所“记忆”,即使直升机雷达不再照射目标,弹上的毫米波主动雷达导引头也能引导其命中目标。此外,AH-64D又增加了两个外接点,可带4枚“毒刺”、4枚“西北风”或2枚“响尾蛇”红外格斗导弹,从而提高了该机的空战能力。其它武器没变。

(3)简化座舱设备

为了减轻飞行员的负担,对座舱内的设备进行了简化。如由于自动化程度的提高和功能可变控制键的使用,使座舱内的开关总数从过去的1250个减少到了现在的200个,取消了飞行员头顶上的控制板,并将所有的控制开关组合到驾驶杆和显示器上,减少了由于飞行员需要经常操纵机身两侧开关而造成的忙乱情况。 AH-64D仍保留了AH-64A型上的飞行员夜视设备和目标截获/瞄准系统,一旦遇到恶劣天气不能使用或效果不好,可以得到“长弓”雷达地形跟踪功能的帮助。一些主要飞行仪表依然保留,但主要是作为备份。原来座舱里的黑白显示器,改成了重量轻、能耗低的彩色液晶显示器。据介绍,以后AH-64D还可能采用能显示地形垂直变化的彩色地图屏显装置。经过这些改进后,不但减轻了飞行员的负担,同时提高对战场情况的了解。

(4)改进通信、导航设备

对“阿帕奇”的通信系统也有相当大的改进,如AH-64D装备的改进型调制调解器,它能在4台收发机上同时发射和接收信息,通信速度可达到每秒 16000字节。而且该装置与美国陆军的战场数据系统兼容,可以相互分享目标数据和实时图像。此外,“长弓阿帕奇”有高频、特高频和调频电台,还有一台高额电台用于直升机贴地飞行时使用电离通信或地波通信。在导航设备上,AH-64D采用了利顿导航和控制系统公司的LN-100轻型惯性导航设备。这种采用环形激光陀螺的惯导设备,其精度是AH-64A采用的LRAB-80的10倍,可靠性是后者的3至4倍。它还可以与全球卫星定位系统(GPS)交连,可进一步提高导航精度。

(5)采用大功率发动机

由于大量的改进,使AH-64D的起飞重量增加500多公斤,因此采用了两台功率更大的T7O0-GE-701C型涡轮轴发动机。这种发动机虽然是T700-GE-700的一种改型,但单台功率增加了144千瓦,最大功率达到1409千瓦。

“长弓阿帕奇”在设计中还充分考虑到全机的维护性要求,尽量采用功能更强、可靠性更高的电子组件和设备,使该机的维护性能更好。机群飞行50000小时后的平均故障间隔时间将达到80小时。

H-64A已发展了以下几种型别:AH-64B,AH-64A的改型。是根据海湾战争的经验改进的。AH-64C, AHP64A的改型。类似于AH-64D,但没有“长弓”雷达且保留AH-64A的发动机。A-64D“长弓阿帕奇”,最新的改进型,在旋翼轴上装有“长弓”毫米波雷达和带射频导引头的“海尔法”导弹。“长弓”雷达能够跟踪飞行目标,在雨天、烟、雾气象条件下不影响其性能,并能逃脱前视红外探测系统和电视的跟踪,短距离内能发射“海尔法”导弹,能在发射前锁住,或同步发射和在飞行中锁住,能扫瞄360的空中目标,或以90扇形扫瞄270地面目标,旋翼轴上的环形天线重量为136公斤。AH-64A直升机的主要武器为1门30毫米“链”式机炮,装在机身下部,正常射速为625发/分,载弹量1200发。机翼下有4个悬挂点,可悬挂16枚“海尔法”导弹,选装70毫米火箭弹,每个悬挂点可挂一个19枚火箭发射器,最多可挂4个发射器,共76枚火箭弹。该机机身长(尾桨旋转)15.54米,机高(至旋翼桨毂顶部)3.84米,空重5092公斤,最大平飞速度293公里/小时,最大航程482公里。

④ 大气分哪几个部分其中哪个适合飞机飞行

大气分 对流层 , 平流层 ,中间层,热层,逃逸层.适合飞机平流层飞行 (一)对流层对流层是大气的最低层,其厚度随纬度和季节而变化。在赤道附近为16-18km;在中纬度地区为l0-12km,两极附近为8-9km。夏季较厚,冬季较薄。这一层的显着特点:—是气温随高度升高而递减,大约每上升100 m,温度降低0.6。C。内于贴近地面的空气受地面发射出来的热量的影响而膨胀上升,上面冷空气下降,故在垂直方向上形成强烈的 对流 ,对流层也正是因此而得名;二是密度大,大气总质量的3/4以上集中在此层。在对流层中,因受地表的影响不同,又可分为两层。在l-2km以下,受地表的机械、热力作用强烈,通称摩擦层,或 边界层 ,亦称低层大气,排人大气的污染物绝大部分活动在此层。在1-2公里以上,受地表影响变小,称为自由大气层,主要天气过程如雨、雪、雹的形成均出现在此层。对流层和人类的关系最密切。 (二)平流层从对流层顶到约50km的大气层为平流层。在平流层下层,即30—35knl以下,温度随高度降低变化较小,气温趋于稳定,所以又称 同温层 。在30—35km以上,温度随高度升高而升高。平流层的特点:一是空气没有对流运动,平流运动占显着优势;二是空气比下层稀薄得多,水汽、尘埃的含量甚微,很少出现 天气现象 ;三是在高约15—35km范围内,有厚约20km的—层臭氧层,因 臭氧 具有吸收太阳光 短波紫外线 的能力,故使平流层的温度升高。 (三)中间层从平流层顶到80km高度称为中间层。这一层空气更为稀薄,温度随高度增加而降低。 (四)热层从80km到约500km称为热层。这一层温度随高度增加而迅速增加,层内温度很高,昼夜变化很大,热层下部尚有少量的水分存在,因此偶尔会出现 银白 并微带青色的夜 光云 。 (五)逃逸层热层以上的大气层称为逃逸层。这层空气在太阳紫外线和 宇宙射线 的作用下,大部分分子发生 电离 ;使 质子 的含量大 大超 过中性氢原子的含量。逃逸层空气极为稀薄,其密度几乎与太空密度相同,故又常称为外大气层。由于空气受 地心引力 极小,气体及微粒可以从这层 飞出地球 致力场进入太空。逃逸层是地球大气的最外层,该层的上界在哪里还没有一致的看法。实际上地球大气与星际空间并没有截然的界限。逃逸层的温度随高度增加而略有增加。

⑤ 哪层大气最适合飞机飞行

同温层(stratosphere),又称平流层,是地球大气层里上热下冷的一层。此层被分成不同的温度层,当中高温层置于顶部,而低温层置于低部(高压环境下受重,氧原子聚合放热)。它与位于其下贴近地表的对流层刚好相反,对流层是上冷下热的。在中纬度地区,同温层位于离地表10公里至50公里的高度,而在极地,此层则始于离地表8公里左右(低压失重环境下,氧原子扩散吸热)。
一般大型民航机,都在一万米左右高度飞行,这刚好是平流层的最底部,而小型飞机一般都在六七千米高空飞,处于对流层中,飞行中颠簸的非常厉害,所以小飞机的舒适性和安全性都要比大飞机差很多。

⑥ 用SQL做一个航班的数据库

首先是机场信息表,关键字段是机场编号或机场名字,都要有,方便查询

机场信息表和航班信息表关联的方法,是机场编号 和航班的起落地关联
航班信息表当然还要包含其它的数据,比如起飞落地时间、中间降落地点时间等等
主要的查询应用是按航班号查详细信息,或按城市查航班,再查详细信息

这样就基本可用了

⑦ qtp自带飞机例子的数据库在哪里查看

在安装路径下的
\samples\flight\app\flight32.mdb 这个就是数据库文件 可以用Microsoft Access打开

⑧ 各种飞机的简单介绍

【电子战飞机】
用以对敌方雷达、无线电通信设备和电子制导系统实施侦察、干扰和袭击的飞机的总称。包括电子侦察飞机、电子干扰飞机和反雷达飞机。用携带电子干扰设备对雷达和通信系统进行干扰的军用飞机。它的任务是使敌方空防体系失效,掩护已方飞机顺利执行攻击任务。第二次世界大战中地面雷达出现以后,轰炸机就已开始用抛撒金属丝的方法迷惑对方雷达,这是一种简单的无源干扰手段。战后随着雷达的防空技术的发展和完善,仅仅使用简单干扰手段已不足以保护自身的安全,因而就出现了载有完善干扰设备、专门用来干扰敌方雷达和通信系统的飞机。大多数电子战飞机都是用轰炸机和强击机改装而成的。电子战飞机所执行的任务分为远距干扰和近距干扰。前者在敌方防空武器有效射程以外的空域从飞机上对敌方雷达和通信系统进行干扰。由于干扰距离远、范围广,要求干扰设备有较大的发射功率。后者是干扰飞机与攻击机群编队直接飞临目标上空,干扰敌方地区警戒雷达和炮瞄雷达,以掩护已方攻击机群,由于离干扰对象近,效果比较好,但要求干扰机与攻击机的性能相近。70年代以后研制的电子战飞机的机载干扰设备主要由计算机控制的大功率全波段杂波干扰系统组成,可进行全向、半全向和定向干扰,有效干扰功率近1兆瓦。在战斗中当警戒设备感受到雷达信号后,经计算机处理,及时施行相应干扰。此外,飞机还可以施放金属丝、箔片等干扰物,用以自卫。
【反潜机】
载有搜索和攻击潜艇用的装备和武器的军用飞机或其他航空器。反潜机一般具有低空性能好和续航时间长等特点,能在短时间内对宽阔水域进行反潜作战。反潜机有岸基反潜飞机、舰载反潜飞机和水上反潜飞机三种。自1914年潜艇问世以来,各国相继用飞艇和水上飞机对付潜艇。当时仅靠目视和望远镜搜索,对潜艇威胁不大。第一次世界大战末期英国开始用岸基飞机反潜,并采用原始的声纳系统。第二次世界大战期间,英、美使用声纳浮标、机载雷达和探照灯搜索,用鱼雷、深水炸弹和水雷攻击潜艇,获得较好效果。50年代以后,开始使用反潜直升机和吊放声纳系统。核潜艇的出现,对反潜系统提出了更高的要求。反潜机一般总重在50吨以上,可在几百米高度上以300-400公里/时的速度进行巡逻,续航时间在10小时以上。舰载反潜机总重约20吨,以航空母舰为基地,承担舰队区域反潜任务,飞行速度为高亚音速。反潜直升机通常载于普通舰船上,能提高舰船自身的反潜能力。反潜水上飞机能停泊在水面上,悬放声纳,由于船身阻力大,航程短,只能在近海执行反潜任务。现代机载搜索潜艇的设备有声纳浮标、吊放声纳、磁控仪、反潜雷达、红外探测仪、废气探测仪、核心辐射探测仪、光电设备和侧视雷达等。
【轰炸机】
用炸弹、鱼雷或空地导弹杀伤、破坏地面和海上目标的军用飞机。轰炸机按起飞重量、载弹量和航程不同大致分为轻型轰炸机、中型轰炸机和重型轰炸机3类。轻型轰炸机又称战术轰炸机,起飞重量一般为20-30吨,航程可达3000公里,载弹量3-5吨,主要用于配合地面部队,对敌方供应线、前沿阵地和各种活动目标进行战术轰炸。中型轰炸机起飞重量为40-90吨,航程3000-6000公里,载弹量5-10吨。重型轰炸机又称战略轰炸机,起飞重量在100吨以上,航程7000公里以上,载弹量超过10吨。中型和重型轰炸机主要用于深入敌后,对军事基地、交通枢纽、经济和政治中心进行战略轰炸。
轰炸机出现于第一次世界大战期间。最初由装一台发动机的侦察机改装而成,只能带少量炸弹,以后各国相继制造多发动机的轰炸机。它们都是木质结构的双翼机,速度、航程和载弹量都不大。炸弹多挂在机翼的下边。机上装有机枪,以对付敌方歼击机的威胁。第一次世界大战结束时轰炸机的飞行速度还不到200公里/时,载弹量仅1吨左右。30年代以后,轰炸机的面貌有了巨大变化。双翼变成了上单翼,挂在机翼下面的炸弹移机身内部/敞开的驾驶舱改成封闭的;暴露在外面的起落架在飞行中可以收入机内;功率增大的发动机外加了整流罩,加上其他一些技术措施,使轰炸机的速度提高到400公里/时以上。第二次世界大战中,轰炸机又有新的发展。装4台发动机的重型轰炸机已成为各国空中战略打击力量的支柱。美国的B-29重型轰炸机可载9吨炸弹,飞行高度甚至高于当时的一些歼击机。机上还配备了由11挺机枪组成的严密自卫火力网,甚至不用歼击机护航也能完成轰炸任务。这个时期,轰炸机上装备了雷达轰炸瞄准具和导航设备,能在夜晚和复杂气象条件下进行轰炸。
50年代以后,高亚音速喷气式轰炸机开始服役。50年代末到60年代又有超音速中程战略轰炸机。这个时期轰炸机在战术使用上没有根本性的变化,但是在飞行速度、高度和载弹量方面有很大提高。美国B-52重型轰炸机装有8台喷气发动机,最大起飞重量超过200吨,载弹量27吨,航程16000公里。
现代轰炸机的特点 现代高亚音速轰炸机多采用大展弦比的后掠翼,以保证飞机有较高的巡航速度和升阻比。上单翼布局形式可使机翼仅从机身上部穿过,这样,在飞机重心附近的机身内可以用来放置炸弹。炸弹舱的底部有可在空中开启的舱门。由于炸弹布置在重心附近,空中投弹以后,重心不会有很大变化,便于保持飞机的平衡。喷气轰炸机载油量大,除机翼内放置部分燃油外,机身内炸弹舱的前后也对称地布置有许多油箱。飞机上装有完善的通信导航设备、轰炸瞄准装置和电子干扰设备等,以保证飞机准确飞抵预定目标区域,完成轰炸任务。通常飞机上除正、副驾驶员外,还有轰炸领航员、报务员、射击员等。为抵御敌方截击机的攻击,50年代以前设计的轰炸机上普遍装有旋转炮塔。60年代以后,由于空空导弹的发展,炮塔自卫已失去意义。现代轰炸机多靠改善低空突防性能、采用隐身技术来提高自卫能力。
现状和趋势 60年代以后,各种制导武器日益完善,目标的空防能力大为提高,所以战术轰炸的任务更多地由歼击轰炸机来完成。自卫能力差的轻型轰炸机已不再发展。随着歼击轰炸机航程和载弹能力的提高,甚至中型轰炸机的任务也可由它来完成。自从出现中、远程导弹后,战略打击力量的重点已转移到导弹上来,战略轰炸机的地位明显下降。70年代以后,只有美、苏两国尚在继续研制远程超音速轰炸机,如美国的B-1和苏联的图26,都是变后掠翼飞机,装有先进的自动导航系统、地形跟踪系统和电子对抗设备,攻击武器以空地导弹和巡航导弹为主,能在复杂气象和地形条件下隐蔽地进行超低空突防,对目标进行远距离攻击。远程超音速轰炸机易于分散隐蔽,不易受敌方核导弹摧毁,同时使用灵活,便于打击机动目标,已成为弹道导弹的重要补充打击力量。
【歼击轰炸机(战斗轰炸机)】
以攻击战役战术纵深内的地面目标为主、投掷外挂载荷后也具备空战能力的军用飞机,又称战斗轰炸机。歼击轰炸机除直接支援地面战斗外,有时还可配合战役深入敌后,对战线附近重要军事目标进行轰炸。机上装载的主要对地攻击武器有航空炸弹、火箭、航空机关炮和空地导弹。投掷武器多吊挂在飞机外面。外挂武器投掉后可大大提高飞机空战性能。歼击机稍加改装或根本不改装也可当作歼击轰炸机使用。例如歼击机F-4、F-16和米格23等都有歼击轰炸机改型。这些飞机的主要任务是空战格斗,但都兼顾对地攻击的要求。一般说来,改装的歼击轰炸机的作战半径和载弹量有限,生存力和低空性能不及专门的歼击轰炸机。现代的歼击轰炸机起飞重量可达30-40吨,最大作战半径接近2000公里,载弹6-8吨,航程和载弹量甚至与中型超音速轰炸机相近。飞机型式多为变后掠翼飞机布局,同时具备良好的高速和低速性能、高空和低空性能。飞机上装有完善的火控和导航设备。机身和机翼下部有较多的武器吊挂支架。由于对地攻击威力大,自卫能力强,歼击轰炸机已取代轻型轰炸机执行各种战术轰炸任务。
【歼击机(战斗机)】
用于在空中消灭敌机和其他飞航式空袭兵器的军用飞机,又称战斗机。第二次世界大战前曾广泛称为驱逐机。歼击机的主要任务是与敌方歼击机进行空战,夺取空中优势(制空权)。其次是拦截敌方轰炸机、强击机和巡航导弹,还可携带一定数量的对地攻击武器,执行对地攻击任务。歼击机还包括要地防空用的截击机。但自60年代以后,由于雷达、电子设备和武器系统的完善,专用截击机的任务已由歼击机完成,截击机不再发展。
发展简史 第一次世界大战初期,飞机首先用于战场上空指引炮兵射击、侦察和轰炸。随后就出现用飞机来阻挠敌机执行上述任务的战斗行动,形成空中的对抗。开始时只是后座的射击员用手枪、步枪和机枪在空中相互射击。1915年德国研制出装有射击协调器的福克E.I .飞机。机枪固定在机身头部,穿越机头的螺旋桨旋转面射击而子弹不会击中旋转桨叶。这样,后座的射击员被取消,驾驶飞机和射击都由驾驶员来完成。这种飞机的出现,从根本上改变了空战的方式,提高了飞机空战能力。从此确立了歼击机武器的典型布置形式。此后,歼击机在速度、高度和火力等方面不断改进。第一次世界大战结束时,歼击机的最大飞行速度达到200公里/时,升限高度达6000米,重量接近1吨,发动机功率169千瓦,飞机配备7.62毫米的机枪。当时着名的歼击机有德国的福克D和E、英国的S.E.5和法国的Spad等。第二次世界大战期间,歼击机的最大速度已达700公里/时,飞行高度达11公里,重量达6吨,所用活塞式航空发动机制功率接近1470千瓦。武器则由机枪发展到20毫米的机炮和空空火箭。瞄准系统已有能作前置量计算的陀螺光学瞄准具。这一时期着名的歼击机有英国的“喷火”式,美国的P-51、P-47,苏联的雅克3、拉5和德国的Me-109、FW-109等。
第二次世界大战末期,德国开始使用Me-262喷气式歼击机,最大飞行速度达960公里/时。战后喷气式歼击机普遍代替了活塞式歼击机,飞行速度和高度迅速提高。在1950-1953年的抗美援朝中,出现了喷气式歼击机空战的场面。中国人民志愿军空军使用的米格15和美国的F-86飞机都采用后掠后翼布局,飞行速度都接近音速(1100公里/时),飞行高度15000米,飞机重量约6号,发动机推力29420牛。机载武器已发展到20毫米以上的机炮,瞄准系统中装有雷达测距器。带加力燃烧室外的涡轮喷气发动机便于改善飞机外形,歼击机的速度很快突破了音障。60年代以后,歼击机的最大速度已超过两倍音速,配备武器已人机炮、火箭发展为空空导弹。这一时期最着名的歼击机有美国的F-104、F-4,苏联的米格21和法国的“幻影”3等。60年代中期,以苏联的米格25和美国的YF-12为代表的歼击机的速度超过三倍音速,作战高度约23000米,重量超过30吨。但是60年代后期越南战争、印巴战争和中东战争的实践表明,超音速歼击机制空战大多是在中、低空,接近音速的速度进行的。空战要求飞机具有良好的机动性,即转弯、加速、减速和爬升性能。装备的武器则是机炮和导弹并重。以后,新设计的歼击机不再追求很高的飞行速度和高度,而是着眼于改进飞机的中、低空机动能力,完善机载电子设备、武器和火力控制系统。
现代歼击机的特点 为了获得优异的空中格斗能力,现代歼击机在性能、外形、动力装置、机载设备、武器配备和火控系统等方面有一些新的特点。
①性能:突出中、低空跨音速机动性,在音速附近稳定转弯率可达18度/秒,瞬时转弯率达75度/秒;飞机在9000米高度上,速度从马赫数0.9增加到马赫数1.6所需时间为50-60秒;海平面最大升率达300米/秒;静升限18000米左右;能在低空作超时速飞行;高空最大飞行马赫数在2左右;最小飞行速度为200公里/时;最大飞行迎角可达60°;低空作战半径约500-600公里;飞机起飞、着陆滑跑距离小于1000米;飞机最大过载可达9g。
②设计面貌:飞机在空战中的推力普遍大于重力(即推重比大于1),多采用低流量比的加力涡轮风扇发动机,加力推力大,重量轻,不加力工作时耗油率小。为兼顾在亚音速、跨音速、超音速范围内都有较小的阻力,飞机采用中等后掠角、中等展弦比并带前缘连条的薄机翼,或是采用三角形薄弱机翼。翼型相对厚度约4%,并有随马赫数和迎角自动偏转的前、后缘机动襟翼(或缝翼)。正常布局(有平尾)飞机空战时机翼单位面积载荷约3000帕(300公斤力/米2);无尾布局为2000帕。歼击机一般为单座。为扩大驾驶员视界,采用水泡形座舱,即使在地面上也能保证将驾驶员弹射到足够的高度,大量采用整体机内部油箱载油量约占正常起飞重量的30%。飞机操纵系统广泛采用数字式电传操纵的基础上采用主动控制技术,提高飞机的作战性能。
③武器和火控系统:现代歼击机普遍装有口径 20毫米以上的航空机关炮,同时携带多枚雷达制导的中距拦射导弹和红外跟踪的近距格斗导弹。也可携带2-3吨航空炸弹或其他对地攻击武器。飞机上装有用数字计算机控制的航空火力控制系统,它由有下视能力的脉冲多普勒雷达、惯性导航系统、大气数据计算机等组成,可与通信导航识别综合系统和电子对抗系统交联。驾驶员通过平视显示器、下视仪和多功能显示器获得敌我机参数的信息,控制和管理导弹、机炮、火箭和炸弹的瞄准、发射和投放。火控系统的操纵是安装在驾驶杆和油门手柄上,便于驾驶员将飞机驾驶和空战合为一体。由于传递信息的设备较多,信息量大,为减少电缆数量和信息传递差错,采用多路传输数据总线。
④使用维护:歼击机上各种机载设备和控制系统越来越复杂,维护工作量大大增加。为此,飞机表面开有大量检查和维护用的口盖和舱门,总面积达飞机表面积的60%。所有电子设备均采用积木式结构,有自动检测能力,可在外场方便地更换插件。现代歼击机具有很高的可靠性和良好的可维护性。飞机平均故障间隔飞行小时已从50年代的1小时提高到3小时。每1飞行小时所需的维护工作,从50年代的30工时降低到10工时左右
【舰载机】
以航空母舰或舰船为起降基地的军用飞机。按用途可分为舰载歼击机、舰载强击机、舰载反潜机、舰载侦察机和预警机等。它们的主要任务是为舰队护航、夺取海上或海岸制空权、制海权,攻击敌方舰队和陆上目标、支援登陆和抗登陆作战等。初期的舰载飞机与其他飞机基本相同。第二次世界大战中,日本偷袭珍珠港和日、美在太平洋上的几次海战主要是由舰载飞机进行的。第二次世界大战后随着超音速喷气飞机和核动力航空母舰的出现,舰载飞机的应用范围不断扩大。60年代美国研制的舰载战斗机F-14在性能和火力上与同期的陆上战斗机相近。70年代出现了舰载垂直起落歼击-强击机,它可以在小型航空母舰甚至一般军舰上起落,使舰载飞机的使用范围进一步扩大。军舰甲板长度有限,一般舰载飞机必须借助母舰上的弹射器起飞。起飞时,飞机上的挂钩与弹射器相连,飞机在自身发动机推力和弹射力联合作用下,只须滑跑几十米就能脱钩飞离甲板。降落时,飞机尾部的着陆钩与起落架同时放下,着陆钩钩住横置于甲板上的拦阻索,而拦阻索两端与缓冲器相连。在拦阻索的掣动作用下滑跑很短的距离就要停止。甲板末端还有备用拦阻网,防止飞机不断晃动,舰载飞机的起落和飞行条件比陆上飞机恶劣。因此舰载飞机应有良好的起飞性能、较低的着陆速度、良好的低速操纵性。驾驶舱的视野开阔,在母舰和飞机上还装有特殊的导航设备,便于驾驶员对准甲板跑道。为了少占甲板面积和便于在舰上机库内存放,多数舰载飞机的机翼在停放时可以向上折叠,有的垂尾和机头也可以折转。此外,海水和潮湿的环境容易使飞机机体、发动机和机载设备严重腐蚀,飞机要有较好的防腐蚀措施。

⑨ 飞机是在大气层的哪个层飞行

飞机在平流层飞行。
根据大气的热状态,大气层自地球海平面向上分为对流层、平流层、中间层和热层。对流层的厚度不均匀,赤道地区约16千米,两极约8千米,是大气中最稠密的一层。
对流层上面,直到高于海平面50千米这一层,气流主要表现为水平方向运动,称为平流层。这里基本上没有水气,晴朗无云,适于飞机航行。
现代螺旋桨飞机基本在对流层里飞行,但牛B的图-95轰炸机可以在平流层里活动,喷气式飞机在正常飞行中一般在平流层,如客机等。

⑩ 地面迫近警告系统的EGPWS特点与原理

EGPWS包括了传统GPWS的相关功能,警告方式与传统GPWS几乎一样。EGPWS装入了全球机场位置数据库和地形数据库,并利用飞机位置、无线电高度和飞行轨迹信息来确定潜在的撞地危险。所以至今,全世界已经安装EGPWS设备的飞机没有发生过一起可控撞地(CFIT)事故。
新的EGPWS前视地形警戒功能主要是针对现行的GPWS警告迟缓或不适当的驾驶员反应导致的CFIT事故,同时也提供在着陆形态时“不警告”类型的警戒功能。新的EGPWS功能使用自身的全球机场位置数据库和地形数据库,并且使用飞机位置,气压高度和飞行轨迹信息确定潜在的撞地危险。机场位置数据库包括所有2万余条铺筑面为3500英尺(1067米)或更长的跑道。目前的地形数据库包含全球95%的地形情况,针对每个机场周围的地面区域它可以提供高分辨率的地形数据,对于各机场它能提供低分辨率的地形数据。只有5%的地形数据是不能用的,这5%不能使用地形数据的区域是在南美洲的亚马逊河流域的机场,北非和中非的部分地区以及北格蓝陵岛地区。
联信公司每隔6—12个月更新一次地形数据库,数据库使用光电存储卡(flash memory card)来更新,它不需要从飞机上卸下EGPWS的航线可更换组件(LRU)就可进行。因地形数据库的存在,GPWS的缺陷一和缺陷二迎刃而解,飞机在飞行过程中,增强型近地警告计算机沿着飞机的预定航迹连续搜索数据库,这样可使系统具有虚拟的前视能力。EGPWS 将所探测到的周围环境的数据不断的与现存的数据进行对比,如果EGPWS认为飞机的航迹在某处与地形太近,它会提前发出音频和视频警告信号给飞行员,即使在雨雾等恶劣天气中,EGPWS也能有效控制撞地或撞山的事故的发生。
⑴前视地形警戒功能(Look-ahead Terrain Alerting)
新一代的EGPWS可以向机组提供警戒等级或警告等级信息,提醒机组存在潜在触地危险的时间要比现行GPWS要早得多。警戒信息主要是根据飞机的位置和气压高度信息而得到的。飞行管理系统(FMS)或全球定位系统(GPS)可以向EGPWS提供飞机位置的经纬度。
气压高度是基于平均海平面(QNH)由大气数据计算机(ADC)提供的,EGPWS使用附加的大气数据输入确定飞机的飞行轨迹和定位合适的警戒包线。地形警戒是连续计算飞机前方的地形间隔包线,其垂直方向与飞行轨迹进行比较,横向方向与飞机的地面航迹进行比较。如果这些确定的包丝与地形数据库的数据相冲突,就启动警戒信号。它可以计算两个警戒包线,一个是警戒等级的警告(caution-level alert),另一个是警告等级的警告(warning-level alert)。前视警戒级的警告大约在距潜在的危险地形40-60秒之前提供警告信息。前视警告级的警告大约在距危险地形20-30秒之前提供触地警告信息。警戒包线是根据飞机前方的前视距离和飞机下方的高度偏离以及飞机两侧的横向距离而确定的(如图5所示)。前视距离主要随着地速的变化而变化,地速增加警戒距离就增加,以便对所有速度提供大致相等的警戒时间。前视距离主要以沿着飞机飞行的轨迹(爬升,下降或平飞)为基点。一个附加组件可以向上搜寻6°范围以便对非常的地形进行保护。这个附加组件实际的前视距离是正常的两倍。高度偏离范围是飞机下方700英尺(213米)。偏移的目的是为了提供当飞机低于正常的地形间隔时的地形警戒。横侧距离是相对飞机地面航迹每一侧1/8海里(0。23千米),为了着陆时没有恼人的警戒信息,前视距离和高度偏移随着飞机接近机场而减小。
除了前视警戒包线之外,EGPWS还有一个附加的保护组件—最小地形间隔TCF(Terrain Clearance Floor)。它是针对一旦气压高度表有误差时而起作用的。TCF是一种机场周围的警戒包线,这个包线是依据飞机的无线电高度而确定(如图6)。按照正常的3度下滑轨迹直到跑道上,飞机将保留完美的TCF警戒包线。如果飞机穿越TCF包线,同时也就穿越了以气压高度表为基准的EGPWS的前视警戒包线,因此就启动前视警戒功能。但是如果气压高度有误差,TCF也可以提供基于无线电高度的警戒。,此功能也可以弥补GPWS在反航道进近或下滑道信号失效时不能够提供警告的缺陷。
⑵地形显示功能(Terrain Display)
EGPWS的地形显示功能加强了机组对周围地形的了解并能安全地避免潜在的触地危险。地形显示可以由机组人工选择或者当前视警戒或警告启动时自动显示。地形在EHSI,ND或特定的气象雷达显示器上显示,所有的EGPWS警戒功能可以单独工作也可以与所选择的地形显示一起工作。
地形在显示器上是以星罗棋布的红,琥珀,绿色等光点图形来显示的,同时还以颜色来指示地形高度与飞机高度之间的关系:位于飞机下方2000英尺以外的地形不予显示;飞机下方1000英尺至2000英尺之间的地形显示为浅绿色;飞机下方500英尺至1000英尺之间的地形显示为中等绿色;飞机下方500英尺至飞机上方1000英尺之间的地形显示为中等黄色;飞机上方1000英尺至2000英尺之间的地形显示为深黄色;飞机上方2000英尺以上的地形显示为深红色。
⑴红色光点
红色光点图形指示相当高的地形,这个地形比飞机的现行高度要高2000英尺(610米)。如果在飞机的前方显示这个地形就表明存在潜在的威胁。
⑵琥珀色光点
如果在飞机前方显示琥珀色光点图形也表明存在潜在的威胁。它表明从飞机现行高度以下500英尺(152米)到高于飞机现行高度2000英尺(610米)之间存在地形扩展。
⑶绿色光点
绿色光点图形指示以飞机目前的高度在500英尺(152米)或更高的范围之间有足够的地形间隔。但是这个地形可能很接近,机组应该意识到它的存在。
琥珀色和绿色两种不同光点密度的混合增加了地形显示的效果。
为了减小显示的混乱,任何低于飞机现行高度2000英尺的地形不在显示器上显示,只用黑色背景代替,由于地形的颜色是参照飞机的现行高度而显示的,颜色将随着飞机的爬升或下降而改变,显示色带的转换将依据飞机/地形的关系提前15—30秒显示。
在EGPWS地形数据库不包括的地形或区域用洋红色的光点图形来显示。
EGPWS使用ARING 453气象雷达数据总线将地形数据传送到飞机显示系统。地形和气象雷达数据不能同时在一个显示器上显示,但是机长和副驾驶的地图显示是独立的。所以气象雷达的显示可以选择一个显示器而地形显示则可使用另一个。地形的光点图形显示与气象雷达显示不同以便帮助驾驶员区别。另外,由于地形数据是通过ARING 453气象雷达数据总线传送的,雷达显示优先于地形显示。显示的地形数据随着飞机的运动不断更新(类似于其他导航数据的显示)。
当前视警戒或警告被启动,地形是用整体实心的琥珀色或红色图形来增强显示的。这些整体实心的显示器强调危险地形并且意味着紧急冲突。对于警戒级的警告,飞机前方地形所引起的危险是用整体实心的琥珀色来显示。在警戒级警告之前的红色光点所显示的地形强调地形的足够高度,对于警告级的警告,飞机前方地形所引起的危险是用整体实心的红色来显示。如图8所示。TCF警戒或任何基本的GPWS警戒发生时不会显示地形。
机长和副驾驶可以人工选择地形显示,以便在离场或进近时监视地形。为了确保地形信息可用,当前视警戒发生时,系统会自动显示地形。如果当前视警戒或警告启动后,机长或副驾驶的地图显示没有选择显示地形的话,地形就会自动在两个图显示器上显示。当警戒启动时,如果一个地图上已经显示地形的话,它将不会在另一个地图上自动显示。
⑶地形越障高度下限功能(TCF)
针对于大部份的机场(硬跑道,跑道长1067米以上),EGPWS也会参考比较飞机与跑道相对位置,发现可能存在的危险状况,这个功能称为Terrain Clearance Floor,TCF。