当前位置:首页 » 数据仓库 » 公路基础数据库系统
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

公路基础数据库系统

发布时间: 2022-11-27 20:37:52

A. 数据库系统由什么组成

数据库系统一般由数据库、硬件、软件、人员4个部分组成:

1、数据库是指长期存储在计算机内的,有组织,可共享的数据的集合。数据库中的数据按一定的数学模型组织、描述和存储,具有较小的冗余,较高的数据独立性和易扩展性,并可为各种用户共享。

2、硬件是构成计算机系统的各种物理设备,包括存储所需的外部设备。硬件的配置应满足整个数据库系统的需要。

3、软件包括操作系统、数据库管理系统及应用程序。数据库管理系统是数据库系统的核心软件,是在操作系统的支持下工作,解决如何科学地组织和存储数据,如何高效获取和维护数据的系统软件。其主要功能包括:数据定义功能、数据操纵功能、数据库的运行管理和数据库的建立与维护。

4、人员主要有4类。系统分析员和数据库设计人员,负责应用系统的需求分析和规范说明;应用程序员,负责编写使用数据库的应用程序;最终用户,利用系统的接口或查询语言访问数据库;数据库管理员负责数据库的总体信息控制。

(1)公路基础数据库系统扩展阅读:

常见数据库系统

1、MySQL

一个快速的、多线程、多用户和健壮的SQL数据库服务器。MySQL服务器支持关键任务、重负载生产系统的使用,也可以将它嵌入到一个大配置(mass- deployed)的软件中去。

2、SQL Server

Microsoft 公司推出的关系型数据库管理系统。具有使用方便可伸缩性好与相关软件集成程度高等优点。Microsoft SQL Server 是一个全面的数据库平台,使用集成的商业智能 (BI)工具提供了企业级的数据管理。

3、Oracle

Oracle产品系列齐全,几乎囊括所有应用领域,大型,完善,安全,可以支持多个实例同时运行,功能强。能在所有主流平台上运行。完全支持所有的工业标准。采用完全开放策略。可以使客户选择最适合的解决方案。对开发商全力支持。

B. 目前国内可用的公路交通安全数据库有哪些怎么使用

所谓安全数据库主要从两个层次来讲,其一是国产化数据库,如人大金仓、达梦、南大通用等,其二是国产化数据库具备数据库安全加密、访问控制功能,需通过公安、国家密码管理局等相关国家级权威认证。至于你说的公路普查、交通故障系统等都是安全数据库的一些应用而已。希望你可以从国产数据库方面去关注。如果想再深度关注数据库安全,还得从考虑数据库审计等产品。

C. 什么是数据库系统

数据库系统(Database System),是由数据库及其管理软件组成的系统。

数据库系统是为适应数据处理的需要而发展起来的一种较为理想的数据处理系统,也是一个为实际可运行的存储、维护和应用系统提供数据的软件系统,是存储介质 、处理对象和管理系统的集合体。

数据库系统是为适应数据处理的需要而发展起来的一种较为理想的数据处理的核心机构。计算机的高速处理能力和大容量存储器提供了实现数据管理自动化的条件。

(3)公路基础数据库系统扩展阅读

常见数据库系统

1、MySQL

MySQL是一个快速的、多线程、多用户和健壮的SQL数据库服务器。MySQL服务器支持关键任务、重负载生产系统的使用,也可以将它嵌入到一个大配置(mass- deployed)的软件中去。

2、SQL Server

SQL Server 提供了众多的Web和电子商务功能,如对XML和Internet标准的丰富支持,通过Web对数据进行轻松安全的访问,具有强大的、灵活的、基于Web的和安全的应用程序管理等。

4、Oracle

Oracle产品系列齐全,几乎囊括所有应用领域,大型,完善,安全,可以支持多个实例同时运行,功能强。能在所有主流平台上运行。完全支持所有的工业标准。采用完全开放策略。可以使客户选择最适合的解决方案。对开发商全力支持。

D. 基础数据库

(一)数据内容

基础数据库包括系统运行前所采集到的所有支撑数据,数据的具体内容在数据分类与数据源章节中已描述,概括可分为以下几类。

(1)遥感影像数据:包括历史图像数据,以及按照一定监测周期更新的遥感图像数据。

(2)数字线划图数据:矢量数据(现状专题图和历史专题图数据)、栅格数据、元数据等。入库前数据以ArcInfoCoverage格式分幅或整体存储,采用地理坐标系统。

(3)数字栅格图数据:包括1∶5万和1∶10万基础地理图形数据的扫描栅格数据。

(4)数字高程模型数据:塔里木河干流河道1∶1万和“四源一干”区域1∶10万数字高程模型。

(5)多媒体数据:考察照片、录像、录音和虚拟演示成果等多媒体资料。

(6)属性数据:社会经济与水资源数据、水利工程数据、生态环境数据等。

(二)数据存储结构

1.栅格数据

栅格数据包括遥感影像、数字栅格图、数字正射影像图、数字高程模型等,这些数据的存储结构基本类似,因此可进行统一设计。遥感图像数据库与普通的图像数据库在存储上有些差别,遥感图像作为传感器对地理、空间环境在不同条件下的测量结果(如光谱辐射特性、微波辐射特性),必须结合同时得到的几个图像才可以认为是对环境在一定的时间条件下的完整的描述,也即是说,可能需要一个图像集合才能构成一个图像的完整的概念,并使之与语义信息产生联系(罗睿等,2000)。因此,遥感图像数据存储结构模型必须能够描述几个图像(波段)之间的逻辑关系。利用ArcSDE进行数据入库时,系统可自动建立各图像(波段)之间的关系,并按一定规则存储在数据库系统中。

对栅格数据在后台将采用Oracle数据库管理系统进行存储。Oracle系统可直接存储影像信息,并具有较强的数据管理能力,可以实现栅格数据信息的快速检索和提取。数据引擎采用ArcSDE,实现各类影像数据的入库。数据存储的关键是建立图幅索引,本系统数据的存储按图幅号、图名、采集时间等内容建立索引。

栅格数据依据图形属性一体化的存储思想,采用大二进制格式直接存储数据,这种方式的存储可实现内容的快速检索查询,按索引表检索出相关项后可直接打开栅格数据,提高栅格数据的管理效率。

2.矢量数据

本系统采用图属一体化思想即将空间数据和属性数据合二为一,全部存在一个记录集中的思想存储空间数据,是目前GIS数据非常流行的存储方法。考虑到数据的具体情况,决定采用数据库存储空间数据和属性数据,部分具有少量、定型几何信息的地理要素如水文测站、河流、湖泊等,采用图属一体化思想存储其信息,而与其有关联关系的大量、多边化的属性信息如水文信息,则存储在属性数据表中,利用唯一标识符信息建立两表的关联。

针对本系统空间数据的特点,系统按照“数据库—子库—专题(基础数据)—层—要素—属性”的层次框架来构筑空间数据库,按照统一的地理坐标系统来存储空间数据,以实现对地理实体/专题要素进行分层叠加显示。

3.多媒体数据

Oracle系统可直接存储图片和视频信息,并具有较强的数据管理能力,可以实现多媒体信息的快速检索和提取。多媒体数据存储的关键是建立索引表,本系统多媒体数据的存储按类型、时间、内容等项目建立索引,直接存储于Oracle数据库中。

多媒体数据存储时,可以将多媒体内容与索引表结构合为一体,采用大二进制格式直接存储,这种存储方式可实现内容的快速检索和查询,按索引表检索出相关项后可直接打开多媒体内容,而且多媒体数据库也便于维护管理。

(三)空间索引设计

1.矢量空间索引

确定合适的格网级数、单元大小是建立空间格网索引的关键。格网太大,在一个格网内有多个空间实体,查询检索的准确度就低。格网太小,则索引数据量成倍增长和冗余,检索的速度和效率低。每一个数据层可采用不同大小、不同级别的空间索引格网单元,但每层级数最多不能超过三级。索引方式设置遵循以下基本原则:

(1)对于简单要素的数据层,尽可能选择单级索引格网,减少RDBMS搜索格网单元索引的级数,缩短空间索引搜索的过程;

(2)如果数据层中的要素封装边界大小变化比较大,应选择2或3级索引格网;

(3)如果用户经常对图层执行相同的查询,最佳格网的大小应是平均查询范围的1.5倍;

(4)格网的大小不能小于要素封装边界的平均大小。为了减少每个格网单元有多个要素封装边界的可能性,格网单元的大小应取要素封装边界平均大小的3倍;

(5)格网单元的大小不是一个确定性的问题,需要多次尝试和努力才会得到好的结果。有一些确定格网初始值的原则,用它们可以进一步确定最佳的格网大小。

SDE(Spatial Data Engine,即空间数据引擎),从空间管理的角度看,是一个连续的空间数据模型,可将地理特征的空间数据和属性数据统一集成在关系型数据库管理系统中。关系型数据库系统支持对海量数据的存储,从而也可实现对空间数据的海量存储。空间数据可通过层来进行数据的划分,将具有共同属性的一类要素放到一层中,每个数据库记录对应一层中一个实际要素,这样避免了检索整个数据表,减少了检索的数据记录数量,从而减少磁盘输入/输出的操作,加快了对空间数据查询的速度。

ArcSDE采用格网索引方式,将空间区域划分成合适大小的正方形格网,记录每一个格网内所包含的空间实体(对象),以及每一个实体的封装边界范围,即包围空间实体的左下角和右上角坐标。当用户进行空间查询时,首先计算出用户查询对象所在格网,然后通过格网号,就可以快速检索到所需的空间实体。因此确定合适的格网级数、单元大小是建立空间格网索引的关键,太大或太小均不合适,这就需要进行多次尝试,确定合适的网格大小,以保证各单元能均匀落在网格内。利用ArcSDE的索引表创建功能,记录每一网格单元的实体分布情况,形成图层空间索引表。根据空间索引表,ArcSDE实现了对空间数据的快速查询。

2.栅格数据空间索引

栅格数据的空间索引通过建立多级金字塔结构来实现。以高分辨率栅格数据为底层,逐级抽取数据,建立不同分辨率的数据金字塔结构,逐级形成较低分辨率的栅格数据。该方法通常会增加20%左右的存储空间,但却可以提高栅格数据的显示速度。在数据库查询检索时,调用合适级别的栅格数据,可提高浏览和显示速度。

(四)入库数据校验

入库数据的质量关系到系统评价分析结果的准确性。数据在生产中就需要严格进行质量控制。依据数据生产流程,将数据质量控制分成生产过程控制和结果控制。生产过程控制包括数据生产前期的质量控制、数据生产过程中的实时质量控制,结果质量控制为数据生产完成后的质量控制(裴亚波等,2003)。对入库数据的校验主要是进行数据生产完成后的质量控制和检查。

1.规范化检查

(1)代码规范化:所有地理代码尽量采用国家标准和行业标准,例如,行政代码采用中华人民共和国行政区划代码国标。

(2)数据格式规范化:所有数据采用标准交换数据格式,例如,矢量数据采用标准输出Coverage格式和E00格式。

(3)属性数据和关系数据字段规范化:所有属性数据和关系数据提前分门别类地设计字段的内容、长短和格式,操作过程中严格执行。

(4)坐标系统规范化:本系统所有与空间有关的数据采用统一的空间坐标系统,即地理坐标系统。

(5)精度规范化:所有数据按照数据精度与质量控制中所要求的精度进行采集和处理。

(6)命名规范化:所有数据按照命名要求统一命名,便于系统的查询。

(7)元数据规范化:依照元数据标准要求,进行元数据检查。

2.质量控制

数据质量是GIS成败的关键。对于关系型数据库设计,只要能保证表的实体完整性和参照完整性,并使之符合关系数据库的三个范式即可。对于空间数据库设计,则不仅要考虑数据采样、数据处理流程、空间配准、投影变换等问题,还应对数据质量做出定量分析。

数据质量一般可以通过以下几个方面来描述(吴芳华等,2001):

(1)准确度(Accuracy):即测量值与真值之间的接近程度,可用误差来衡量;

(2)精度(Precision):即对现象描述得详细程度;

(3)不确定性(Uncertainty):指某现象不能精确测得,当真值不可测或无法知道时,就无法确定误差,因而用不确定性取代误差;

(4)相容性(Compatibility):指两个来源不同的数据在同一个应用中使用的难易程度;

(5)一致性(Consistency):指对同一现象或同类现象表达的一致程度;

(6)完整性(Completeness):指具有同一准确度和精度的数据在类型上和特定空间范围内完整的程度;

(7)可得性(Accessibility):指获取或使用数据的容易程度;

(8)现势性(Timeliness):指数据反映客观现象目前状况的程度。

塔里木河流域生态环境动态监测系统的所有数据在数据质量评价后,还需要从数据格式、坐标一致性等方面进行入库质量检验,只有通过质量检验的数据才可以入库。

3.数据检验

空间数据质量检验包括以下步骤:

(1)数据命名是否规范,是否按设计要求命名;

(2)数据是否能够正常打开;

(3)投影方式是否正确;

(4)坐标系统是否正确;

(5)改错是否完成,拓扑关系是否建立;

(6)属性数据是否正确,包括字段设置是否依据设计进行、是否有空属性记录、是否有属性错误记录等。

关系数据质量检验包括以下步骤:

(1)数据命名是否规范,是否按设计要求命名;

(2)数据是否能够正常打开;

(3)数据字段是否按设计要求设置;

(4)是否有空属性记录;

(5)是否有属性错误记录。

属性数据的校验,主要采用以下三种方式:

(1)两次录入校验:对一些相互之间毫无关联的数据,进行两次的录入,编写程序对两次录入的结果进行比较,找出两次录入结果不一样的数据,查看正确值,进行改正。

(2)折线图检验:对一些相互之间有关联的序列数据,如人口统计数据,对这一类数据,编写程序把数据以折线图的形式显示在显示器上,数据的序列一般都有一定规律,如果出现较大的波动,则需对此点的数据进行检查修改。

(3)计算校验:对一些按一定公式计算后所得结果与其他数据有关联的数据,如某些数据的合计等于另一数据,编写程序对这类数据进行计算,计算结果与有关联的数据进行比较,找出结果不一样的数据,查看正确值,进行改正。

图形数据的校验,主要包括以下步骤(陈俊杰等,2005):

(1)图层校验:图形要素的放置图层是唯一的。对于入库的Coverage数据,系统将根据图层代码进行检查,确保图形要素对层入座。

(2)代码检查:图形要素的代码是唯一的。对于入库的Coverage数据,系统将根据入库要素代码与特征表中的代码进行比较,确保入库数据代码存在,杜绝非法代码入库。

(3)类型检查:对入库的数据,检查该要素的类型与特征表中的类型是否一致,确保图形要素对表入座。如点要素、线要素、面要素仅能赋相应的点、线、面代码,且该代码必须与特征表中的数据类型代码相同。

(4)范围检查:根据入库的数据,确定该类要素的大体范围(如X、Y坐标等),在数据入库前,比较入库数据与范围数据的大小,若入库数据在该范围内,则入库,否则给出提示检查信息。

(五)数据入库

1.遥感影像数据

利用空间数据引擎———ArcSDE可实现遥感影像数据在Oracle数据库中的存储和管理,在影像数据进行入库时,应加入相应的索引和影像描述字段。

遥感影像入库步骤:

(1)影像数据预处理:要将塔里木河遥感影像数据库建成一个多分辨率无缝影像数据库系统,客观上要求数据库中的影像数据在几何空间、灰度空间连续一致。因此,在数据采集阶段就需要对影像数据进行预处理,包括图像几何校正、灰度拼接(无缝镶嵌)、正射处理、投影变换等。

几何校正的目的是使校正后的图像重新定位到某种地图投影方式,以适用于各种定位、量测、多源影像的复合及与矢量地图、DTM等的套合显示与处理。几何校正多采用二次多项式算法和图像双线性内插重采样法进行图像校正。将纠正后具有规定地理编码的图像按多边形圈定需要拼接的子区,逐一镶嵌到指定模版,同时进行必要的色彩匹配,使整体图像色调一致,完成图像的几何拼接,再采用金字塔影像数据结构和“从粗到精”的分层控制策略实现逐级拼接。

数字正射影像具有统一的大地坐标系、丰富的信息量和真实的景观表达,易于制作具有“独立于比例尺”的多级金字塔结构影像。可以采用DTM和外方位元素经过数字微分纠正方法,获得数字正射影像,它的基本参数包括原始影像与正射影像的比例尺、采样分辨率等(方涛等,1997)。

投影变换需根据数据库系统定义的标准转换到统一的投影体系下。

(2)影像数据压缩:随着传感器空间分辨率的提高和对遥感信息需求的日益增长,获取的影像数据量成几何级数增大,如此庞大的数据将占用较大的存储空间,给影像的存储和传输带来不便(葛咏等,2000)。目前,系统处理的遥感影像数据已达数百千兆,单个文件的影像数据最大达到了2G,这样的数据量在调用显示时速度很慢,对影像数据进行压缩存储,将大大提高影像访问效率。本系统采用ArcSDE软件提供的无损压缩模式对入库影像进行压缩。

(3)影像导入:遥感影像的入库可通过ArcSDE或入库程序进行导入,并填写相关的索引信息,在入库时对大型的遥感影像数据进行自动分割,分为若干的块(tiles)进行存储。

(4)图像金字塔构建:采用ArcSDE提供的金字塔构建工具在入库时自动生成图像金字塔,用户只需要选择相应的参数设置即可。图像金字塔及其层级图像按分辨率分级存储与管理。最底层的分辨率最高,并且数据量最大,分辨率越低,其数据量越小,这样,不同的分辨率遥感图像形成了塔式结构。采用这种图像金字塔结构建立的遥感影像数据库,便于组织、存储与管理多尺度、多数据源遥感影像数据,实现了跨分辨率的索引与浏览,极大地提高了影像数据的浏览显示速度。

2.数字线划图

对纸图数字化、配准、校正、分层及拼接等处理后,生成标准分幅和拼接存储的数字矢量图,就可以进行图形数据入库。

(1)分幅矢量图形数据、图幅接合表:按图形比例尺、图幅号、制作时间、图层等方式,通过入库程序导入到数据库中,同时导入与该地理信息相对应的属性信息,建立空间信息与属性信息的关联。

(2)拼接矢量图形数据:按图形比例尺、制作时间、图层等方式,通过入库程序导入到数据库中,同时导入与该地理信息相对应的属性信息,建立空间信息与属性信息的关联。

3.栅格数据

对纸图数字化、配准、校正、分层及拼接等处理后,生成标准分幅和整体存储的数字栅格图,然后进行图形数据入库。

(1)分幅栅格图形数据、图幅接合表:按图形比例尺、图幅号、制作时间等方式,通过入库程序导入到数据库中。

(2)整幅栅格图形数据:按比例尺、制作时间等方式,通过入库程序导入到数据库中。

4.数字高程模型

(1)分幅数字高程模型数据、图幅接合表:按图形比例尺、图幅号、制作时间等方式,通过入库程序导入到数据库中。

(2)拼接数字高程模型数据:按比例尺、制作时间等方式通过入库程序导入到数据库中。

5.多媒体数据

多媒体数据入库可根据多媒体数据库内容的需要对入库数据进行预处理,包括音频、视频信息录制剪接、文字编辑、色彩选配等。对多媒体信息的加工处理需要使用特定的工具软件进行编辑。由于音频信息和视频信息数据量巨大,因此,对多媒体数据存储时需采用数据压缩技术,现在的许多商用软件已能够直接存储或播放压缩后的多媒体数据文件,这里主要考虑根据数据显示质量要求选择采用不同的存储格式。图4-2为各类多媒体数据的加工处理流程。

图4-2 多媒体数据加工处理流程图

6.属性数据

将收集的社会经济、水利工程、生态环境等属性资料,进行分析整理,输入计算机,最后经过程序的计算处理,存储到数据库中,具体流程如图4-3所示。

图4-3 属性数据入库流程图

E. 数据库系统的基础是什么

现有的数据库系统均是基于某种数据模型的。数据模型是数据库系统的核心和基础。

F.  基础地理数据库建设

1.基础地理数据库建库原则

(1)满足专题研究的特殊需求。河南省1:500000~1∶100000数字地理底图的制作,是根据《河南省国土资源遥感综合调查与信息化工程总体设计书》的要求,应用地理信息系统技术,为其提供数字式基础地理控制信息。基础地理控制信息用于专题信息的定位,正确表现其与周围地理环境的关系的分布规律,综合地反映自然地理形态和社会经济概况。同时,通过非空间数据(属性数据)录入,实现空间数据与非空间数据的对应联结。

(2)以国家基础地理信息中心“数字地图数据库”为基础,根据项目的需要,根据现时资料进行了部分内容的补充、修编。

2.地理要素选取标准

(1)水系

图上所有双线河及河心岛,单线河5级以上基本全部选取。河网密度大的在保证体现其河系基本形态的原则下,进行了删减,选取图上面积大于10 mm2的湖泊和水库。

(2)行政区划

选取县级以上行政界线。

(3)居民地

县级以上政府所在地全部选取。地级以上政府所在地按真型居民地范围选取。镇级居民地按经差30′、纬差20′范围内3~5个居民地的标准选取。在部分人口稀疏区选取了部分村级居民地。

(4)交通

铁路及高等级公路全部选取,并按高速公路、国道、省道进行分类;其他公路按照与居民地相连通的原则选取。根据现势资料对近年来新建高速公路进行补充。由于数据及比例尺的不同,故补充信息的精度低于1∶250000比例尺的精度。

(5)地貌

地形等高线高差平原地区为50 m、100 m;低山区为300 m、500 m;中山区为1000 m、1500 m、2000 m。主要山峰及高程,按经差30′、纬差20′范围内选取3个山峰或高程点的标准。

3.地理要素分类代码

1∶500000数字地理底图要素分类代码采用中华人民共和国国家标准《国土基础信息数据分类与代码》(GB/T13923-92)。国土基础信息数据分为九个大类,并依次细分为小类,一级和二级。分类代码由六位数字码组成,其结构如下:

遥感·河南省国土资源综合调查与评价

大类码、小类码、一级代码和二级代码分别用数字顺序排列。识别位由用户自行定义,以便于扩充。在1∶500000数字地理底图数据库中没有用到识别位,故用前五位数字表示要素分类代码。

(1)1:500000数字地理底图数据所用到的大类码意义

2=水系;3=居民地;4=交通;6=境界;7=地形。

(2)行政区划代码

1∶500000数字地理底图数据库中县级以上行政区划代码采用中华人民共和国国家标准《中华人民共和国行政区划代码》(GB/T2260-1995)。属性表中数据项为“行政区划代码”。县级以上行政区划代码结构如下:

a.采用六位数字代码。按层次分别表示我国各省(自治区、直辖市)、地区(市、州、盟)、县(区、市、旗)的名称。

b.行政区划代码从左至右的含义。第一、二位表示省(自治区、直辖市);第三、四位表示省辖市(市、州、盟及国家直辖市所属市辖区和县的总码)其中01~20、51~70表示省辖市;21~50表示地区(州、盟);第五、六位表示县(市辖区、地辖市、省直辖县级市、镇),其中01~18表示市辖区或地辖市,21~80表示县(镇),81~99表示省直辖县级市。

4.投影、坐标系、高程系

数字地理底图数据库采用高斯-克吕格(等角横切圆柱)投影,中央经线为113°30 ′00″,坐标系采用1954年北京坐标系,高程系采用1956年黄海高程系。

5.地理要素分层

河南省基础地理数字地图图层文件分类详见表5.3.1。

表5.3.1河南省基础地理数字地图图层文件分类表

6.河南省基础地理数据层描述

(1)基本信息图层名(L2HN01J)

数据描述 表5.3.2描述30′×20 ′的经纬网线及其经纬度值。

表5.3.2基本信息属性表

数据项代码及其描述95202=经线;95203=纬线。

(2)水系信息图层名

a.水系信息图层名(L2HN02S)

数据描述以多边形表示的水系要素,如河流、湖泊、水库、水塘等。

数据项代码及其描述22012=常年双线河;22010=运河;23000=湖泊;24010=水库;24150=水塘;25050=水中岛。

河流、湖泊、水库属性见表5.3.3。

表5.3.3河流、湖泊、水库属性表

b.水系信息图层名(★2HN022H、L2HN02CH)

数据描述 以线表示的水系要素,包括河流、湖泊、水库、运河等。

数据项代码及其描述21011=常年单线河;21012=常年双线河岸线;21021=常年时令河;22010=运河岸线;23000=湖泊岸线;24010=水库岸线;24150=池塘岸线。

河流、海岸线属性见表5.3.4。

表5.3.4河流、海岸线属性表

(3)交通信息图层名

a.交通信息图层名(L2HN03T)

数据描述表5.3.5描述主要铁路和铁路线起止点城市名。

数据项代码及其描述41000=铁路;41010=电气化铁路;41011=复线铁路;41012=单线铁路;41013=建筑中铁路;41030=窄轨铁路。

铁路图层属性见表5.3.5。

表5.3.5铁路图层属性表

b.交通信息图层名(L2HN03G、L2HN03GD、L2HN03SD)

数据描述表5.3.6描述高速公路、国道、省道及起止点城市名称等。

数据项代码及其描述42010=高速公路;42011=建筑中高速公路;0=一级公路(国道);42070=主要公路(省道);42080=一般公路;42110=大路;42130=小路。

公路图层属性见表5.3.6。

表5.3.6公路图层属性表

(4)居民地图层名

a.居民地图层名(L2HN04X)

数据描述 表5.3.7描述乡镇级以上居民地及其行政区划代码名称等。

数据项代码及其描述31020=省政府驻地;31030=地级市政府驻地;31060=县政府驻地;31080=镇政府驻地;31090=乡政府驻地。

镇级以上居民地属性见表5.3.7。

表5.3.7镇级以上居民地属性表

b.居民地图层名(L2HN04D)

数据描述表5.3.8描述地级以上真型居民地及其类别和名称。

地区级居民属性见表5.3.8。

表5.3.8地区级居民地属性表

(5)政区图层名

a.政区图层名(L2HN05X、L2HN05D、L2HN05X)

数据描述 表5.3.9描述省级行政界、地级行政界、县级行政界、地区界等。

表5.3.9境界属性表

b.政区图层名(L2HN05DQ、L2HN05XD)

数据描述表5.3.10描述地级行政区、县级行政区。

表5.3.10行政区属性表

(6)地貌图层名

a.地貌图层名(L2HN06D)

数据描述表5.3.11描述等高线及其高程值。

数据项代码及其描述71000=等高线。

表5.3.11地形等高线属性表

b.地貌图层名(L2HN06G)

数据描述表5.3.12描述主要山峰的名称及高程值,主要高程点的高程值。

数据项代码及其描述72000=山峰。

表5.3.12山峰高程点属性表

7.工作流程

工作流程包括预处理、图形数字化、图形编辑、拓扑关系建立、属性输入、投影变换、输出图形等步骤,各步骤间均经过检查修改等过程。其工艺流程见图5.3.1。

图5.3.1河南省基础地理数字地图制作工艺流程图

G. 数据库系统包括哪 几个部分

数据库系统一般包含以下几个方面:

1、数据库:

是指长期存储在计算机内的,有组织,可共享的数据的集合。数据库中的数据按一定的数学模型组织、描述和存储,具有较小的冗余,较高的数据独立性和易扩展性,并可为各种用户共享。

2、硬件:

构成计算机系统的各种物理设备,包括存储所需的外部设备。硬件的配置应满足整个数据库系统的需要。

3、软件:

包括操作系统、数据库管理系统及应用程序。数据库管理系统是数据库系统的核心软件,是在操作系统的支持下工作,解决如何科学地组织和存储数据,如何高效获取和维护数据的系统软件。

4、人员:

第一类为系统分析员和数据库设计人员,系统分析员负责应用系统的需求分析和规范说明。数据库设计人员负责数据库中数据的确定、数据库各级模式的设计。

第二类为应用程序员,负责编写使用数据库的应用程序。第三类为最终用户,他们利用系统的接口或查询语言访问数据库。第四类用户是数据库管理员,负责数据库的总体信息控制。

(7)公路基础数据库系统扩展阅读:

数据库系统的基本功能:

1、能够保证数据的独立性。数据和程序相互独立有利于加快软件开发速度,节省开发费用。

2、冗余数据少,数据共享程度高。

3、系统的用户接口简单,用户容易掌握,使用方便。

4、能够确保系统运行可靠,出现故障时能迅速排除;能够保护数据不受非受权者访问或破坏;能够防止错误数据的产生,一旦产生也能及时发现。

5、有重新组织数据的能力,能改变数据的存储结构或数据存储位置,以适应用户操作特性的变化,改善由于频繁插入、删除操作造成的数据组织零乱和时空性能变坏的状况。

参考资料来源:网络-数据库系统

H. 四川省公路基础数据库更新系统能不能导坐标数据出来

形数据库是空间型的GIS数据库。它是将国家基本比例尺地形图上各类要素包括水系、境界、交通、居民地、地形、植被等按照一定的规则分层、按照标准分类编码,对各要素的空间位置、属性信息及相互间空间关系等数据进行采集、编辑、处理建成的数据