当前位置:首页 » 数据仓库 » 单总线通讯MCU如何配置
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

单总线通讯MCU如何配置

发布时间: 2022-11-03 02:15:07

A. 有关mcu资料

摘要:详细介绍了基于多P89C668单片机的组合逻辑电路自动测试诊断系统的设计,包括硬件结构设计和软件设计。该自动测试诊断系统采用USB接口实现计算机与诊断平台的通信,其移动式结构便于在现场进行测试,且设备成本低、操作简单。

关键词:自动测试诊断系统 多单片机 P89C668 USB

随着IT产业和通信技术、电子技术、计算机技术的高速发展,大量的生产装备和产品的电子化、数字化、自动化、智能化的程度越来越高,与之配套的电子测量设备必须适应这种形势。因此,综合测量技术、电子技术、自动化技术和计算机技术于一体的自动测试系统发展日益完善,在一些高度电子化产品、航空航天和军用武器装备中以及工业自动化、通信、光学、能源等诸多领域中得到了广泛应用。

一般意义的自动测试系统是指采用计算机控制,能实现自动化测试的系统。这类系统通常是在标准的测控总线或仪器总线(CAMAC、GPIB、VXI、PXI、CAN等)的基础上组建而成的。目前,通用串行总线(Universal SerialBus,即USB)以其方便的即插即用和热插拔特性及较高的传输速率,成为PC机领域广为应用的外设连接规范。本文介绍的自动测试诊断系统是以五片P89C668单片机为核心组成故障诊断平台,采用基于FT245BM USB芯片的通信卡建立计算机与测试诊断平台通信的桥梁,使其能对需要检测的组合逻辑数字电路板进行测试,并可以根据标准诊断数据库对产生故障的电路板进行自动故障定位。目前该系统能够对多种不含有不受控制的部件如CPU、存储元件、晶振、阻容式单稳态等的数字电路板进行自动测试及故障诊断,可测试的电路板边缘连接器的最大引脚数为96个。

1 硬件结构

该测试诊断系统的硬件主要由以下部分组成:

·计算机

·USB通信电缆

·USB通信卡

·多MCU系统测试诊断平台

·微型开关电源

·散热风扇

·通道连接适配器板等

1.1 计算机

计算机的主要功能是通过USB接口控制测试诊断平台,进而完成测试平台系统自检、通道输入/输出的定义、发送测试激励数据、接收响应数据、数据计算与分析等工作。

1.2 USB通信卡

USB通道卡是连接计算机与测试平台的桥梁。它的主要功能一方面是将计算机发送的控制命令、数据送到测试平台的主MCU,使测试平台完成各种测试任务;另一方面是将测试平台中多MCU系统的自检信息和测试结果送往计算机,以供计算机进行判断与分析。

USB通信卡是基于FTDI公司的FT8U245BM芯片组成的,具有数据传送数据高(达8Mb/s)和即插即用等优点。

1.3 多MCU系统构成的测试平台

多MCU系统由一个MCU和四个从MCU组成。所有的MCU均采用PHILIPS公司的P89C668单片机芯片,其内部有可ISP/IAP编程的64KB Flash程序存储器和8KB RAM,每个机器周期可采用六个时钟周期,是传统单片机(80C51)的两倍。在其余双工增强型UART中具有帧错误检测和自动地址识别功能,另外还具有可编程的时钟输出功能及可编程的计数器阵列(PCA)等,是PHILIPS公司MCU家庭中较为高端的产品。多MCU系统构成的测试平台如图1所示。

在本设计的多MCU系统中,各个MCU的功能如下:

(1)主机MCU的功能

·负责与PC机的通信。通信采用目前流行的USB总线通讯方式,一方面接收来自于PC机的命令与数据,另一方面向PC机发送测试数据和自检信息。

·解释来自PC机的命令,并向所有从机或者相应的从机发送。对来自PC机的数据进行分类,并发送给相应的从机。对自身的RAM进行自检。

·负责与四个从机的通信。通信为多机主-从方式,利用MCU的RxD和TxD端以全双工UART串行模式进行通信,并使用帧错误检测和自动地址识别功能。

·管理四个从机进行同步测试。主MCU利用P1口的低四位(1.4、P1.5、P1.6、P1.7)向四个从机发送同步控制信号,使得多个从机在测试过程中能够保持同步性。

(2)从机MCU1~MCU4的功能

·通过RxD端口,以串行通信方式接收来自主MCU的与自己相关的命令和数据。

·每个从机的24路I/O端口P0.0~P0.7、P1.0~P1.7和P2.0~P2.7共计96路分别与测试通道Port1~Port96相连接。根据I/O端口的设备情况,向定义的输出通道输出测试激励信号,从相应的输入通道读入测试结果并存入 相应的RAM单元。

·在被测试电路板的一个输出通道测试完毕后,将测试的结果发送到主MCU的RAM存储区,并由主MCU发往计算机。

·负责自身数据存储区RAM的自检工作。当接收到主MCU的自检命令时,对自身的RAM进行自检,并将自检结果发送到主MCU。

1.4 测试通道适配接口卡

普通的被测数字电路板是不能直接插到测试平台的测试接口上的,需要有特制的测试通道适配接口卡才能进行连接。本系统提供的接口卡是96路通道的总线结构的接口卡,可与适用了本设计的数字电路板进行连接。如果要测试其它类型的数字电路板,则需要专门定做与其配套的测试通道适配接口卡。

2 软件设计

2.1 测试平台程序设计

本系统测试平台程序采用模块化设计,是基于Keil系统开发软件和TKS-668开发硬件,采用C语言与汇编语言编写的。模块化程序设计的思想就是要把一个复杂的程序按整体功能划分成若干相对独立的程序模块,各模块可以单独设计、编程、测试和查错,然后装配起来进行联调,最终成为一个有实用价值的程序。本系统的测试平台软件主要由系统的主程序、通信程序、测试程序和自检程序等模块组成。

2.1.1 主程序设计

主、从MCU的主程序设计流程图分别如图2、图3所示。本系统中的四个从MCU具有相同的功能,因此其主程序设计是一样的。主、从MCU在初始化中要设置的相关参数包括:串行口的方式、波特率、定时器的方式、中断等。

2.1.2 自检程序设计

主从MCU的自检是为了保证每个单片机都能正常工作,即USB和主MCU、主MCU和从MCU之间的通讯正常,并且保证每个单片机的RAM没有损坏。

主MCU和从MCU之间的通讯是否正常的自检是:先由主单片机向从单片机发一串数据,然后再由从单片机把接收到的数据发回主单处机,判断两串数据的个数和内容是否一致,一致的话则说明通讯正常。同理,USB和主MCU之间通讯自检的原理也是如此。

MCU的RAM自检的原理是:对于每一个RAM的存储单元,先把一个数据写入该RAM的单元,然后再从该单元里读出一个数据,判断两者是否一致,如果一致则说明该RAM单元没有损坏。

2.1.3 通讯程序设计

系统的通讯程序包括:主MCU与USB之间的通讯程序、主MCU与从MCU之间的通讯程序以及从MCU对被检测电路板的扫描程序。

主MCU的USB是通过USB的管脚D0~D7和主MCU的管脚P0.0~P0.7传递数据的。控制主要是通过USB的四个管脚:RXF、TXE、WR、/RD和主MCU的四个管脚:P1.4、P1.5、P1.6、P1.7进行的。当TXE为低且WR从0变为1时,数据写入USB;当RXF为低且/RD从1变为0时,数据从USB读到主MCU。主MCU通过P1.4和P1.5对USB的RXF和TXE进行判断,然后通过P1.6和P1.7对USB的WR和/RD进行控制传递数据。

主MCU与从MCU之间利用MCU的RxD和RxD端以全双工UART串行模式进行通信,串行通讯通过中断实现,使用了帧错误检测和自动地址识别功能。本系统的主MCU采用广播通讯方式,由特殊寄存器SADEN和SADDR逻辑或产生从机的广播地址,利用地址自动识别功能,通过发送广播地址,同时发命令与四个从MCU进行通讯。当主MCU只和单个从MCU通讯时,采用点点通讯方式,由SADEN和SADDR相与产生的特定地址来确认哪些从机被选中与主机进行通讯,不需要再进行软件查询。

从MCU对被检测电路板的扫描程序采用的是功能测试技术。为了检测某一组合逻辑电路板是否存在故障,首先把电路板插到诊断插槽上,由于每个输出端口只是与该电路板所有端口中的几个有逻辑关系,所以扫描程序只需对某个输出端口有逻辑关系的电路板的输入端口进行从全0到全1的电平激励(比如有五个输入端口,一共有2 5=32组激励)。对于有逻辑关系的输入超过七个以上时,由于工作量很大,不实行从全0到全1的激励,而是从中选择128组激励进行类似抽查的检测,然后读取输出端口,把输出结果传输到计算机内,和标准数据库的仿真结果进行分析与比较,判断是否一致,如果出现不一致的情况,则说明电路板存在故障。

2.2 应用系统软件设计

安装在计算机上的自动测试诊断系统软件采用Visual 6.0语言编程,其主要作用是使计算机向USB接口通信卡发送测试激励数据、接收响应数据、进行数据计算与分析等。

2.3 标准诊断数据库的软件产生方法

建立标准诊断数据库的目的是为了进行自动故障定位。本系统可用两种方法建立标准诊断数据库:第一种方法是根据被测数字电路板的原理图,在一些EDA软件环境如Protel、Foudation、Maxplus II中通过仿真功能生成标准诊断数据库。第二种是测试功能正常的数字电路板,在特定的激励下记录该电路板的响应数据,由软件自动追加到相应的数据库中,作为今后测试该电路板的标准诊断数据库。

由于本系统所要测试诊断的电路板端口数较多,采用第二种方法不但工作量非常大,而且还要确保所测数字电路板在测试过程中功能正常,因此本系统采用第一种方法。考虑到所测的电路板为组合逻辑数字电路板,所以本系统采用Xilinx公司的Foundation F3.1i软件环境,在原理图编辑器(Schematic Editor)中输入被测数字电路板的原理图,然后在功能仿真器(Functional Simulation)r Script Editor中利用软件自带的仿真命令自动生成标准诊断数据文件,再由应用系统软件将数据导入相应的数据库。

目前一般的自动测试诊断系统通常是在标准的测控总线或仪器总线(CAMAC、GPIB、VXI、PXI、CAN等)的基础上组建而成的,其成本较高、体积庞大、操作复杂,基础上组建而成的,其成本较高、体积庞大、操作复杂,在测试过程中显得非常不方便,难以满足现代科技工作者的需要。本文介绍的自动测试诊断系统是以五片P89C668单片机为核心组成故障诊断平台,采用基于FT245BM USB芯片的通信卡实现计算机与测试诊断平台的通信。该系统的便携式结构特别适合于现场测试,具有成本低、体积小、重量轻、结构紧凑、自动化程度高等优点;系统的操作比较简单,只要掌握计算机的一般操作,具有一定的数字电路技术基础,能够看懂一般的数字电路原理的,经过简单的技术培训,详细阅读并理解本系统的使用说明后就可以进行操作;系统硬件模块的标准化和软件模块的可复用性使系统具有很强的扩展能力。目前该测试诊断系统已经投入使用,效果良好,完全达到了预期的设计目的。

B. 什么是MCU

MCU,英文为Microcontroller Unit,意味微控制单元,又称单片微型计算机(Single Chip Microcomputer )或单片机,是把中央处理器(Central Process Unit;CPU)的频率与规格做适当缩减,并将内存(memory)、计数器(Timer)、USB、A/D转换、UART、PLC、DMA等周边接口,甚至LCD驱动电路都整合在单一芯片上,形成芯片级计算机,为不同的应用场合做不同组合控制。

随着行业上下游的发展及电子信息产业整体发展,MCU身影在各个应用领域随处可见,例如手机,PC外围,遥控器,温湿度计,CD播放器,电表,马达,传真机,汽车电子,工业上的步进马达、机器手臂的控制,医疗,AI等,遍布高中低端领域。

了解了MCU的基本概念后我们来看看MCU的分类有哪些,本文将按照用途、基本操作处理的数据位数、存储器结构、存储器类型、指令结构等角度对MCU做一分类:

按用途——可分为通用型MCU和专用型MCU,其中通用型是指将可开发的资源(ROM、RAM、I/O、EPROM)等全部提供给用户的MCU;专用型MCU是指硬件及指令是按照某种特定用途而设计,例如录音机机芯控制器、打印机控制器、电机控制器等。

按其基本操作处理的数据位数——根据总线或数据暂存器的宽度,单片机又分为1位、4位、8位、16位、32位甚至64位单片机。

按存储器类型——可分为无片内ROM型和带片内ROM型两种。

按存储器结构——MCU根据其存储器结构可分为哈佛(Harvard)结构和冯▪诺依曼(Von Neumann)结构。

按指令结构——根据指令结构又可分为CISC(Complex Instruction Set Computer,复杂指令集计算机)和RISC(Reced Instruction Set Comuter,精简指令集计算机微控制器)

贞光科技能为客户提供高性价比的处理器如MCU产品,贞光科技是爱普生等国内外知名MCU品牌的授权代理商。随着国产化需求浪潮的推进,2021年,贞光科技在处理器如MCU、功率器件如高压MOS等领域新增合作品牌,持续为客户提供更有竞争力的产品和服务。

C. mcu芯片是什么

微控制单元是单片微型计算机或者单片机。

微控制单元是把中央处理器的频率与规格做适当缩减,并将内存(memory)、计数器(Timer)、USB、A/D转换、UART、PLC、DMA等周边接口,甚至LCD驱动电路都整合在单一芯片上,形成芯片级的计算机,为不同的应用场合做不同组合控制。

诸如手机、PC外围、遥控器,至汽车电子、工业上的步进马达、机器手臂的控制等,都可见到MCU的身影。

单片机出现的历史并不长,但发展十分迅猛。它的产生与发展和微处理器的产生与发展大体同步,自1971年美国Intel公司首先推出4位微处理器以来,它的发展到目前为止大致可分为5个阶段。

mcu芯片的技术原理:

MCU同温度传感器之间通过I2C总线连接。I2C总线占用2条MCU输入输出口线,二者之间的通信完全依靠软件完成。温度传感器的地址可以通过2根地址引脚设定,这使得一根I2C总线上可以同时连接8个这样的传感器。

传感器的7位地址已经设定为1001000。MCU需要访问传感器时,先要发出一个8位的寄存器指针,然后再发出传感器的地址(7位地址,低位是WR信号)。

传感器中有3个寄存器可供MCU使用,8位寄存器指针就是用来确定MCU究竟要使用哪个寄存器的。本方案中,主程序会不断更新传感器的配置寄存器,这会使传感器工作于单步模式,每更新一次就会测量一次温度。

D. 多个SHT11怎么用单总线跟单片机连接

// DHT21使用范例

//单片机 : AT89S52 或 STC89C52RC

// 功能 :串口发送温湿度数据 波特率 9600

//硬件连接: P2.0口为通讯口连接DHT11,DHT11的电源和地连接单片机的电源和地,单片机串口加MAX232连接电脑

// 公司 :济南联诚创发科技有限公司

//

#include <reg51.h>

#include <intrins.h>

//

typedef unsigned char U8;

typedef signed char S8;

typedef unsigned int U16;

typedef signed int S16;

typedef unsigned long U32;

typedef signed long S32;

typedef float F32;

typedef double F64;

//

#define uchar unsigned char

#define uint unsigned int

#define Data_0_time 4

//----------------------------------------------//

//----------------IO口定义区--------------------//

//----------------------------------------------//

sbit P2_0 = P2^0 ;

sbit P2_1 = P2^1 ;

sbit P2_2 = P2^2 ;

sbit P2_3 = P2^3 ;

//----------------------------------------------//

//----------------定义区--------------------//

//----------------------------------------------//

U8 U8FLAG,k;

U8 U8count,U8temp;

U8 U8T_data_H,U8T_data_L,U8RH_data_H,U8RH_data_L,U8checkdata;

U8 U8T_data_H_temp,U8T_data_L_temp,U8RH_data_H_temp,U8RH_data_L_temp,U8checkdata_temp;

U8 U8comdata;

U8 outdata[5]; //定义发送的字节数

U8 indata[5];

U8 count, count_r=0;

U8 str[5]={"RS232"};

U16 U16temp1,U16temp2;

SendData(U8 *a)

{

outdata[0] = a[0];

outdata[1] = a[1];

outdata[2] = a[2];

outdata[3] = a[3];

outdata[4] = a[4];

count = 1;

SBUF=outdata[0];

}

void Delay(U16 j)

{ U8 i;

for(;j>0;j--)

{

for(i=0;i<27;i++);

}

}

void Delay_10us(void)

{

U8 i;

i--;

i--;

i--;

i--;

i--;

i--;

}

void COM(void)

{

U8 i;

for(i=0;i<8;i++)

{

U8FLAG=2;

//----------------------

P2_1=0 ; //T

P2_1=1 ; //T

//----------------------

while((!P2_0)&&U8FLAG++);

Delay_10us();

Delay_10us();

// Delay_10us();

U8temp=0;

if(P2_0)U8temp=1;

U8FLAG=2;

while((P2_0)&&U8FLAG++);

//----------------------

P2_1=0 ; //T

P2_1=1 ; //T

//----------------------

//超时则跳出for循环

if(U8FLAG==1)break;

//判断数据位是0还是1

// 如果高电平高过预定0高电平值则数据位为 1

U8comdata<<=1;

U8comdata|=U8temp; //0

}//rof

}

//--------------------------------

//-----湿度读取子程序 ------------

//--------------------------------

//----以下变量均为全局变量--------

//----温度高8位== U8T_data_H------

//----温度低8位== U8T_data_L------

//----湿度高8位== U8RH_data_H-----

//----湿度低8位== U8RH_data_L-----

//----校验 8位 == U8checkdata-----

//----调用相关子程序如下----------

//---- Delay();, Delay_10us();,COM();

//--------------------------------

void RH(void)

{

//主机拉低18ms

P2_0=0;

Delay(180);

P2_0=1;

//总线由上拉电阻拉高 主机延时20us

Delay_10us();

Delay_10us();

Delay_10us();

Delay_10us();

//主机设为输入 判断从机响应信号

P2_0=1;

//判断从机是否有低电平响应信号如不响应则跳出,响应则向下运行

if(!P2_0) //T !

{

U8FLAG=2;

//判断从机是否发出 80us 的低电平响应信号是否结束

while((!P2_0)&&U8FLAG++);

U8FLAG=2;

//判断从机是否发出 80us 的高电平,如发出则进入数据接收状态

while((P2_0)&&U8FLAG++);

//数据接收状态

COM();

U8RH_data_H_temp=U8comdata;

COM();

U8RH_data_L_temp=U8comdata;

COM();

U8T_data_H_temp=U8comdata;

COM();

U8T_data_L_temp=U8comdata;

COM();

U8checkdata_temp=U8comdata;

P2_0=1;

//数据校验

U8temp=(U8T_data_H_temp+U8T_data_L_temp+U8RH_data_H_temp+U8RH_data_L_temp);

if(U8temp==U8checkdata_temp)

{

U8RH_data_H=U8RH_data_H_temp;

U8RH_data_L=U8RH_data_L_temp;

U8T_data_H=U8T_data_H_temp;

U8T_data_L=U8T_data_L_temp;

U8checkdata=U8checkdata_temp;

}//fi

}//fi

}

//----------------------------------------------

//main()功能描述: AT89C51 11.0592MHz 串口发

//送温湿度数据,波特率 9600

//----------------------------------------------

void main()

{

U8 i,j;

//uchar str[6]={"RS232"};

TMOD = 0x20; //定时器T1使用工作方式2

TH1 = 253; // 设置初值

TL1 = 253;

TR1 = 1; // 开始计时

SCON = 0x50; //工作方式1,波特率9600bps,允许接收

ES = 1;

EA = 1; // 打开所以中断

TI = 0;

RI = 0;

SendData(str) ; //发送到串口

Delay(1); //延时100US(12M晶振)

while(1)

{

//------------------------

//调用温湿度读取子程序

RH();

//串口显示程序

//--------------------------

str[0]=U8RH_data_H;

str[1]=U8RH_data_L;

str[2]=U8T_data_H;

str[3]=U8T_data_L;

str[4]=U8checkdata;

SendData(str) ; //发送到串口

//读取模块数据周期不易小于 2S

Delay(20000);

}//elihw

}// main

void RSINTR() interrupt 4 using 2

{

U8 InPut3;

if(TI==1) //发送中断

{

TI=0;

if(count!=5) //发送完5位数据

{

SBUF= outdata[count];

count++;

}

}

if(RI==1) //接收中断

{

InPut3=SBUF;

indata[count_r]=InPut3;

count_r++;

RI=0;

if (count_r==5)//接收完4位数据

{

//数据接收完毕处理。

count_r=0;

str[0]=indata[0];

str[1]=indata[1];

str[2]=indata[2];

str[3]=indata[3];

str[4]=indata[4];

P0=0;

}

}

}

E. 假如CAN通讯为一主多从,且从节点MCU可变换,CAN通讯从节点ID怎么设置,CAN主节点怎么识别从节点ID

节点ID设置可以属于CAN应用层协议内容,而应用协议可以自行定义。

一、从节点的ID如果要和MCU“不相关”,可以又多种方式实现,ID事先装入EEPROM,或者用硬件的拨码开关来指示。

如果逻辑上复杂一些,可以做到ID自动分配,自动识别。

二、“如从主节点向从节点下载程序”——可以主节点同时向多个从节点发送数据(广播),也可以指向特定的ID发送(单个问答式)。

实际上主节点的数据发到总线上了,所有从节点都可以接收到的,至于如何接收可以两种方式:
1、每个节点都把数据收入缓冲区,软件判断不属于自己节点的就丢弃不处理。
2、硬件设置CAN滤波,不属于自己节点的数据就不会收入缓冲区,节点处于空闲状态,只有属于自己的特定ID才会收进来。

F. mcu是什么 是什么

有关mcu自动化测量单元的内容,参考如下:

1.先进性:

MCU系列数据采集模块采用高度智能化、模块化集成设计,具有多种通讯接口:RS485、4G全网通、WIFI(选配)、蓝牙(选配)、Lora(选配)、NB-IOT(选配)、以太网口等,组网方式灵活。采用微安级别低功耗设计,内置高容量聚合物锂电池,外部电源故障、阴雨天等恶劣环境模块可连续工作。

2. 可靠性:

MCU系列数据采集模块性能稳定,采用高性能高可靠性电子元器件,使用寿命长。具有全隔离(电源和信号都隔离)功能,抗干扰能力强。

3. 通用性:

所有通道万用,兼容性良好,允许不同品牌、不同信号输出类型的仪器同时混合接入同一个模块,如差阻式、振弦式、电压式、电流式等模拟信号传感器,以及数字式智能型与开关量计数式传感器均可同时接入。

4. 冗余性:

模块采用多核 32 位微处理器,24 位工业级 A/D 转换器和冗余的继电器多路复用技术, 自 带 4096 组(4096x通道数(条))数据存储功能,保证了数据安全和完整。

5. 多选择

MCU系列数据采集模块有 1、4、8、16、20、32、40 通道多种类型可供选择,搭建灵活,各个模块各自独立互不影响。

6.可维护性

MCU系列数据采集模块具有远程自检、诊断等功能,可以远程判断仪器、电缆好坏。支持远程升级和维护。

G. mcu是什么

MCU单片机可以与通过I2C总线温度传感器之间的连接。占用两个MCU的I2C总线输入和输出线,它们完全依赖于软件之间的通信。解决温度传感器可以通过两个地址标签,这使得它能够同时连接八个这样的传感器在单个I2C总线来设置。当MCU需要访问的传感器,第一次发出一个8位寄存器指针,然后发出地址传感器(7位地址,下层是WR信号)。有三个传感器寄存器可供使用的MCU,8位寄存器指针是用来确定是否使用单片机的寄存器。主程序会不断更新传感器配置寄存器,这使得该传感器在单步模式下工作时,测量每次都将被更新时的温度。为了读出传感器的测量值中的16位数据寄存器,微控制器必须与传感器2的8位数据的通信。当传感器工作电源,九个预设的测量精度为0.5℃/ LSB的分辨率(范围为-128.5℃至128.5℃)。该程序使用默认的测量精度,根据需要,可以重置传感器,测量精度提高到12,如果只为温度指示,如恒温器,因此该决议案的一般要求达到1℃至满足要求。在这种情况下,低8的传感器数据可以被忽略,只有以高分辨率的8位数据可以被设计为满足1 C的需求由于寄存器的低位8 8后的第一高读取,如此低八位数据可以被读取,你可以不读。只读取高八位数据有两个好处,第一是MCU和传感器可缩短工时,降低功耗;第二分辨率不影响索引。之后,MCU读取传感器的测量值,则翻译将被执行,其结果显示在LCD上。该方法包括:确定所述结果显示,转换成二进制码的BCD码,数据与LCD相关的寄存器的标志。后的数据进行处理并显示结果,单片机会发出一个单步指令给传感器。单步指令开始,一旦温度传感器的测试,然后直到模拟到数字的转换完成后自动进入待机模式。在进入LPM3模式发行的MCU单步指令后,然后MCU系统时钟继续运行,产生定时中断唤醒CPU。定时可被编程来调整长度以满足特定应用的需要。 MCU分类为无芯片基于ROM芯片,外部EPROM可以应用(如8031)。随着片上ROM为基础的芯片分为芯片上的EPROM的类型(如87C51),面膜片上掩膜ROM类型(如8051),片上闪存类型(如89C51)等类型,以及与芯片上的时间挥发可编程ROM(一次性编程,OTP)芯片(如97C51)。

H. 一条I2C总线上挂载两个及两个以上的同一型号传感器(已更改从地址使其不同)怎么同时完成配置。

你的同时读是什么意思?单核MCU不可能同时读的,总有先后顺序。
如果你的本意是一条I2C总线上挂两个MPU6050,那是可以的。这个芯片的第9脚AD0是设备地址的最低位,两个芯片一个拉高,一个拉低,就有两个不同的设备地址了。
这是个传感芯片,读到的数据需要根据不同应用处理,难道你只想要读数据的函数?自己写呗,很简单的。