当前位置:首页 » 数据仓库 » 负荷为电机电气抽屉如何配置
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

负荷为电机电气抽屉如何配置

发布时间: 2022-11-01 09:55:05

① 355kw高压电机要陪几个高压柜

355kw是负荷功率,变压器功率为x
即x * 0.85 * 0.8 = 355kw 其中 0.85是变压器的负荷率(这个负荷率一般取0.85,部分厂家不同,有的0.7), 0.8是变压器的功率因数
x = 522.059kw,即变压器选择630kva的就可以
355kw高压电机看你实际使用情况选择高压柜数量方案
如果就简简单单的减少成本,不考虑高压柜的检修情况的话,高压柜1进1出 1变压器 1低压进线 1低压电容 1低压出线 就可以满足
如果考虑电机常年使用,即使中间高压柜检修也不影响电机使用的话,高压柜1进 2出 1分段 1隔离 2变压器 2低压进线 1低压电容 1低压出线(用抽屉的话多几个备用抽屉,不用抽屉的话多1-2个备用断路器) 1低压联络。

② 抽屉式开关柜维修及简介相关介绍

在我们生活中有很多的东西我们并不是非常的了解,但是这些东西在我们的生活中也是起着非常重要的作用。开关柜就是其中之一,如果不是该领域的人很难懂在这方面的专业知识,更不能够清楚开关柜在我们生活中不可或缺的作用,关于抽屉式开关柜维修就更难做到了,那么我们就共同来了解一下关于开关柜的小知识。


什么是抽屉式开关柜

抽屉式开关柜是开关柜的一个种类,也是开关柜中更能够方便我们生活的一类。开关柜是一种电气设备,是有着很强的专业性知识,是在电气这个领域中发挥着非常重要作用的东西,也是在无形之中给我们生活带来安全保障和便利的产品。简单来说开关柜就是将一些表盘的线等放入柜内进行整理,在柜的外面会设有相关的表盘来向人们展示数据,抽屉式开关柜是可以通过一定的方式进行打开和调节,是在原有的开关柜的基础上进行了更好的设计,也是更能够体现科技的发展,也的的确确给使用者带来了很大的便利。


抽屉式开关柜维修

我们都清楚的就是,在电气设备这一方面我们需要经常的进行保养和维修,因为时间的增长也很容易使设备产生一些小的毛病最终导致一些故障的产生,那么最终所带来的影响是非常大的。那么我们就需要掌握关于抽屉式开关柜的维修方法。


在抽屉式开关柜发生故障的时候,我们首先要做的就是要弄清楚是什么型号的开关柜。因为不同型号的开关柜在维修和使用方法上面也是有着一定区别的。根据具体的型号我们也比较容易进行维修,在熟悉一些专业性的知识后。我们要做的就是判断开关柜发生故障的原因是什么,所涉及到的零部件是什么,接下来我们要做的就是根据所判断出来的问题进行调整。确定零部件还能否使用,如果可以就进行简单的调整,不能够使用的情况就需要到相应的店面进行购买相同的零部件,如果可以的话应当购买相同型号的零部件进行重新安装。抽屉式开关柜比较常见的故障就是,因为超过开关柜的负荷不能够承受所以停止工作,这个时候我们需要马上确定是否已经把重要的线路烧坏,这个问题也是涉及到整个开关柜今后的使用上面。


低压抽屉柜简介

低压抽屉柜,包括手柄、门板、手把、左侧板、右侧板、元件安装板、断路器、支件、主电路插件,活接在门板上的手柄连接连杆,连杆安装在断路器上,连杆中部咬合摆板,摆板下面对应销轴,销轴套上弹簧插入轴套内,用螺栓将轴套固定在弯板上,弯板固定在左侧板和右侧板上,销轴上有一凸台压在弹簧上,销轴下端对准开关柜体上的托板的小孔。具有联锁机构简单、安全可靠并且抽屉互换灵活等优点。

低压抽屉柜型号很多,归纳起来有以下几种型号(GCK、GCS、MNS),现把各种型号的开关柜型号及其优缺点列举如下,供大家参考:

GCK抽屉柜

产品型号及含义

GCK:G是封闭式开关柜C是抽出式K是控制中心

GCK低压抽出式开关柜(以下简称开关柜)由动力配电中心(PC)柜和电动机控制中心(MCC)两部分组成。该装置适用于交流50(60)HZ、额定工作电压小于等于660V、额定电流4000A及以下的控配电系统,作为动力配电、电动机控制及照明等配电设备。

GCK开关柜符合IEC60439-1《低压成套开关设备和控制设备》、GB7251.1-1997《低压成套开关设备和控制设备》、GB/T14048.1-93《低压开关设备和控制设备总则》等标准。且具有分断能力高、动热稳定性好、结构先进合理、电气方案灵活、系列性、通用性强、各种方案单元任意组合、一台柜体。

所容纳的回路数较多、节省占地面积、防护等级高、安全可靠、维修方便等优点。

结构特点

1、整柜采用拼装式组合结构,模数孔安装,零部件通用性强,适用性好,标准化程度高

2、柜体上部为母线室、前部为电器室、后部为电缆进出线室,各室间有钢板或绝缘板作隔离,以保证安全。


3、MCC柜抽屉小室的门与断路器或隔离开关的操作手柄设有机械联锁,只有手柄在分断位置时门才能开启。

4、受电开关、联络开关及MCC柜的抽屉具有三个位置:接通位置、试验位置、断开位置。

5、开关柜的顶部根据受电需要可装母线桥。

GCS抽屉柜

产品型号及含义


用途

GCS型低压抽出式开关柜使用于三相交流频率为50Hz,额定工作电压为400V(690V),额定电流为4000A及以下的发、供电系统中的作为动力、配电和电动机集中控制、电容补偿之用。广泛应用于发电厂、石油、化工、冶金、纺织、高层建筑等场所,也可用在大型发电厂,石化系统等自动化程度高,要求与计算机接口的场所。

执行标准:

本产品符合GB7251.1-1997《低压成套开关设备和控制设备》和JB/T9661-1999《低压抽出式成套开关设备》的要求


结构特点:

1、框架采用8MF型开口型钢,主构架上安装模数为E=20mm和100mm的Φ9.2mm的安装孔,使得框架组装灵活方便。

2、开关柜的各功能室相互隔离,其隔室分为功能单元室、母线室和电缆室。各室的作用相对独立。

3、水平母线采用柜后平置式排列方式,以增强母线抗电动力的能力,是使主电路具备高短路强度能力的基本措施。

4、电缆隔室的设计使电缆上、下进出均十分方便。

5、抽屉高度的模数为160mm。抽屉改变仅在高度尺寸上变化,其宽度、深度尺寸不变。相同功能单元的抽屉具有良好的互换性。单元回路额定电流400A及以下。

6、抽屉面板具有分、合、试验、抽出等位置的明显标志。抽屉单元设有机械联锁装置。1抽屉单元为主体,同时具有抽出式和固定性,可以混合组合,任意使用。

7、柜体的防护等级为IP30IP40,还可以按用户需要选用。


MNS抽屉柜

MNS型低压抽出式成套开关设备(以下简称开关柜)为适应电力工业发展的需求,参考国外MNS系列低压开关柜设计并加以改进开发的高级型低压开关柜,该产品符合国家标准GB7251、VDE660和ZBK36001-89《低压抽出式成套开关设备》、国际标准IEC439规定MNS型低压开关柜适应各种供电、配电的需要,能广泛用于发电厂、变电站、工矿企业、大楼宾馆、市政建设等各种低压配电系统。

结构特点

1.MNS型低压开关柜框架为组合式结构,基本骨架由C型钢材组装而成。柜架的全部结构件经过镀锌处理,通过自攻锁紧螺钉或8.8级六角螺栓坚固连接成基本柜架,加上对应于方案变化的门、隔板、安装支架以及母线功能单元等部件组装成完整的开关柜。开关柜内部尺寸、零部件尺寸、隔室尺寸均按照模数化(E=25mm)变化。

2.MNS型组合式低压开关柜的每一个柜体分隔为三个室,即水平母线室(在柜后部),抽屉小室(在柜前部),电缆室(在柜下部或柜前右边)。室与室之间用钢板或高强度阻燃塑料功能板相互隔开,上下层抽屉之间有带通风孔的金属板隔离,以有效防止开关元件因故障引起的飞弧或母线与其它线路短路造成的事故。

3.MNS型低压开关柜的结构设计可满足各种进出线方案要求:上进上出、上进下出、下进上出、下进下出。


4.设计紧凑:以较小的空间容纳较多的功能单元

5.结构件通用性强、组装灵活,以E=25mm为模数,结构及抽出式单元可以任意组合,以满足系统设计的需要

6.母线用高强度阻燃型、高绝缘强度的塑料功能板保护,具有抗故障电弧性能,使运行维修安全可靠

7.各种大小抽屉的机械联锁机构符合标准规定,有连接、试验、分离三个明显的位置,安全可靠。

8.采用标准模块设计:分别可组成保护、操作、转换、控制、调节、测定、指示等标准单元,可以根据要求任意组装。

9.采用高强度阻燃型工程塑料,有效加强了防护安全性能。

10.通用化、标准化程度高,装配方便。具有可靠的质量保证。

11.柜体可按工作环境的不同要求选用相诮的防护等级。

12.设备保护连续性和可靠性。


我们生活在一个大环境中,有很多的东西是我们不清楚不明白的,但是在我们有时间的情况下还是应该多去学习和了解抽屉式开关柜维修,这不仅仅是开阔了我们的眼界,也是对我们生活的一个帮助。

③ 总负载180KW如何配置电流互感器和电表

电流互感器所配的电表一般是5A(三相四线)表,160kW负荷用400(450)/5互感器,40kW负荷用100/5互感器,160kW+40kW用450(500)/5互感器。
总电流超过40A就需要经互感器计量,总电流小于40A(18kW以下三相平衡负荷)可以直接用40A三相四线表。

④ 根据电机启动方式及电机功率对电气柜尺寸选型

电机起动方式的选择
笼型感应电动机全压起动的优点,用简便计算及列表方法表示全压起动时配电系统的压降,并对全压起动和各种降压起动的特点进行分析比较,以便选择,同时对风机、水泵的起动转矩作了简要分析? 笼型感应电动机 全压起动 星三角换接起动 自耦变压器降压起动 起动电流 起动转矩,工业与民用建筑中的水泵与风机常采用笼型感应电动机拖动,恰当的选择其起动方式,具有重要的意义。笼型感应电动机的起动方式分为全压起动、降压起动、变频起动等,现对各种起动方式的特点进行简要分析,以利选择
1 全压起动
1.1 全压起动的优点及允许全压起动的条件
全压起动是最好的起动方式之一,它是将电动机的定子绕组直接接入额定电压起动,因此也称为直接起动。全压起动具有起动转矩大、起动时间短、起动设备简单、操作方便、易于维护、投资省、设备故障率低等优点。为了能够利用这些优点,目前设计制造的笼型感应电动机都按全压起动时的冲击力矩与发热条件来考虑其机械强度与热稳定性。所以,只要被拖动的设备能够承受全压起动的冲击力矩,起动引起的压降不超过允许值,就应该选择全压起动的方式。有人误认为降压起动比全压起动好,将15kW的电动机未经计算就采用了降压起动方式,因而降低了起动转矩,延长了起动时间,使电动机发热更加严重,且设备复杂,投资增加,这是一个误区,应当引起重视。尤其是消防泵等应急设备希望起动快,故障少,凡能采用全压起动者,均不应采用降压起动?
全压起动的缺点是起动电流大,笼型感应电动机的起动电流一般为额定电流5~7倍,如果电动机的功率较大,达到可与为其供电的变压器容量相比拟时,电动机的起动电流将会引起配电系统的电压显着下降,影响接在同一台变压器或同一条供电线路上的其他电气设备的正常工作,因此在设计规范中,对电动机起动引起配电系统的压降有明确规定。交流电动机起动时,其端子上的计算电压应符合下列要求
(1)电动机频繁起动时,不宜低于额定电压的90%,电动机不频繁起动时,不宜低于额定电压85%
(2)电动机不与照明或其他对电压波动敏感的负荷合用变压器,且不频繁起动时,不应低于额定电压80%
(3)当电动机由单独的变压器供电时,其允许值应按机械要求的起动转矩确定?
对于低压电动机,还应保证接触器线圈的电压不低于释放电压。
对于自设变压器的高压用户,较容易满足上述电压波动值的限制,很可能允许全压起动,这正是本文要讨论的主要问题之一
需要注意的是,《规范》中规定的电压是电动机端子上的计算电压,其真正目的却是为了限制电动机起动时配电系统的电压降,以免影响其他设备的运行。过去曾规定“电源母线”电压波动值,由于“母线”的含义对于多级配电系统来说,其位置不太明确,设计者不易掌握。现规定电动机端子电压,既易满足配电系统的要求,又顾及到了相同条件下的其他电动机。《规范》规定电动机端子上的计算电压,实际上是配电系统电压的参考点,随着配电变压器容量的不断增大,电动机的起动电流占变压器额定电流的比例越来越小,电动机起动时引起的压降也越来越小,采用全压起动的电动机也就越来越多?
1.2 电动机起动时的压降及允许全压起动的电动机最大功率
为控制电动机起动时配电系统的压降,需要进行压降的分析与计算。如果电动机的电源是从变电所低压柜以专线放射式引来,电动机起动引起配电系统的压降就接近变压器出线端的压降,而影响此压降的主要因素是变压器的内阻抗,其表现形式是变压器的阻抗电压百分数。根据电动机的起动电流、变压器容量及其阻抗电压百分数,可以估算电动机起动时配电系统的压降,以便预估电动机是否可以全压起动,可按下式估算:
Ust=((Kmst*Pm+Pa)/Stn) Uk%
式中: USt——电动机起动时配电系统的压降百分数;
Kmst——电动机起动电流倍数(起动电流与额定电流之比)
Pm——电动机额定功率(kW)
Pa——变压器带的其他负荷(kW)
Stn——变压器的额定容量(kVA)
Uk%——变压器阻抗电压百分数
该式之所以称作估算,是因为忽略了一些次要的因素,如母线及开关上的压降等,而且将有功功率与视在功率混算,有误差,但误差很小,能够满足工程设计的精度要求.
如果电动机的电源是与其他负荷共用一条线路,树干式配电引来,需要考虑电动机起动时的压降对其他负荷的影响,进行压降计算,如果不满足要求,则要加大供电线路的截面或采用降压起动。由城市低压电网供电的电动机大多都属于这种情况,但因电源线路的情况难以了解,不易计算,所以 “由城市低压网络直接受电的场合,电动机允许全电压起动的容量应与地区供电部门的规定相协调。如当地供电部门对允许笼型感应电动机全压起动容量无明确规定时,可按下述条件确定:
(1)由公用低压电网供电时,容量在11kW及以下者,可全压起动;
(2)由居住小区变电所低压配电装置供电时,容量为5kW及以下者可以全压起动。
2 降压起动
当电动机全压起动将引起配电系统的压降过大,或者在某种情况下规范不允许采用全压起动时,可采用降压起动,根据电动机起动电流与其端电压成正比的关系,采用降低电动机端电压的办法来减小起动电流,从而减小配电系统的压降,简称降压起动
降压起动的方法较多,有星三角换接、自耦变压器降压、变压器-电动机组、延边三角形换接、串电抗器或电阻器降压等。对于中小型电动机,采用星三角换接或自耦变压器降压的较多
2.1 串电抗器降压起动
因为电动机的起动转矩与端子电压的平方成正比,在降低电动机端子电压的同时,更显着地降低了它的起动转矩。在电动机定子回路中串入电抗器降压起动的方法就是如此。虽然起动电流有所减小,但其起动转矩小得更多,使起动时间延长,电动机发热更严重。如果被拖动的负载阻转矩较大,甚至会起动不起来,所以这种方法不够好,在低压系统中很少采用.
2.2 自耦变压器降压起动
自耦变压器降压起动是将其原边接供电电源,副辿即原边的一部分)接到电动机定子绕组上,待电动机起动到转速基本稳定时,再切除自耦变压器,将电动机定子绕组直接接入供电电源,电动机在全电压运转?
这种起动方法对电动机本身来说,降低了电动机的起动电压和起动电流,仍符合电流与电压成正比,转矩与电压的平方成正比这个规律。假若自耦变压器的抽头变比50%,则电动机的起动电压和电流都降到全压起动的一半,起动转矩降低到全压起动的1/4。但是,需要强调的是此时配电线路中的电流即自耦变压器原边的电流比电动机中的电流(即自耦变压器副边的电压又小了一半,这样配电线路中的电流也下降到全压起动1/4,即这种起动方式显着地降低了配电系统中的电流和压降。一般来说,采用自耦变压器降压起动,电动机的端子电压下降到额定电压的K倍时(K为自耦变压器抽头变比,其值小于1),电动机的起动转矩与配电系统中的电流均下降到额定电压时的2倍。可见,在起动转矩相同的情况下,采用自耦变压器降压比电抗器降压更有效的减小了配电线路的电流和压降.

2.3 星三角换接降压起动
星三角换接起动是先将电动机的定子绕组接成星形起动,待电动机转速基本稳定时,再换接成三角形转入正常运行。星形连接同三角形连接相比,电动机绕组的端子电压和绕组中的电流降低到,电动机的转矩降低到1 /2。电动机星形连接时,绕组中的电流即配电系统中的电流。三角形连接时,电动机绕组中的电流是相电流,而配电系统中的电流是线电流,相电流是线电流的1/。这样,电动机的星形连接与三角形连接相比,其起动电流对配电系统而言下降了。所以,电动机星三角换接的起动方式,其端子电压、绕组中的电流、电动机的转矩、配电系统中的电流电压比,四者的大小关系均相当 1
自耦变压器降压的起动方式,只是这个比例是固定不变的。自耦变压器可以换接抽头来改变其变化,从而可以根据配电系统中的压降限制及负载的转矩要求,选择自耦变压器与电动机连接的抽头,比星三角换接灵活
3 其他起动方式
3.1 变频起动
变频起动是在变频调速系统中,用逐步提高电动机定子绕组的供电频率来提高电动机的速度。这种起动方式也降低了电动机的端子电压和起动电流
因为变频调速改变了异步电动机的同步转速,保持了电动机的硬机械特性,与其他起动方式相比,起动电流小而起动转矩大,对设备无冲击力矩,对电网无冲击电流,既不影响其他设备的运行,又有最理想的起动特性。但是,这种起动方式设备复杂,价格昂贵,在不需要变频调速的场合,如无特殊要求,只是为了得到良好的起动特性而装设变频设备是不合适的。只有在变频调速系统中,才采用变频起动。近年来,在采用变频调速的恒压供水系统、变风量系统中,其水泵、风机都是变频起动的

5 水泵起动方式选择
民用与一般工业建筑的水泵,多为笼型感应电动机拖动的离心泵。它的起动也是要求电动机的起动转矩大于阻转矩,且配电系统的电压降不超过允许值。水泵起动的阻转矩主要是由水的静压、惯性、管道阻力、水泵的机械惯性和静动摩擦等构成.水的阻力、水泵的机械惯性阻力均与水泵的转速、加速度及叶轮直径有关,速度低时阻力小。因水泵的叶轮直径不大,机械惯性小,起动阻力小。水的静压阻力与扬程有关,水泵起动之初,由于水管中止回阀的作用,静压与静摩擦不同时起作用,有利于起动。综上所述,水泵的起动阻力矩较小,一般为额定阻转矩的30%,属于轻载起动. 一般Y系列笼型感应电动机全压起动时的电磁转矩,均大于额定转矩。当电动机采用全压起动时,其起动转矩远大于水泵的阻转矩,起动较快。只有采用降压起动时,才需研究电动机的起动转矩的大小。例如,采用星三角换接方式起动,电动机的起动转矩为全压起动的1/3,仍可满足水泵的起动阻转矩要求.
5.1 消防泵的起动
消防泵起动时引起的配电系统电压波动也必须在规范允许的范围内,消防泵属于不频繁起动,按《规范》要求,电动机起动时,其端子上的计算电压不低于额定电压的85%;当其不与照明或其他对电压波动敏感的负荷合用变压器时,电动机起动时端子上的计算电压不应低于额定电压80%。这个规定值是为了保证与消防泵合用供电变压器的其他电动机,在相同条仿端子电压)下的最大转矩不小于额定转矩。三相异步电动机的最大转矩不小于额定转矩.0.6倍,若电动机的端子电压为额定电压0.8倍时,其最大转矩为额定.1.024倍。因此,80%的额定电压保证了正在运转的电动机的转矩不小于其额定转矩,不影响其正常运行. 5.2 生活给水及其他用途水泵的起动
生活给水泵起动比较频繁,起动时电动机端子上的计算电压,不宜低于额定电压的90%。因为生活给水泵的容量一般不大,对于自设变压器的高压用户来说,大多数可以全压起动。由城市公用电网供电或由很小容量的变压器供电时,可能要降压起动。生活给水泵电动机采用星三角换接方式起动,设备简单,造价低,便于操作及维护,被广泛采用 、排水泵、热水循环泵、消防补压泵电动机功率一般也不大,通常采用全压起动
6 风机的起动
民用与一般工业建筑中采用的风机,多数为笼型感应电动机拖动的离心风朿轴流风机,其起动阻转矩与离心式水泵类似,阻转矩都与转速成正比,所以有的设计手册将离心式风机与水泵同样对待。实际上,它们还是有区别的,把它们同样对待不尽合理。因为,风机与水泵的结构不同,对于高扬程水泵,有多级结构,叶轮直径小;而风机就很少有多级的,且叶轮直径大,其转动惯量比水泵的大得多,起动时的机械惯性阻转矩也大得多。如果风机不关风阀起动,将因空气升能、管道阻力、摩擦阻力等因素,致使风机起动比水泵起动困难,起动加速的时间较长。考虑到风机起动较困难的特点,在选择风机主电路的控制保护设备时需注意,其低压断路器的热脱扣器额定电流不可选得过紧,过载保护的热继电器要躲过起动电流。当风机起动时间较长,如果选用双金属片式热继电器,则在风机起动时需将其短接,待起动完毕后再接入,以免在起动过程中热继电器过热断开,使风机的起动中断。短接热继电器的方法,一般是设一组专门用于起动的接触器,起动完毕后断开这组接触器,这样使起动设备显得复杂,控制箱也加大,不是很理想。近来,有的采用电子线路型热继电器,其动作电流和动作时间均可任意整定,可以躲过起动电流,省去了专门用于起动的接触器,简化了风机的起动电路.
综上所述,在选择笼型感应电动机的起动方式时,首先考虑选择全压起动,不得已时才采用降压起动等其他方式。如果把可以采用全压起动的电动机,采用了降压起动,无疑是一种浪费,且增加了故障的可能

⑤ 低压抽屉柜成套报价中GCS出线柜TMY铜排选配问题,求解

答:1 根据使用负荷来确定,一般来说三相四线工业厂区,主N排是主排截面积的一半,TMY60*10或与此截面积相近铜排就可以了。而商住区,住宅区多为单相 两相三线负荷,这种类型的N排就要与相排截面积一样大了 TMY100*10

2 PE排截面积依据此表(GB)选择

参考http://wenku..com/view/8aafa918c5da50e2534d7f05.html 。希望能帮到你!

⑥ 负荷120KW的低压配电柜配置

如果配电供电线路用
总开关可以选用HD13-400A的隔离开关或者400A的断路器 分路开关根据用电要求和分路数选用不同大小的断路器或者漏电保护器比如250A的 160A的 100A的 最后再增加一个检修电源和一个备用
仪表方面可以使用6L2或者42L6型电压表一个电流表三个 电压换相开关一个 电流表配相应大小的互感器三个用来测量总电流 电流表300/5的应该就可以了 如果要测分路电流可以把互感器放在分路开关的下面
柜内还要配置零线排和地排要铜排
如果配电机控制用 那要根据具体要求和功能选用了 那样用到就太多了也不一样了要具体情况具体选用电器