当前位置:首页 » 数据仓库 » 如何知道ucat寄存器如何配置
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

如何知道ucat寄存器如何配置

发布时间: 2022-08-28 04:44:54

Ⅰ 当前工作寄存器组是如何设定的

由程序状态标志寄存器psw中的rs1和rs0两位决定的,rs1=0,rs0=0,则选择的是工作寄存器0组,rs1=0,rs0=1,则选择的是工作寄存器1组,rs1=1,rs0=0,则选择的是工作寄存器2组,rs1=1,rs0=1,则选择的是工作寄存器3组,只要改变rs1和rs0的值就可以改变当前工作寄存器。

Ⅱ 求助,如何配置msp430f5529串口收发的寄存器

#include <msp430f5529.h>

void main( void )
{
// Stop watchdog timer to prevent time out reset
WDTCTL = WDTPW + WDTHOLD;
P3SEL = BIT3+BIT4;
UCA0CTL1|=UCSWRST;
UCA0CTL1|=UCSSEL_1;
UCA0BR0=0X03;
UCA0BR1=0X00;
UCA0MCTL=UCBRS_3+UCBRF_0;
UCA0CTL1&=~UCSWRST;
UCA0IE|=UCRXIE;
__bis_SR_register(LPM3_bits + GIE);
}
#pragma vector=USCI_A0_VECTOR
__interrupt void TIMER1_A1_ISR(void)
{
switch(__even_in_range(UCA0IV,14))
{
case 0: break;
case 2:
while((!UCA0IFG&UCTXIFG));
UCA0TXBUF=UCA0RXBUF;
break;
case 4:
break;
default: break;
}
}

Ⅲ 嵌入式linux驱动程序中如何设置控制设备的寄存器

归根揭底
在驱动程序中操作的还是寄存器
在头文件中定义一下寄存器的绝对地址 然后操作寄存器的

举个例子 #define config @0x00000120
然后在驱动程序.C中读写config寄存器 就行了

Ⅳ 在汇编中,要计数或是寻址,怎么知道要用哪个寄存器

想知道他们怎么用,就必须了解他们的用途,他们和其他寄存器如何合作,寄存器寻址和存储器寻址如何完成?单说这几个段寄存器,不涉及其他寄存器,是不能真正了解掌握他们的。学习需要循序渐进,“莫在浮沙筑高台”
---------------
寄存器是中央处理器内的组成部份。寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和位址。在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器(PC)。在中央处理器的算术及逻辑部件中,包含的寄存器有累加器(ACC)。
寄存器是内存阶层中的最顶端,也是系统获得操作资料的最快速途径。寄存器通常都是以他们可以保存的位元数量来估量,举例来说,一个 “8 位元寄存器”或 “32 位元寄存器”。寄存器现在都以寄存器档案的方式来实作,但是他们也可能使用单独的正反器、高速的核心内存、薄膜内存以及在数种机器上的其他方式来实作出来。
寄存器通常都用来意指由一个指令之输出或输入可以直接索引到的暂存器群组。更适当的是称他们为 “架构寄存器”。
例如,x86 指令及定义八个 32 位元寄存器的集合,但一个实作 x86 指令集的 CPU 可以包含比八个更多的寄存器。
寄存器是CPU内部的元件,寄存器拥有非常高的读写速度,所以在寄存器之间的数据传送非常快。
[编辑本段]寄存器用途
1.可将寄存器内的数据执行算术及逻辑运算;
2.存于寄存器内的地址可用来指向内存的某个位置,即寻址;
3.可以用来读写数据到电脑的周边设备。
[编辑本段]数据寄存器
8086 有14个16位寄存器,这14个寄存器按其用途可分为(1)通用寄存器、(2)指令指针、(3)标志寄存器和(4)段寄存器等4类。
(1)通用寄存器有8个, 又可以分成2组,一组是数据寄存器(4个),另一组是指针寄存器及变址寄存器(4个).
数据寄存器分为:
AH&AL=AX(accumulator):累加寄存器,常用于运算;在乘除等指令中指定用来存放操作数,另外,所有的I/O指令都使用这一寄存器与外界设备传送数据.
BH&BL=BX(base):基址寄存器,常用于地址索引;
CH&CL=CX(count):计数寄存器,常用于计数;常用于保存计算值,如在移位指令,循环(loop)和串处理指令中用作隐含的计数器.
DH&DL=DX(data):数据寄存器,常用于数据传递。
他们的特点是,这4个16位的寄存器可以分为高8位: AH, BH, CH, DH.以及低八位:AL,BL,CL,DL。这2组8位寄存器可以分别寻址,并单独使用。
另一组是指针寄存器和变址寄存器,包括:
SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置;
BP(Base Pointer):基址指针寄存器,可用作SS的一个相对基址位置;
SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针;
DI(Destination Index):目的变址寄存器,可用来存放相对于 ES 段之目的变址指针。
这4个16位寄存器只能按16位进行存取操作,主要用来形成操作数的地址,用于堆栈操作和变址运算中计算操作数的有效地址。
(2) 指令指针IP(Instruction Pointer)
指令指针IP是一个16位专用寄存器,它指向当前需要取出的指令字节,当BIU从内存中取出一个指令字节后,IP就自动加1,指向下一个指令字节。注意,IP指向的是指令地址的段内地址偏移量,又称偏移地址(Offset Address)或有效地址(EA,Effective Address)。
(3)标志寄存器FR(Flag Register)
8086有一个18位的标志寄存器FR,在FR中有意义的有9位,其中6位是状态位,3位是控制位。
OF: 溢出标志位OF用于反映有符号数加减运算所得结果是否溢出。如果运算结果超过当前运算位数所能表示的范围,则称为溢出,OF的值被置为1,否则,OF的值被清为0。
DF:方向标志DF位用来决定在串操作指令执行时有关指针寄存器发生调整的方向。
IF:中断允许标志IF位用来决定CPU是否响应CPU外部的可屏蔽中断发出的中断请求。但不管该标志为何值,CPU都必须响应CPU外部的不可屏蔽中断所发出的中断请求,以及CPU内部产生的中断请求。具体规定如下:
(1)、当IF=1时,CPU可以响应CPU外部的可屏蔽中断发出的中断请求;
(2)、当IF=0时,CPU不响应CPU外部的可屏蔽中断发出的中断请求。
TF:跟踪标志TF。该标志可用于程序调试。TF标志没有专门的指令来设置或清楚。
(1)如果TF=1,则CPU处于单步执行指令的工作方式,此时每执行完一条指令,就显示CPU内各个寄存器的当前值及CPU将要执行的下一条指令。
(2)如果TF=0,则处于连续工作模式。
SF:符号标志SF用来反映运算结果的符号位,它与运算结果的最高位相同。在微机系统中,有符号数采用补码表示法,所以,SF也就反映运算结果的正负号。运算结果为正数时,SF的值为0,否则其值为1。
ZF: 零标志ZF用来反映运算结果是否为0。如果运算结果为0,则其值为1,否则其值为0。在判断运算结果是否为0时,可使用此标志位。
AF:下列情况下,辅助进位标志AF的值被置为1,否则其值为0:
(1)、在字操作时,发生低字节向高字节进位或借位时;
(2)、在字节操作时,发生低4位向高4位进位或借位时。
PF:奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为偶数,则PF的值为1,否则其值为0。
CF:进位标志CF主要用来反映运算是否产生进位或借位。如果运算结果的最高位产生了一个进位或借位,那么,其值为1,否则其值为0。)
4)段寄存器(Segment Register)
为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:
CS(Code Segment):代码段寄存器;
DS(Data Segment):数据段寄存器;
SS(Stack Segment):堆栈段寄存器;
ES(Extra Segment):附加段寄存器。
当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器 CS,DS,SS 来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。 所以,程序和其数据组合起来的大小,限制在DS 所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。
以上是8086寄存器的整体概况, 自80386开始,PC进入32bit时代,其寻址方式,寄存器大小,功能等都发生了变化。
=============================以下是80386的寄存器的一些资料======================================
寄存器都是32-bits宽。
A、通用寄存器
下面介绍通用寄存器及其习惯用法。顾名思义,通用寄存器是那些你可以根据自己的意愿使用的寄存器,修改他们的值通常不会对计算机的运行造成很大的影响。通用寄存器最多的用途是计算。
EAX:通用寄存器。相对其他寄存器,在进行运算方面比较常用。在保护模式中,也可以作为内存偏移指针(此时,DS作为段 寄存器或选择器)
EBX:通用寄存器。通常作为内存偏移指针使用(相对于EAX、ECX、EDX),DS是默认的段寄存器或选择器。在保护模式中,同样可以起这个作用。
ECX:通用寄存器。通常用于特定指令的计数。在保护模式中,也可以作为内存偏移指针(此时,DS作为 寄存器或段选择器)。
EDX:通用寄存器。在某些运算中作为EAX的溢出寄存器(例如乘、除)。在保护模式中,也可以作为内存偏移指针(此时,DS作为段 寄存器或选择器)。
同AX分为AH&AL一样,上述寄存器包括对应的16-bit分组和8-bit分组。
B、用作内存指针的特殊寄存器
ESI:通常在内存操作指令中作为“源地址指针”使用。当然,ESI可以被装入任意的数值,但通常没有人把它当作通用寄存器来用。DS是默认段寄存器或选择器。
EDI:通常在内存操作指令中作为“目的地址指针”使用。当然,EDI也可以被装入任意的数值,但通常没有人把它当作通用寄存器来用。DS是默认段寄存器或选择器。
EBP:这也是一个作为指针的寄存器。通常,它被高级语言编译器用以建造‘堆栈帧'来保存函数或过程的局部变量,不过,还是那句话,你可以在其中保存你希望的任何数据。SS是它的默认段寄存器或选择器。
注意,这三个寄存器没有对应的8-bit分组。换言之,你可以通过SI、DI、BP作为别名访问他们的低16位,却没有办法直接访问他们的低8位。
C、段选择器:
实模式下的段寄存器到保护模式下摇身一变就成了选择器。不同的是,实模式下的“段寄存器”是16-bit的,而保护模式下的选择器是32-bit的。
CS 代码段,或代码选择器。同IP寄存器(稍后介绍)一同指向当前正在执行的那个地址。处理器执行时从这个寄存器指向的段(实模式)或内存(保护模式)中获取指令。除了跳转或其他分支指令之外,你无法修改这个寄存器的内容。
DS 数据段,或数据选择器。这个寄存器的低16 bit连同ESI一同指向的指令将要处理的内存。同时,所有的内存操作指令 默认情况下都用它指定操作段(实模式)或内存(作为选择器,在保护模式。这个寄存器可以被装入任意数值,然而在这么做的时候需要小心一些。方法是,首先把数据送给AX,然后再把它从AX传送给DS(当然,也可以通过堆栈来做).
ES 附加段,或附加选择器。这个寄存器的低16 bit连同EDI一同指向的指令将要处理的内存。同样的,这个寄存器可以被装入任意数值,方法和DS类似。
FS F段或F选择器(推测F可能是Free?)。可以用这个寄存器作为默认段寄存器或选择器的一个替代品。它可以被装入任何数值,方法和DS类似。
GS G段或G选择器(G的意义和F一样,没有在Intel的文档中解释)。它和FS几乎完全一样。
SS 堆栈段或堆栈选择器。这个寄存器的低16 bit连同ESP一同指向下一次堆栈操作(push和pop)所要使用的堆栈地址。这个寄存器也可以被装入任意数值,你可以通过入栈和出栈操作来给他赋值,不过由于堆栈对于很多操作有很重要的意义,因此,不正确的修改有可能造成对堆栈的破坏。
* 注意 一定不要在初学汇编的阶段把这些寄存器弄混。他们非常重要,而一旦你掌握了他们,你就可以对他们做任意的操作了。段寄存器,或选择器,在没有指定的情况下都是使用默认的那个。这句话在现在看来可能有点稀里糊涂,不过你很快就会在后面知道如何去做。
指令指针寄存器:
EIP 这个寄存器非常的重要。这是一个32位宽的寄存器 ,同CS一同指向即将执行的那条指令的地址。不能够直接修改这个寄存器的值,修改它的唯一方法是跳转或分支指令。(CS是默认的段或选择器)
上面是最基本的寄存器。下面是一些其他的寄存器,你甚至可能没有听说过它们。(都是32位宽):
CR0, CR2, CR3(控制寄存器)。举一个例子,CR0的作用是切换实模式和保护模式。
还有其他一些寄存器,D0, D1, D2, D3, D6和D7(调试寄存器)。他们可以作为调试器的硬件支持来设置条件断点。
TR3, TR4, TR5, TR6 和 TR? 寄存器(测试寄存器)用于某些条件测试。

Ⅳ 什么是配置寄存器设置

starting-config,进入默认配置
配置模式就是含有你已经配置了的内容,比如:接口ip,路由协议等
默认配置不包含你的配置信息

Ⅵ 如何配置寄存器的地址

配置寄存器是一个16位的虚拟寄存器,用于指定路由器启动的次序、中断参数和设置控制台波特率等。该寄存器的值通常是以十六进制来表示的。

利用配置命令config register可以改变配置寄存器的值。

2. 启动次序

配置寄存器的最后4位,指定的是,路由器在启动的时候必须使用的启动文件所在的位置:

<>

l 0x0001指定从ROM中启动

l 0x0002-0x000F的值则参照在NVRAM配置文件中命令boot system指定的顺序

如果配置文件中没有boot system命令,路由器会试图用系统Flash存储器中的第一个文件来启动,如果失败,路由器就会试图用TFTP从网络上加载一个缺省文件名的文件(由boot域的值确定,如cisco2-4500),如果还失败,系统就从启动Flash中加载启动。

缺省的文件名是采用单词cisco、启动位的值以及路由器类型或处理器的名称构成。例如某台4500上启动字段设为3,那么缺省的启动文件名就是cisco3-4500。

以MC3819(CPU型号,大多采用MOTOROLA)路由器启动顺序为例,下面就是启动的四个阶段:

1. 系统自举

2. 启动加载(读取配置信息和启动Flash文件系统的最小功能)

3. 启动系统IOS镜像文件

4. 接口初始化/系统重启

3. 配置寄存器

3.1. 各位的含义
通过show version命令可以看到路由器配置寄存器的值,缺省情况下为0x2102。这四个数字每一个均有着重要的意义。下面从低到高进行一一的介绍。
第一个2,还原成二进制为0010,这一部分为boot field,对路由器IOS的启动起着至关重要的作用,当boot field 的值为2-15中的任何一个时,路由器属于正常启动,当此值为0时,路由器启动后会进入ROMMON模式,此值为1时,路由器进入到RXBOOT模式(2500路由器的FLASH在配置寄存器的值为2102时属性为只读,如果要升级IOS必须把寄存器的值修改为2101)
0,还原成二进制为0000,这四位中,起关键作用的是第三位(即整个寄存器里面的BIT 7),值为0,当路由器启动后会从NVRAM里面的配置文件调到RAM里运行,值为1,路由器启动后会忽略NVRAM的配置(这就是我们在进行PASSWORD RECOVERY时把寄存器的值改为2142的原因 )
1,还原成二进值为0001,我们来关注BIT8,值为0时,路由器在正常运行模式下CTRL + BREAK无效;值为1,路由器在任何运行模式下只要按下CTRL + BREAK均会立即进入ROMMON模式。
第二个2,还原成二进制为0100,其中BIT13,当值为0时,路由器如果进行网络启动会尝试无穷多次。当值为1时,路由器最多进行5次的网络启动尝试。

寄存器位数 十六进制 功能描述

0-3(启动次序) 0x0000-0x000F 启动字段:0000-停留在引导提示符下(>或rommon >下)0001-从ROM中引导,

4 - 未使用

5 - 未使用

6 0x0040 配置系统忽略NVRAM中的配置信息

7 0x0080 启动OEM位

8 0x0100 设置之后,暂停键在系统运行时无法使用;如果没有设置,系统会进入引导监控模式下(rommon>)

9 -

10 0x0400 全0的就是广播地址

11-12 0x0800到0x1800 控制台线路速度,默认的就是00即9600bps

13 0x2000 如果启动失败,系统以缺省ROM软件启动

14 0x4000 -

15 0x8000 该设置能够启用诊断消息,并忽略NVRAM的内容

典型参数

l 0x2102: 运行过程中中断键被屏蔽,路由器会查看NVRAM中配置的内容以确定启动次序,如果启动失败会采用缺省的ROM软件进行启动。

l 0x2142:恢复密码时候使用。忽略NVRAM配置信息而进入初始配置对话模式中去

3.2. 密码恢复
路由器的密码恢复是将路由器重启、中断再进入ROM监控模式,将设备设置为忽略配置文件,然后再重启,退出初始配置对话模式,配置存储器,然后读出或重新设置密码即可。

根据路由器的处理器不同,需要分两种情况进行处理。

l 适用于精简指令集计算机(RISC):

1. 关掉路由器电源,然后重新打开电源

2. 按下break键或别的键盘组合将路由器置入ROM监控模式。Break键对不同计算机或终端软件是不同的,按键的次序可能是CTRL-D,CTRL-Break等。

3. 在rommon> 提示符下,键入conf reg 0x2142以设置路由器下一次从Flash加载启动的时候不要加载NVRAM中的启动配置信息

4. 键入reset命令,路由器将重启但忽略NVRAM中的配置信息

5. 路由器运行设置对话模式。输入no或按下CTRL-C以跳过初始设置对话模式

6. 在router>提示符下输入enable以进入特权执行模式

7. 使用config memory或者 startup running命令将启动配置信息拷贝到运行配置中去。不要输入config terminal,否则将覆盖NVRAM中的配置信息

8. show running查看配置信息的内容,

9. 输入config terminal进入配置模式,根据需要改变线路密码或enable密码

10. 这时所有的接口都处于关闭状态,因此在每一个需要使用的接口上no shutdown

11. 输入config reg 0x2102命令设置路由器下次按照正常的方式启动

12. 按下CTRL-Z或End退出配置模式

13. write memory或 run start命令保存所有所作的更改

14. 重启路由器并验证密码

非RISC:

1. 关掉路由器电源,然后重新打开电源

2. 按下break键或其他键进入ROM 监控模式

3. 在>提示符下,输入o命令以记录配置寄存器的当前值(通常是0x2102或0x0102)

4. 键入o/r 0x2142设置路由器下次启动不要加载NVRAM中的配置信息

5. 键入i重启路由器

6. 以下步骤和RISC处理器相关步骤一样

4. 路由器工作模式
l ROM监控模式:路由器已启动但是没有加载任何IOS,提示符为:>或rommon>

l 启动模式:启动Flash里含有最小化IOS启动程序,提示符为:router(boot)>

l 用户执行模式:成功加载启动了一份完整的IOS代码,可以显示系统信息、执行基本的测试等。不能查看配置文件和使用debug命令

l 特权执行模式:完全访问的第二级模式。可以现实系统设置和状态信息,可以进入配置模式,可以运行debug命令

l 配置模式:在enable模式中输入config terminal命令进入配置模式。可以对接口、路由器以及线路配置进行设置

l 初始配置对话模式;启动时候,如果路由器没有进行配置(可能是因为路由器是新的或配置文件被write erase命令删除了)的话,进入系统配置对话模式。可以依次进行主机名、执行密码以及enable密码的设置;还可对网络管理接口的IP和子网掩码配置。然后保存到NVRAM中去。

Ⅶ 说明AVR单片机I/O口3个寄存器的名称和作用是什么当I/O口用于输入和输出时,如何设置和应用这3个寄存器

拿A口作例子
DDRA是数据方向寄存器,用来选择引脚的方向,某位为1配置为输出,某位为0配置为输入。
DDRA相应位输出,PORTA用来设置端口电平。
DDRA相应位输入,PORTA配置上拉电阻,为1带上拉电阻,为0不带上拉电阻。
输出:
DDRA=0xFF;//全作输出,设置一次即可
PORTA=0xFF;//全为1,全输出高电平
PORTA=0;//全为0,全输出低电平
输入:
DDRA=0;//全作输入,设置一次即可
PORTA=0xFF;//全带上拉电阻,设置一次即可
PORTA=0;//全不带上拉电阻,设置一次即可

a=PINA;//读A口。不论何时都可以读PINA来获得端口电平,不过因为锁存会有延时

注意,因为一个端口有8个引脚(少数不够8个脚),所以可以精确控制某一位或者某几位而不影响别的位。
DDRA|=1;//A口第0位变成输出,不影响别的位,也不管第0位原来是输出还是输入
DDRA&=~1;//A口第0位变成输入,不影响别的位,也不管0位原来是输出还是输入
PORTA类似
a=PINA;//一次读8个引脚状态,在程序中再处理a的相应位好了。

Ⅷ 欧姆龙PLC中,如何知道输入输出点的寄存器类型和地址

以CJ2M/CJ2M为例:
DI模块:寄存器16位,前缀符号为I,可以按字或位访问。
DO模块:寄存器16位,前缀符号为Q,可以按字或位访问。
AI模块:寄存器16位,前缀符号为I,按字访问,数值范围0~4000。
DO模块:寄存器16位,前缀符号为Q,按字访问,数值范围0~4000。

DI和DO模块的地址按照其模块安装位置排列。比如从左到右分别安装了ID211、ID211、OC201三个模块,它们的地址分别是:I0、I1和Q2。
AI、AO模块的地址要稍微复杂一些,具体的还是自己看编程手册吧。
如有需要,可以留下邮箱。我给你发例子程序。(需要给我加分啊!)

Ⅸ STC11F02E的单片机,我想使用内部波特率发生器,不知道怎样配置其寄存器要求9600的波特率。

需要配置BRT和AUXR寄存器,不知道寄存器的看芯片手册
BRT = 0XFD; //设置独立波特率发生器的重装值
AUXR = 0X11;//设置独立波特率发生器,并启用独立波特率发生器