当前位置:首页 » 数据仓库 » 地理信息数据库设计
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

地理信息数据库设计

发布时间: 2022-08-20 22:51:04

Ⅰ 地理信息数据库建库顺序

建立省级基础地理信息数据库,必然要设计和开发基础地理信息数据库管理系统,并解决大数据量、多种类型空间数据的集成管理问题.介绍和讨论最近完成的浙江省基础地理信息数据库(1 : 10 000示范库)管理系统中诸如系统总体框架、系统功能、空间数据序结构、海量多源数据组织、空间索引建立等有关技术问题.试验结果确定了比较合适的空间索引数据,从而获得了对海量数据较好的访问性能,示范库的建设工作达到了预期的目的.
可以详细的看
http://bbs.3s001.com/?fromuid=1061470

Ⅱ 数据库技术的应用领域有哪些

1、多媒体数据库

这类数据库主要存储与多媒体相关的数据,如声音、图像和视频等数据。多媒体数据最大的特点是数据连续,而且数据量比较大,存储需要的空间较大。

2、移动数据库

该类数据库是在移动计算机系统上发展起来的,如笔记本电脑、掌上计算机等。该数据库最大的特点是通过无线数字通信网络传输的。移动数据库可以随时随地地获取和访问数据,为一些商务应用和一些紧急情况带来了很大的便利。

3、数据库技术在多媒体技术方面的应用。

相对比传统的数据库技术,这种结合了多媒体技术的数据库,以多媒体技术的优势使得数据界面的丰富化并对于两者结合所可能带来的相关技术问题给予了充分解决,相关数据库方面的安全性得到了很好的提高。

多媒体数据库设计中有很多问题需要解决:用户接口支持方面、数据库组织与存储方面、媒体种类增加方面信息的分布影响方面。

4、信息检索系统

信息检索就是根据用户输入的信息,从数据库中查找相关的文档或信息,并把查找的信息反馈给用户。信息检索领域和数据库是同步发展的,它是一种典型的联机文档管理系统或者联机图书目录。

5、分布式信息检索

这类数据库是随着Internet的发展而产生的数据库。它一般用于因特网及远距离计算机网络系统中。特别是随着电子商务的发展,这类数据库发展更加迅猛。

许多网络用户(如个人、公司或企业等)在自己的计算机中存储信息,同时希望通过网络使用发送电子邮件、文件传输、远程登录方式和别人共享这些信息。分布式信息检索满足了这一要求。

Ⅲ 什么是地理信息系统的数据库

(一)地理信息系统(Geographic Information System或 Geo-Information system,GIS)有时又称为“地学信息系统”。它是一种特定的十分重要的空间信息系统。它是在计算机硬、软件系统支持下,对整个或部分地球表层(包括大气层)空间中的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述的技术系统。位

置与地理信息既是LBS的核心,也是LBS的基础。一个单纯的经纬度坐标只有置于特定的地理信息中,代表为某个地点、标志、方位后,才会被用户认识和理

解。用户在通过相关技术获取到位置信息之后,还需要了解所处的地理环境,查询和分析环境信息,从而为用户活动提供信息支持与服务。

地理信息系统(GIS,Geographic Information System)是一门综合性学科,结合地理学与地图学以及遥感和计算机科学,已经广泛的应用在不同的领域,是用于输入、存储、查询、分析和显示地理数据的计算机系统,随着GIS的发展,也有称GIS为“地理信息科学”

(Geographic Information Science),近年来,也有称GIS为"地理信息服务"(Geographic

Information

service)。GIS是一种基于计算机的工具,它可以对空间信息进行分析和处理(简而言之,是对地球上存在的现象和发生的事件进行成图和分析)。

GIS 技术把地图这种独特的视觉化效果和地理分析功能与一般的数据库操作(例如查询和统计分析等)集成在一起。

(二)地图数据库(cartographic database)是以地图数字化数据为基础的数据库,是存储在计算机中的地图内容各要素(如控制点、地貌、土地类型、居民地、水文、植被、交通运输、境界等)的数字信息文件、数据库管理系统及其它软件和硬件的集合。

Ⅳ  基础地理数据库建设

1.基础地理数据库建库原则

(1)满足专题研究的特殊需求。河南省1:500000~1∶100000数字地理底图的制作,是根据《河南省国土资源遥感综合调查与信息化工程总体设计书》的要求,应用地理信息系统技术,为其提供数字式基础地理控制信息。基础地理控制信息用于专题信息的定位,正确表现其与周围地理环境的关系的分布规律,综合地反映自然地理形态和社会经济概况。同时,通过非空间数据(属性数据)录入,实现空间数据与非空间数据的对应联结。

(2)以国家基础地理信息中心“数字地图数据库”为基础,根据项目的需要,根据现时资料进行了部分内容的补充、修编。

2.地理要素选取标准

(1)水系

图上所有双线河及河心岛,单线河5级以上基本全部选取。河网密度大的在保证体现其河系基本形态的原则下,进行了删减,选取图上面积大于10 mm2的湖泊和水库。

(2)行政区划

选取县级以上行政界线。

(3)居民地

县级以上政府所在地全部选取。地级以上政府所在地按真型居民地范围选取。镇级居民地按经差30′、纬差20′范围内3~5个居民地的标准选取。在部分人口稀疏区选取了部分村级居民地。

(4)交通

铁路及高等级公路全部选取,并按高速公路、国道、省道进行分类;其他公路按照与居民地相连通的原则选取。根据现势资料对近年来新建高速公路进行补充。由于数据及比例尺的不同,故补充信息的精度低于1∶250000比例尺的精度。

(5)地貌

地形等高线高差平原地区为50 m、100 m;低山区为300 m、500 m;中山区为1000 m、1500 m、2000 m。主要山峰及高程,按经差30′、纬差20′范围内选取3个山峰或高程点的标准。

3.地理要素分类代码

1∶500000数字地理底图要素分类代码采用中华人民共和国国家标准《国土基础信息数据分类与代码》(GB/T13923-92)。国土基础信息数据分为九个大类,并依次细分为小类,一级和二级。分类代码由六位数字码组成,其结构如下:

遥感·河南省国土资源综合调查与评价

大类码、小类码、一级代码和二级代码分别用数字顺序排列。识别位由用户自行定义,以便于扩充。在1∶500000数字地理底图数据库中没有用到识别位,故用前五位数字表示要素分类代码。

(1)1:500000数字地理底图数据所用到的大类码意义

2=水系;3=居民地;4=交通;6=境界;7=地形。

(2)行政区划代码

1∶500000数字地理底图数据库中县级以上行政区划代码采用中华人民共和国国家标准《中华人民共和国行政区划代码》(GB/T2260-1995)。属性表中数据项为“行政区划代码”。县级以上行政区划代码结构如下:

a.采用六位数字代码。按层次分别表示我国各省(自治区、直辖市)、地区(市、州、盟)、县(区、市、旗)的名称。

b.行政区划代码从左至右的含义。第一、二位表示省(自治区、直辖市);第三、四位表示省辖市(市、州、盟及国家直辖市所属市辖区和县的总码)其中01~20、51~70表示省辖市;21~50表示地区(州、盟);第五、六位表示县(市辖区、地辖市、省直辖县级市、镇),其中01~18表示市辖区或地辖市,21~80表示县(镇),81~99表示省直辖县级市。

4.投影、坐标系、高程系

数字地理底图数据库采用高斯-克吕格(等角横切圆柱)投影,中央经线为113°30 ′00″,坐标系采用1954年北京坐标系,高程系采用1956年黄海高程系。

5.地理要素分层

河南省基础地理数字地图图层文件分类详见表5.3.1。

表5.3.1河南省基础地理数字地图图层文件分类表

6.河南省基础地理数据层描述

(1)基本信息图层名(L2HN01J)

数据描述 表5.3.2描述30′×20 ′的经纬网线及其经纬度值。

表5.3.2基本信息属性表

数据项代码及其描述95202=经线;95203=纬线。

(2)水系信息图层名

a.水系信息图层名(L2HN02S)

数据描述以多边形表示的水系要素,如河流、湖泊、水库、水塘等。

数据项代码及其描述22012=常年双线河;22010=运河;23000=湖泊;24010=水库;24150=水塘;25050=水中岛。

河流、湖泊、水库属性见表5.3.3。

表5.3.3河流、湖泊、水库属性表

b.水系信息图层名(★2HN022H、L2HN02CH)

数据描述 以线表示的水系要素,包括河流、湖泊、水库、运河等。

数据项代码及其描述21011=常年单线河;21012=常年双线河岸线;21021=常年时令河;22010=运河岸线;23000=湖泊岸线;24010=水库岸线;24150=池塘岸线。

河流、海岸线属性见表5.3.4。

表5.3.4河流、海岸线属性表

(3)交通信息图层名

a.交通信息图层名(L2HN03T)

数据描述表5.3.5描述主要铁路和铁路线起止点城市名。

数据项代码及其描述41000=铁路;41010=电气化铁路;41011=复线铁路;41012=单线铁路;41013=建筑中铁路;41030=窄轨铁路。

铁路图层属性见表5.3.5。

表5.3.5铁路图层属性表

b.交通信息图层名(L2HN03G、L2HN03GD、L2HN03SD)

数据描述表5.3.6描述高速公路、国道、省道及起止点城市名称等。

数据项代码及其描述42010=高速公路;42011=建筑中高速公路;0=一级公路(国道);42070=主要公路(省道);42080=一般公路;42110=大路;42130=小路。

公路图层属性见表5.3.6。

表5.3.6公路图层属性表

(4)居民地图层名

a.居民地图层名(L2HN04X)

数据描述 表5.3.7描述乡镇级以上居民地及其行政区划代码名称等。

数据项代码及其描述31020=省政府驻地;31030=地级市政府驻地;31060=县政府驻地;31080=镇政府驻地;31090=乡政府驻地。

镇级以上居民地属性见表5.3.7。

表5.3.7镇级以上居民地属性表

b.居民地图层名(L2HN04D)

数据描述表5.3.8描述地级以上真型居民地及其类别和名称。

地区级居民属性见表5.3.8。

表5.3.8地区级居民地属性表

(5)政区图层名

a.政区图层名(L2HN05X、L2HN05D、L2HN05X)

数据描述 表5.3.9描述省级行政界、地级行政界、县级行政界、地区界等。

表5.3.9境界属性表

b.政区图层名(L2HN05DQ、L2HN05XD)

数据描述表5.3.10描述地级行政区、县级行政区。

表5.3.10行政区属性表

(6)地貌图层名

a.地貌图层名(L2HN06D)

数据描述表5.3.11描述等高线及其高程值。

数据项代码及其描述71000=等高线。

表5.3.11地形等高线属性表

b.地貌图层名(L2HN06G)

数据描述表5.3.12描述主要山峰的名称及高程值,主要高程点的高程值。

数据项代码及其描述72000=山峰。

表5.3.12山峰高程点属性表

7.工作流程

工作流程包括预处理、图形数字化、图形编辑、拓扑关系建立、属性输入、投影变换、输出图形等步骤,各步骤间均经过检查修改等过程。其工艺流程见图5.3.1。

图5.3.1河南省基础地理数字地图制作工艺流程图

Ⅳ 地理信息系统数据库,流程图

这个问题太抽象了,地理信息数据库也要讲类别啊

Ⅵ 数据库的应用领域有哪些

从软件领域说吧,无论是C/S、B/S架构的软件,只要涉及存储大量数据,一般后台都需要数据库支撑; 在电信、金融、零售行业应用特别广泛; 本人从事电信行业开发,所以只能提出一些肤浅的见解,希望有帮助

Ⅶ 数据库具体应用的实例有哪些

数据库的应用领域

1、多媒体数据库: 这类数据库主要存储与多媒体相关的数据,如声音、图像和视频等数据。多媒体数据最大的特点是数据连续,而且数据量比较大,存储需要的空间较大。

2、移动数据库: 该类数据库是在移动计算机系统上发展起来的,如笔记本电脑、掌上计算机等。该数据库最大的特点是通过无线数字通信网络传输的。移动数据库可以随时随地地获取和访问数据,为一些商务应用和一些紧急情况带来了很大的便利。

3、空间数据库: 这类数据库目前发展比较迅速。它主要包括地理信息数据库(又称为地理信息系统,即GIS)和计算机辅助设计(CAD)数据库。其中地理信息数据库一般存储与地图相关的信息数据;计算机辅助设计数据库一般存储设计信息的空间数据库,如机械、集成电路以及电子设备设计图等。

4、信息检索系统: 信息检索就是根据用户输入的信息,从数据库中查找相关的文档或信息,并把查找的信息反馈给用户。信息检索领域和数据库是同步发展的,它是一种典型的联机文档管理系统或者联机图书目录。

5、分布式信息检索: 这类数据库是随着Internet的发展而产生的数据库。它一般用于因特网及远距离计算机网络系统中。特别是随着电子商务的发展,这类数据库发展更加迅猛。

许多网络用户(如个人、公司或企业等)在自己的计算机中存储信息,同时希望通过网络使用发送电子邮件、文件传输、远程登录方式和别人共享这些信息。分布式信息检索满足了这一要求。

6、专家决策系统: 专家决策系统也是数据库应用的一部分。由于越来越多的数据可以联机获取,特别是企业通过这些数据可以对企业的发展作出更好的决策,以使企业更好地运行。由于人工智能的发展,使得专家决策系统的应用更加广泛。

(7)地理信息数据库设计扩展阅读

对数据库系统的基本要求是:

①能够保证数据的独立性。数据和程序相互独立有利于加快软件开发速度,节省开发费用。

②冗余数据少,数据共享程度高。

③系统的用户接口简单,用户容易掌握,使用方便。

④能够确保系统运行可靠,出现故障时能迅速排除;能够保护数据不受非受权者访问或破坏;能够防止错误数据的产生,一旦产生也能及时发现。

⑤有重新组织数据的能力,能改变数据的存储结构或数据存储位置,以适应用户操作特性的变化,改善由于频繁插入、删除操作造成的数据组织零乱和时空性能变坏的状况。

⑥具有可修改性和可扩充性。

⑦能够充分描述数据间的内在联系。

Ⅷ 地质-生态环境空间数据库建库标准

一、范围

本标准定义了山东半岛城市群地质-生态环境空间数据库的数据结构框架、数据实体及实体之间的相互关系,定义了成果图件空间数据的要素集、要素类、要素分类代码及属性数据项,可用于山东半岛城市群项目数据的采集、存储、管理、共享及数据库建设。

二、规范性引用文件

下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

GB / T 1. 1—2000 标准化工作导则 第 1 部分: 标准的结构和编写规则

GB / T 13923—92 国土基础信息数据分类代码

GB / T 2260—1999 中华人民共和国行政区划代码

GB / T 2659 世界各国和地区名称代码

GB / T 9649—88 地质矿产术语分类代码

DZ / T 0160—95 1∶ 200000 地质图地理底图编绘规范及图式

DZ / T 0197—1997 数字化地质图图层及属性文件格式

GB 958—99 区域地质图图例 ( 1∶ 50000)

DZ / T 0179—1997 地质图用色标准及用色原则

DDB 9702 GIS 图层描述数据内容标准

GB 17108—1997 海洋功能区划技术导则

中国地质调查局 地质图空间数据库建设工作指南 ( 2. 0 版)

中国地质调查局 1∶ 20 万区域水文地质图空间数据库图层及属性文件格式工作指南

三、术语和定义

本标准涉及的主要术语如下:

1. 地理信息数据库 ( geodatabase)

采用标准关系数据库技术来管理、表现地理信息的空间数据库。

2. 数据包 ( data package)

逻辑相关数据实体的集合,本标准中将山东半岛城市群项目数据整体视作一个数据包。

3. 数据实体 ( data entity)

描述专业领域同一类型数据的数据元素的集合,如地质构造数据实体,概念上等同于UML 的类。数据实体可通过一个或多个相关的数据元素及相关的数据实体定义。

4. 数据集 ( dataset)

逻辑相关数据组成的数据集合,如一幅地图可视作一个数据集,数据集是一个逻辑上的整体。

5. 数据子集 ( subdataset)

按一定规则划分的数据集中逻辑相关数据的集合,本标准中的一个数据子集对应一个地图要素类,数据子集类别对应地图上的图层划分。

6. 空间数据 ( spatial data)

用来表示空间实体的位置、形状、大小和分布特征诸方面信息的数据。空间数据不仅具有实体本身的空间位置及形态信息,而且还有实体属性和空间关系 ( 如拓扑关系)信息。

7. 空间参照系 ( spatial reference)

对地理信息数据的空间范围和投影的描述。

8. 地图 ( map)

地理信息的图形描述,包括地理信息数据和地图元素,如标题、图例和比例尺等。本标准中将一幅地图视作一个数据集进行管理,并通过一组要素集 ( 要素类、关系类、属性表的集合) 、空间参照系、地图样式定义地图的数据内容及显示方式。

9. 图层 ( layer)

地图上特定区域范围内按一定规则划分的相似要素类的集合,如水系、城镇。图层为要素类的专题组合及表现,一个图层定义了它包含地理信息数据的地理位置和显示方法。

10. 要素 ( feature)

现实世界中的对象在地图图层中的表示,如地图中表示道路的一条线。

……

四、缩略语和符号

1. 缩略语

ARD 图外整饰要素 ( Elements Around Map)

BMAP 地理底图 ( Basemap)

BOU 境界、边界 ( Bourn)

CD 代码 ( Code)

COL 综合柱状图 ( Colomnar Chart)

DT 日期 ( Date)

ELE 地形高程 ( Elevation)

……

2. UML 类图符号

山东半岛城市群地区地质-生态环境与可持续发展研究

3. ER 图符号

山东半岛城市群地区地质-生态环境与可持续发展研究

五、基于 UML 的 Geodatabase 的空间数据模型

构建地质数据的空间数据模型是建立地质信息数据库的一项关键工作,是数据库建设的基础。Geodatabase 数据模型作为 ArcGIS 软件平台的一种通用数据形式,目前已被国内外众多地质空间数据库的建设所采用。数据建模也已经成为地质数据库建立的一项主要内容。

目前针对地质、水文、矿产、海洋等多个领域的专业 Geodatabase 数据模型都已存在,国内目前应用于区域地质 - 生态环境调查的综合地质 - 生态环境空间数据模型还比较少见。因此,本项目在分析国内外目前比较通用的各专业数据模型的基础上,提出了专门面向山东半岛城市群地质 - 生态环境空间数据库建设的 Geodatabase 数据模型。

在 Geodatabase 数据模型中,允许定义要素之间类型的关联,Geodatabase 对空间数据管理以关系数据库为基础,利用商用关系数据库成熟的数据处理能力对空间数据和非空间数据进行统一管理。Geodatabase 使用面向对象的方法,使得要素可以具有自己的行为和属性,并且要素类具有继承性、多态性和封装性。这样,以更加适合自然的行为和人的思维方式去组织数据,更精确地模拟真实世界。

1. Geodatabase 数据模型的结构体系

Geodatabase 数据模型作为一种新型的面向对象的数据模型,融入了面向对象的核心技术,如类 ( Class) 、对象 ( Object) 、封装 ( Encapsulation) 、继承 ( Inheritance) 和多态( Polymorphism) 等思想和技术。Geodatabase 数据模型的目的就是为了让用户能更容易、更自然地表示 GIS 数据特征和更容易地建立特征之间的各种关系。Geodatabase 空间数据库数据模型如表 12 -1 所示。

表 12 -1 Geodatabase 内部结构

续表

2. Geodatabase 数据库模型的特点

Geodatabase 有两种,即个人与多用户 Geodatabase。

1) 个人 Geodatabase 支持内置于 ArcGIS 系统并提供对本地数据的访问,适用于面向项目的 GIS,在 Microsoft Access 数据库平台上实现,提供生成和更新 Access 数据库的服务,可处理小型或适中的 Access 数据库。但个人 Geodatabase 的存储容量有不能超过 2GB的限制。

2) 多用户的 Geodatabase 是通过 ArcSDE ( ARC 空间数据库引擎) 实现的。ArcSDE可以生成和访问从小型到大型的 Geodatabase 并提供关系型数据的开放界面。

与标准的关系数据库相比,Geodatabase 简化了地理数据建模的工作,因为它包含有用于建模地理信息的通用模型。

此外,Geodatabase 还同时支持两个视图,即对象视图和关系视图。这样就综合了对象视图和关系视图两者的优点。对象视图在 Geodatabase 中占据主导地位,其目的是提供一个接近于逻辑数据模型的数据模型,因而更接近于现实。关系视图则用于一些 Geodata-base 数据的常规处理,它表示的是一些简单地理对象的特征。

3. 基于 UML 的 Geodatabase 数据模型的设计

( 1) Geodatabase 数据库设计的方法

在 ArcGIS 中,建立地理数据库可以有多种方法。借助 ArcCatalog,可以通过 3 种方式建立新的地理数据库。

第一种方法是建立一个新的地理数据库。

第二种方法是移植已经存在的数据到地理数据库中去。

第三种方式是用 CASE 工具来建立地理数据库。

( 2) 面向对象和 UML ( 统一建模语言)

面向对象是软件程序设计中的一种新思想,它能使程序设计更加贴近现实,并且花费更小的精力。面向对象方法学包含了对象 ( object) 、类 ( classification) 、继承 ( inherit-ance) 、聚集和消息 ( messages) 的概念。

UML ( Unified Modeling Language,统一建模语言) 是一种基于面向对象方法的建模语言,具有创建系统的静态结构和动态行为等多种结构模型的能力,是一种通用的建模语言。在 Geodatabase 的设计中,主要用到描述系统静态结构的类图。类图的节点表示系统中的类及其属性和操作。类图的边表示类之间的联系,包括继承、关联、依赖、聚合等。

类的表示由 3 个部分方框组成,上面部分给出了类的名称; 中间部分给出了该类的单个对象的属性; 下面部分给出了一些可以应用到这些对象的操作。类的表示如图 12 -5。

图 12 -5 类的表示

关联是对类的实例之间联系的命名,与关联有关的内容有关联元数 ( Degree) 、关联角色 ( Role) 和重复度 ( Multiplicity) 。

UML 中有 3 种类型的类: 抽象类 ( abstract class) 、可创建化类 ( creatable class) 和可实例化类 ( instantiable class) 。

UML 类图的符号见本节第四部分内容。

( 3) 面向对象的地理数据模型的设计方法

利用 CASE 工具进行 Geodatabase 数据模型设计的步骤具体为:

1) 在 CASE 工具中进行 UML 建模。

2) 将设计好的 UML 模型载入资料库 ( repositry) 。

3) 利用 GIS 软件提供的 CASE 接口,根据资料库中的 UML 模型生成空间数据库结构。至此,Geodatabase 空间数据库结构初具雏形。在 GIS 软件环境中,现在可以将新生成的数据或已有的数据进行格式转换后载入到设计好的 Geodatabase 空间数据库中,由空间数据库统一管理。利用 CASE 工具来建立 Geodatabase 地理数据库的工作流程见图12 - 6。

图 12 -6 利用 CASE 工具来建立 Geodatabase 地理数据库的工作流程

六、地质 - 生态环境 Geodatabase 数据模型的建立

( 一) 数据模型设计的依据

根据山东半岛城市群地质 - 生态环境调查评价研究工作的需要和山东半岛城市群地质 - 生态环境 GIS 数据库系统的整体设计要求,结合各地质 - 生态环境要素的成果图件和文本报告资料,利用 UML 设计工具 Microsoft Visio 完成了山东半岛城市群地质 - 生态环境Geodatabase 数据模型的设计 ( 图 12 - 7) 。

图 12 -7 山东半岛城市群地质 - 生态环境 Geodatabase 数据模型的设计依据

( 二) 山东半岛城市群地质 - 生态环境数据库的 UML 类图

1. 数据集管理

山东半岛城市群项目数据包中的数据以数据集为单元统一组织管理,数据集管理方式就是将一份文字报告或一幅成果图件视作逻辑上的整体,用 “数据集编号”唯一标识,通过数据集实体统一管理。同一数据集的不同实体,例如成果图中的图层,通过实体中的“数据集编号”元素关联。

2. 空间数据管理

山东半岛城市群项目数据包由文字报告及成果图件两大类数据组成,并以成果图件为主,成果图件是一空间数据实体,统一存储在面向对象的地理信息数据库中,以图幅为单元进行管理。

3. 数据包总体结构

本标准中山东半岛城市群项目数据包总体结构用 UML 模型来体现,山东半岛城市群项目数据包由 “成果报告”、“元数据”及 “存档文件”3 个数据实体 ( UML 类) 组成,通过 “数据集”实体统一组织管理。“成果报告”由它的继承类 “文字报告”及 “成果图件”定义,为研究成果数据包的主体数据。“元数据”及 “存档文件”为数据集的辅助数据,“元数据”存放文字报告或成果图件的元数据; “存档文件”存放文字报告或成果图件的相关存档文件,供数据集数据的整体下载与利用。

一个 “数据集”实体对应一个项目的 “文字报告”或一幅 “成果图件”; 每一个数据集必须有一个而且只能有一个 “元数据”文件; “存档文件”是 “数据集”的可选聚合实体。

“成果图件”是一空间数据实体,由特定的面向对象地理信息数据库 ( Geodatabase)统一存储、管理。一幅 “成果图件”数据内容由一组空间要素集 ( 基础地理要素集、地质要素集、地球物理要素集、地球化学要素集、辅助要素集) 组成,空间要素集数据类型包括矢量 ( Feature Dataset,简称要素集) 、栅格 ( Raster Dataset) 和 TIN ( TIN Dataset)3 种。

4. 数据集编号的编码规则

数据集编号由数据库管理方统一编码,必须保证编号在数据库中唯一,编号中的英文字母全部大写。

山东半岛城市群项目数据集按 “项目或图幅—提交单位—提交年份—成果序号”编码。数据集编号的字符串长度不得超过 22 位,以保证 “数据集编号 + 要素类名”的字符串总长度不超过 30 位。

5. 成果图件要素类命名规则

要素类名字符串总长度不得超过 8 位。

矢量要素类按 “要素集类型 + 要素类名 + 要素类型”命名,全部用大写英文字母表示。“要素集类型”用一位代码表示,如 “L”表示基础地理要素集。栅格数据集数据以“要素集类型 + 要素类型”命名,要素类型用代码 RAS 表示,如 “DRSRAS”表示遥感栅格数据。TIN 数据集数据以 “要素集类型 + 要素类型”命名,要素类型用代码 TIN 表示,如 “LELETIN”表示地面高程 TIN。

6. 成果图件要素分类编码规则

要素分类编码用以标识不同的要素类要素,保证地图要素存储、交换、显示的一致性。

( 1) 分类编码原则

1) 科学性、系统性;

2) 相对稳定性;

3) 不受地图比例尺的限制;

4) 完整性和可扩展性;

5) 适用性。

( 2) 分类编码方法

成果图件要素类中不同要素的分类编码采用中华人民共和国国家标准 《国土基础信息数据分类与代码》的编码结构,结构如下:

山东半岛城市群地区地质-生态环境与可持续发展研究

大类码、小类码、一级代码和二级代码分别用数字顺序排列。识别位由用户自行定义,以便于扩充。在本项目中编码分两类: ①基础地理要素编码; ②地质专业要素编码( 地质、地球物理、地球化学等) 。

( 三) 山东半岛城市群项目数据实体及实体关系

山东半岛城市群项目数据实体类及其代码见表 12 -2,实体类名代码按实体类的英文名缩略语编码,本标准中山东半岛城市群项目数据实体及实体间关系用 UML 及实体关系图 ( ERD) 来体现。

表 12 -2 山东半岛城市群项目数据实体类及其代码

1. 数据集实体 ( MGRD_Dataset)

山东半岛城市群项目数据包中的 “数据集”实体用来统一组织管理 “文字报告”、“成果图件”、“元数据”及 “存档文件”数据实体,“数据集”实体中的数据项包含数据集的归属项目、提交日期、提交单位、主题类别及地理范围等可用于数据集检索的信息。一个 “数据集”实体对应一个项目的 “文字报告”或一幅 “成果图件”,“数据集”实体与 “元数据”实体间为一一对应关系,与 “存档文件”实体间为一对多的对应关系。“数据集”实体的数据内容及其存储表通过 “数据子集”实体分类定义,主键 [数据集编号]可用于同一数据集中不同 “数据子集”的关联,也可用于数据集对应的 “元数据”及“存档文件”的关联。

2. 成果报告数据实体 ( MGRD SumTmaryReport)

研究成果报告数据实体包括项目的最终综合文字报告及相应的成果图件。

( 1) 文字报告数据实体 ( SR_WordReport)

文字报告数据实体包括 “文字报告”及图像格式的 “报告附图”数据实体,文字报告及附图均以二进制大对象存储。数据实体之间通过 [数据集编号] 关联。

( 2) 成果图件数据实体 ( SR_hemeMapSet)

“成果图件”数据实体是一空间数据实体,主要以矢量图形格式存储在地理信息数据库中,其中也包括栅格数据及 TIN 数据用于数据的空间分析。

1) 要素集: “成果图件” 数据实体以图幅为数据集单元进行管理; 图幅内容以分属不同空间要素集 ( 基础地理要素集、地质要素集、地球物理要素集、地球化学要素集、辅助要素集) 的要素类组合,同一个要素集内的要素类享有同一空间参照系,相互具有拓扑关系。

2) 要素类: 一个要素类的存储单元为关系数据库中的一个数据表,要素类图元类型有点、线、面、注记 4 种,一个要素类只能包含一种图元类型。本标准中基础地理要素集、地质要素集、地球物理要素集、地球化学要素类、辅助要素集的要素类用 UML 类图体现。

3) 图层: 图层为要素类的专题组合及表现,不同图层的组合即构成了可视化 “成果图件”。本项目通过对数据来源的分析,提出并建立了适合山东半岛城市群地区地质 - 生态环境调查与评价特点的空间数据库数据图层。考虑到空间数据的应用和相互转换,每一图层均应建立相应的内部属性表,属性表必须包含一些基本字段内容,根据具体任务的不同,需灵活扩充内部属性表字段内容。 “成果图件”数据实体的图层划分及其代码见表 12 -3。

4) 要素类属性: 要素类的要素特征由属性表定义,属性表每一行对应一个要素,每一列包含要素的一个特征信息。

表 12 -3 成果图件数据实体的图层划分及其代码

5) 要素类要素分类: 同一要素类中不同类型的要素用不同的代码标识,通过属性表中的 “编码” ( GEO_CODE) 数据项体现,以便地图中同一要素类要素的分类显示,并保证地图要素存储、交换、显示的一致性。在本项目中成果图件的基础地理要素分类代码采用中华人民共和国国家标准 《国土基础信息数据分类与代码》,并根据需要进行了扩充,地质专业要素分类代码全部由本标准定义,见表 12 -4 和表 12 -5。

表 12 -4 基础地理要素分类代码

表 12 -5 地质专业要素分类代码

图12 -8 山东半岛城市群项目数据包UML类图

图层编码中,第一位为图类代码,L 代表基础地理类图层; D 代表基础地质类图层;G 代表国土资源图层; W 代表地壳稳定性图层; S 代表水资源图层; H 代表海岸带图层;T 代表生态环境图层; R 代表人类工程活动图层; F 代表分析评价图层; Y 代表预测与防治图层; Z 代表辅助图层。第二位为比例尺代码,图件均采用 1∶ 50 万比例尺,代码为 B。第三位到第五位为图名的汉语拼音首字母缩写。第六位为图层数字编号。

( 四) 山东半岛城市群项目 UML 类图

1. 山东半岛城市群项目数据包 UML 类图

UML 类图见图 12 - 8。

2. 成果图件要素集 UML 类图

1) 基础地理要素集实体 UML 类图 ( FD_Geography) 。本项目将基础地理要素分为地理网格、居民地、境界、交通网、地貌地形、水系、海洋海岸带、行政区划、栅格数据等 9个抽象要素类,建立了 “各市基本情况”对象类,与表明各地区域的 “城市群”类相连接,将山东半岛城市群8 个地级市的地理位置数据与地区的基本资料数据有机地联系起来。

2) 地质要素集实体 UML 类图 ( FD_Geology) 。

3) 国土资源要素集实体 UML 类图 ( FD_LandResource) 。

4) 水资源要素集实体 UML 类图 ( FD_WaterResource) 。

5) 生态环境要素集实体 UML 类图 ( FD_Environment) 。

6) 辅助要素集实体 UML 类图 ( FD_Ancillary) 。

3. 山东半岛城市群项目数据实体关系图

1) 数据集实体 ER 图 ( MGRD_DataSet) 。

2) 研究成果报告数据实体 ER 图 ( MGRD_SummaryReport) ( 图 12 - 9) 。

图 12 -9 研究成果报告数据实体 ER 图 ( MGRD_SummaryReport)

七、山东半岛城市群项目数据包数据字典

( 一) 数据集实体 ( MGRD_DataSet)

山东半岛城市群地区地质-生态环境与可持续发展研究

( 二) 研究成果报告数据实体 ( MGRD_SummaryReport)

1. 文字报告数据实体 ( SR_WordReport)

山东半岛城市群地区地质-生态环境与可持续发展研究

2. 成果图件数据实体 ( SR_ThemeMapSet)

( 1) 基础地理要素集实体 ( FD_Geography)

山东半岛城市群地区地质-生态环境与可持续发展研究

( 2) 地质要素集实体 ( FD_Geology)

山东半岛城市群地区地质-生态环境与可持续发展研究

( 3) 水资源要素集实体 ( FD_HydroResource)

山东半岛城市群地区地质-生态环境与可持续发展研究

Ⅸ 空间数据库的空间数据库的设计

数据库因不同的应用要求会有各种各样的组织形式。数据库的设计就是根据不同的应用目的和用户要求,在一个给定的应用环境中,确定最优的数据模型、处理模式、存贮结构、存取方法,建立能反映现实世界的地理实体间信息之间的联系,满足用户要求,又能被一定的DBMS接受,同时能实现系统目标并有效地存取、管理数据的数据库。简言之,数据库设计就是把现实世界中一定范围内存在着的应用数据抽象成一个数据库的具体结构的过程。
空间数据库的设计是指在现在数据库管理系统的基础上建立空间数据库的整个过程。主要包括需求分析、结构设计、和数据层设计三部分。
1、需求分析
需求分析是整个空间数据库设计与建立的基础,主要进行以下工作:
1)调查用户需求:
了解用户特点和要求,取得设计者与用户对需求的一致看法。
2)需求数据的收集和分析:
包括信息需求(信息内容、特征、需要存储的数据)、信息加工处理要求(如响应时间)、完整性与安全性要求等。
3)编制用户需求说明书:
包括需求分析的目标、任务、具体需求说明、系统功能与性能、运行环境等,是需求分析的最终成果。
需求分析是一项技术性很强的工作,应该由有经验的专业技术人员完成,同时用户的积极参与也是十分重要的。
在需求分析阶段完成数据源的选择和对各种数据集的评价
2、结构设计
指空间数据结构设计,结果是得到一个合理的空间数据模型,是空间数据库设计的关键。空间数据模型越能反映现实世界,在此基础上生成的应用系统就越能较好地满足用户对数据处理的要求。
空间数据库设计的实质是将地理空间实体以一定的组织形式在数据库系统中加以表达的过程,也就是地理信息系统中空间实体的模型化问题。
1)概念设计
概念设计是通过对错综复杂的现实世界的认识与抽象,最终形成空间数据库系统及其应用系统所需的模型。
具体是对需求分析阶段所收集的信息和数据进行分析、整理,确定地理实体、属性及它们之间的联系,将各用户的局部视图合并成一个总的全局视图,形成独立于计算机的反映用户观点的概念模式。概念模式与具体的DBMS无关,结构稳定,能较好地反映用户的信息需求。
表示概念模型最有力的工具是E-R模型,即实体-联系模型,包括实体、联系和属性三个基本成分。用它来描述现实地理世界,不必考虑信息的存储结构、存取路径及存取效率等与计算机有关的问题,比一般的数据模型更接近于现实地理世界,具有直观、自然、语义较丰富等特点,在地理数据库设计中得到了广泛应用。
2)逻辑设计
在概念设计的基础上,按照不同的转换规则将概念模型转换为具体DBMS支持的数据模型的过程,即导出具体DBMS可处理的地理数据库的逻辑结构(或外模式),包括确定数据项、记录及记录间的联系、安全性、完整性和一致性约束等。导出的逻辑结构是否与概念模式一致,能否满足用户要求,还要对其功能和性能进行评价,并予以优化。
从E—R模型向关系模型转换的主要过程为:
①确定各实体的主关键字;
②确定并写出实体内部属性之间的数据关系表达式,即某一数据项决定另外的数据项;
③把经过消冗处理的数据关系表达式中的实体作为相应的主关键字
④根据②、③形成新的关系。
⑤完成转换后,进行分析、评价和优化。
3)物理设计
物理设计是指有效地将空间数据库的逻辑结构在物理存储器上实现,确定数据在介质上的物理存储结构,其结果是导出地理数据库的存储模式(内模式)。主要内容包括确定记录存储格式,选择文件存储结构,决定存取路径,分配存储空间。
物理设计的好坏将对地理数据库的性能影响很大,一个好的物理存储结构必须满足两个条件:一是地理数据占有较小的存储空间;二是对数据库的操作具有尽可能高的处理速度。在完成物理设计后,要进行性能分析和测试。
数据的物理表示分两类:数值数据和字符数据。数值数据可用十进制或二进制形式表示。通常二进制形式所占用的存贮空间较少。字符数据可以用字符串的方式表示,有时也可利用代码值的存贮代替字符串的存储。为了节约存贮空间,常常采用数据压缩技术。
物理设计在很大程度上与选用的数据库管理系统有关。设计中应根据需要,选用系统所提供的功能。
4)数据层设计
大多数GIS都将数据按逻辑类型分成不同的数据层进行组织。数据层是GIS中的一个重要概念。GIS的数据可以按照空间数据的逻辑关系或专业属性分为各种逻辑数据层或专业数据层,原理上类似于图片的叠置。例如,地形图数据可分为地貌、水系、道路、植被、控制点、居民地等诸层分别存贮。将各层叠加起来就合成了地形图的数据。在进行空间分析、数据处理、图形显示时,往往只需要若干相应图层的数据。
数据层的设计一般是按照数据的专业内容和类型进行的。数据的专业内容的类型通常是数据分层的主要依据,同时也要考虑数据之间的关系。如需考虑两类物体共享边界(道路与行政边界重合、河流与地块边界的重合)等,这些数据间的关系在数据分层设计时应体现出来。
不同类型的数据由于其应用功能相同,在分析和应用时往往会同时用到,因此在设计时应反映出这样的需求,即可将这些数据作为一层。例如,多边形的湖泊、水库,线状的河流、沟渠,点状的井、泉等,在GIS的运用中往往同时用到,因此,可作为一个数据层。
5)数据字典设计
数据字典用于描述数据库的整体结构、数据内容和定义等。 数据字典的内容包括: 1)数据库的总体组织结构、 数据库总体设计的框架 。 2)各数据层详细内容的定义及结构、 数据命名的定义 。 3)元数据(有关数据的数据,是对一个数据集的内容、质量条件及操作过程等的描述) 。

Ⅹ 国家地理信息数据有哪些

国家基础地理信息数据库是存储和管理全国范围多种比例尺、地貌、水系、居民地、交通、地名等基础地理信息,
包括栅格地图数据库、矢量地形要素数据库、数字高程模型数据库、地名数据库和正射影像数据库等。

延伸:
国家基础地理信息系统是以形成数字信息服务的产业化模式为目标,通过对各种不同技术手段获取的基础地理信息进行采集、编辑处理、存贮,建成多种类型的基础地理信息数据库,并建立数据传输网络体系,为国家和省(市、自治区)各部门提供基础地理信息服务。它是一个面向全社会各类用户、应用面最广的公益型地理信息系统。是一个实用化的、长期稳定运行的信息系统实体。是我国国家空间数据基础设施(NSDI)的重要组成部分,是国家经济信息系统网络体系中的一个基础子系统。

国家测绘局1994年建成了全国1:100万地形数据库(注:含地名)、数字高程模型数据库, 1:400万地形数据库等;1998年完成全国1:25万地形数据库、数字高程模型和地名数据库建设;1999年建设七大江河重点防范区1:1万数字高程模型(DEM)数据库和正射影像数据库;2000年建成全国1:5万数字栅格地图数据库;2002年建成全国1:5万数字高程模型(DEM)数据库,并更新了全国1:100万和1:25万地形数据库;2003年建成1:5万地名数据库、土地覆盖数据库、 TM卫星影像数据库。现正在建立 全国1:5万矢量要素数据库、正射影像数据库等。各省正在建立本辖区1:1万地形数据库、数字高程模型(DEM)数据库、正射影像数据库、数字栅格地图数据库等,并正在进行省、市级基础地理信息系统及其数据库的设计和试验研究。