当前位置:首页 » 数据仓库 » 赛车悬挂和重心怎么配置
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

赛车悬挂和重心怎么配置

发布时间: 2022-08-10 04:44:44

1. 汽车的悬挂指的是哪部分,它的作用是什么

悬挂系统就是指由车身与轮胎间的弹簧和避震器组成整个支持系统。悬挂系统应有的功能是支持车身,改善乘坐的感觉,不同的悬挂设置会使驾驶者有不同的驾驶感受。常见的独立悬挂系统有多连杆式悬挂系统、麦佛逊式悬挂系统、拖曳臂式悬挂系统等等。

对于赛车来讲有防滑、防滚,对于类似F1的比赛用赛车悬挂系统可以调节赛车重心位置,根据不同环境调节悬挂系统可以使赛车性能得到更高的发挥。

2. 悬架结构是什么配置,在行驶中会感觉震动吗

1、悬挂的分类

(l)非独立式悬挂:两侧车轮安装于一根整体式车桥上,车桥通过悬挂与车架相连。这种悬挂结构简单,传力可靠,但两轮受冲击震动时互相影响。而且由于非悬挂质量较重,悬挂的缓冲性能较差,行驶时汽车振动,冲击较大。该悬挂一般多用于载重汽车、普通客车和一些其他车辆上。

(2)独立式悬挂:每个车轮单独通过一套悬挂安装于车身或者车桥上,车桥采用断开式,中间一段固定于车架或者车身上;此种悬挂两边车轮受冲击时互不影响,而且由于非悬挂质量较经;缓冲与减震能力很强,乘坐舒适。各项指标都优于非独立式悬挂,但该悬挂结构复杂,而且还会便驱动桥、转向系变得复杂起来。采用此种悬挂的有下面两大类车辆。

①轿车、客车及载人车辆。可明显提高乘坐舒适性,并且在高速行驶时提高汽车的行驶稳定性。

②越野车辆、军用车辆和矿山车辆。在坏路和无路的情说下,可保证全部车轮与地面的接触,提高汽车的行驶稳定性和附着性,发挥汽车的行驶速度。

2.弹性元件的种类

(1)钢板弹簧:由多片不等长和不等曲率汽车悬架那种比较好的钢板叠合而成。安装好后两端自然向上弯曲。钢板弹簧除具有缓冲作用外,还有一定的减震作用,纵向布置时还具有导向传力的作用,非独立悬挂大多采用钢板弹簧做弹性元件,可省去导向装置和减震器,结构简单。

(2)螺旋弹簧:只具备缓冲作用,多用于轿车独立悬挂装置。由于没有减震和传力的功能,还必须设有专门的减震器和导向装置。

(3)油气弹簧:以气体作为弹性介质,液体作为传力介质,它不但具有良好的缓冲能力,还具有减震作用,同时还可调节车架的高度,适用于重型车辆和大客车使用。

(4)扭杆弹簧;将用弹簧杆做成的扭杆一端固定于车架,另一端通过摆臂与车轮相连,利用车轮跳动时扭杆的扭转变形起到缓冲作用,适合于独立悬挂使用。

3、减震器

多采用筒式减震器,利用油液在小孔内的节流作用来消耗振动能量。减震器的上端与车身或者车架相连,下端与车桥相连。多数为压缩和伸张行程都能起作用的双作用减震器,

4、导向装置

独立悬挂上的弹性元件,大多只能传递垂直载荷而不能传递纵向力和横向力,必须另设导向装置。如上、下摆臂和纵向、横向稳定器等。

5、非独立悬挂与独立悬挂

一般来说,汽车的悬挂系统分为非独立悬挂和独立悬挂两种,非独立悬挂的车轮装在一根整体车轴的两端,当一边车轮跳动时,另一侧车轮也相应跳动,使整个车身振动或倾斜;独立悬挂的车轴分成两段,每只车轮由螺旋弹簧独立安装在车架下面,当一边车轮发生跳动时,另一边车轮不受影响,两边的车轮可以独立运动,提高了汽车的平稳性和舒适性。
由于现代人对车子乘坐舒适性及操纵安定性的要求愈来愈高,所以非独立悬挂系统已渐渐被淘汰。而独立悬挂系统因其车轮触地性良好、乘坐舒适性及操纵安定性大幅提升悬架 类型、左右两轮可自由运动,轮胎与地面的自由度大,车辆操控性较好等优点目前被汽车厂家普遍采用。常见的独立悬挂系统有多连杆式悬挂系统、麦佛逊式悬挂系统、拖曳臂式悬挂系统等等。每种方法均有各自的优缺点和适应性
现在最流行的也是我们最常听到的就是麦弗逊,双叉臂和多连杆三种形式。那么这三种主流悬架有些什么特点?各自有哪些性能特征呢?
虽然按照悬架的档次和复杂程度以及用料来排名的话,多连杆是最好的,其次是双叉臂再其次是麦弗逊,虽然档次可以这样划分,但世界上的事物都是有利有弊的,这三种悬架之所以能在各种车型上大量存在当然有着各自的性能优点。
在这三种悬架中,麦弗逊是结构最简单的,也是制造成本最低用途最广的。它主要用在大多数中小型车的前桥上。它以简单独霸天下。也正是因为他简单所以他轻,响应速度快。并且在一个下摇臂和支柱的几何结构下能自动调整车轮外倾角,让其能在过弯时自适应路面,让轮胎的汽车悬架系统接地面积最大化,而且占用空间小适合小型车以及大部分中型车使用。但是由于结构简单使得悬挂刚度较弱,稳定性差,转弯侧倾明显。

麦花臣式悬吊系统(McPhersonType)又称为支柱式悬吊系统,此种悬吊常见于前悬吊,堪称是最被广泛运用者。这是一种利用避震器为车轮定位用支柱的悬吊形式,支柱上部经由橡胶置绝缘体固定于车身,支柱下部用连杆连结以定位,避震器为筒型,装在支柱内部。支柱可在导管内上下滑动,最大优点为构造简单,占位置小,前轮之后倾角不会因车轮的跳动而改变,另外在麦花臣式悬吊以外的悬吊,外倾角方向的定位需要上臂,牺牲空间,麦花臣式悬吊因避震器有此功能,可增大车室空间,在引擎横置的FF车因布置空间无余地,此优点就显得特别重要;缺点为行驶不平路面时,车轮易自动转向,故驾驶人须用力保持方向盘,当受到剧烈冲击时,滑柱易造成弯曲,因而影响转向性能。

麦弗逊事实上是演变自双A臂的一种悬吊型式。他将双A臂的上支臂替换成避震器+弹簧,而下支臂不变。另外,由于避震器就是麦弗逊的上臂,所以这样的避震器要特别坚固才行。基本上,麦弗逊广泛的运用于前悬吊系统,因为少了上支臂的关系,使得其占用的前轮底盘空间减少,能轻松的安置与横置引擎的车子,在能带来不错的操控效果时,还能兼顾设计成本。

麦弗逊式(MacPherso又译为麦花臣或支柱式)

麦花臣式悬吊系统(McPhersonType)又称为支柱式悬吊系统,此种悬吊常见于前悬吊,堪称是最被广泛运用者。这是一种利用避震器为车轮定位用支柱的悬吊形式,支柱上部经由橡胶置绝缘体固定于车身,支柱下部用连杆连结以定位,避震器为筒型,装在支柱内部。支柱可在导管内上下滑动,最大优点为构造简单,占位置小,前轮之后倾角不会因车轮的跳动而改变,另外在麦花臣式悬吊以外的悬吊,外倾角方向汽车悬架平面图的定位需要上臂,牺牲空间,麦花臣式悬吊因避震器有此功能,可增大车室空间,在引擎横置的FF车因布置空间无余地,此优点就显得特别重要;缺点为行驶不平路面时,车轮易自动转向,故驾驶人须用力保持方向盘,当受到剧烈冲击时,滑柱易造成弯曲,因而影响转向性能。

麦弗逊事实上是演变自双A臂的一种悬吊型式。他将双A臂的上支臂替换成避震器+弹簧,而下支臂不变。另外,由于避震器就是麦弗逊的上臂,所以这样的避震器要特别坚固才行。基本上,麦弗逊广泛的运用于前悬吊系统,因为少了上支臂的关系,使得其占用的前轮底盘空间减少,能轻松的安置与横置引擎的车子,在能带来不错的操控效果时,还能兼顾设计成本。

拖曳臂式(Trailing-Arm又译为拖戈臂式)

拖曳臂式(Trailingarmtype)是专为后轮设计的悬吊系,以支臂结合车轴前方的车身部主轴与车轴,其中车身部主轴的旋转轴垂直于车身中心线者,亦即直向后方,称为拖曳臂式或全拖曳臂式,使用这类系统的车像PEUGEOT车系、CITROEN车系、OPEL车系等,而半拖曳臂式之摆动臂系倾斜于车身中心线即斜向后方。拖曳臂式悬吊的结构为车身部的主轴直接结合于车身,然后将主轴结合于悬吊系统,再将此构件安装于车身,弹簧与避震器通常是分开安装或是构成一体,直立安装于车轴附近。悬吊系统本身的运动,支臂以垂直车身中心线的轴,亦即平行于车轴的轴为中心进行运动,车轴不倾斜于车身,在任一上下运动位置,车轴平行于车身,对车身外倾角变化为零。其最大的优点乃在于左右两轮的空间较大,而且车身的外倾角没有变化,避震器不发生弯曲应力,所以摩擦小,当其煞车时除了车头较重会往下沈外,拖曳臂悬吊的后轮也会往下沈平衡车身,而其缺点为无法提供精准的几何控制汽车悬架弹簧。

单纯的拖曳臂式设计其实算得上是过时的产品了。不能调整倾角,不能提供较佳的乘坐舒适性都是其硬伤。但是PSA集团就是能够把旗下车系的拖曳臂调的比大部分日系车的双a或多连杆还要好!不得不佩服法国人的调校技术,很有自己的一套哲学。虽然在引擎技术上没有特别突出的成就,但是操控优秀,以小搏大,wrc佳绩就是证明(今年车手冠军肯定是雪铁龙的了,车队则是在雪铁龙和标志中产生..没差,反正都是psa集团的..).不过,即使如此,拖曳臂在旗下高级房车上也渐渐被多连杆取代了,毕竟最求最佳舒适性才是高级房车的精髓

双差臂悬挂拥有上下两个摇臂,起横向力由两个摇臂同时吸收,支柱只承载车身重量。因此横向刚度大。由于上下使用不等长摇臂(上长下短),让车轮在上下运动时能自动改变外倾角并且减小轮距变化减小轮胎磨损。并且也能自适应路面,轮胎接地面积大,贴地性好。但是由于多了一个上摇臂,所以需要站用较大的空间,因此小型车的前桥一般布置不下此种悬挂。

在支柱式悬吊系统问世前,乘用车的独立悬吊式前悬吊为双差臂式悬吊,但是,支柱式问世后,除了一部份外,几乎所有的乘用车前悬吊都改用支柱式。不过,最近苛求乘坐舒适性与操纵安定性的车种开始在前后轮都采用几何学变化,柔软协调等设计自由度高的双A臂式悬吊,为有外倾角变化控制用臂的悬吊形式。臂的布置是下臂与支柱式差不多,上臂是两端已有橡胶衬套的A型臂结合车身与车轴,车身常有副框架,主轴布置于副框架上,副框架与车身通常在四处经绝缘体结合,弹簧与避震器为尽量增长行程,装于上臂上与车身间,藉这些连杆的布置设计,即可将外倾变化。双A臂式悬吊的优点首推设计自由度,因不对避震器施加弯矩,所以摩擦小,因在副框架上布置连杆,容易兼顾悬吊系的刚性与震动绝缘。缺点是零件数多,也要求定位精度,成本上重量上都不利单厢小货车之类的商用车,这是HONDA从F1赛车上所产生的理念,也是本田车系最喜用的悬吊系统。

双A臂,这个目前在成本与操控间取得最完美平衡的设计已经存在相当长的时间,诸如多连杆,麦弗逊等皆为其衍生设计。双A臂悬吊就结构学而言是最坚固的悬吊,能带来更多的几何调整以提供有效的舒适性与操控性。举个实例,civicek9之所以那么受欢迎,基本上就是基于其前后双a臂的悬吊设计所带来的极佳操控(后代的civic却拔掉了双a用麦弗逊来替代前悬吊,实在是可惜了)。不过由于只有4根连杆,仅仅只能提供倾角变化无法大幅调整束角,所以他仍然不够优秀,因此聪明的设计师设计了一种有横向及纵向拉杆(提供更多几何角度控制)的复合悬吊,于是多连杆诞生了。另外值得一提的是:双A臂可是F1的不二选择。

拖曳臂式(DoubleWishbone又译为双叉骨式或双许愿骨式)

多连杆悬挂,通过各种连杆配置(通常有三连杆,四连杆,五连杆),首先能实现双叉臂悬挂的所有性能,然后在双叉臂的基础上通过连杆连接轴的约束作用使得轮胎在上下运动时前束角也能相应改变,这就意味着弯道适应性更好,如果用在前驱车的前悬挂,可以在一定程度上缓解转向不足,给人带来精确转向的感觉;如果用在后悬挂上,能在转向侧倾的作用下改变后轮的前束角,这就意味着后轮可以一定程度的随前轮一同转向,达到舒适操控两不误的目的。跟双叉臂一样,多连杆悬挂同样需要占用较多的空间,而且多连杆悬挂无论是制造成本还是研发成本都是最高的所以常用在中高级车的后桥上。
近年的汽车厂苛求乘坐舒适性与操控安定性的底盘性能,因而采双A臂式悬吊与多连杆式悬吊系,形成所谓的复合式多连杆(Multi-link),不过两者原理相同,因连杆的数目及固定点不同,各车厂命名方式不同。以将车轴定位,连杆大都汽车悬架装置检测台经由衬套先安装副框架,副框架经绝缘体固定于车身,此构成原理与双A臂式悬吊差不多,只不过双A臂式悬吊是以上下二支A臂或是以三只连杆形成A字形状,另有一组固定于车身的机构来连结,而像宾士车厂所谓的多连杆不过是采拖曳臂式悬吊与双A臂式(多一只连杆)悬吊系,形成所谓的复合式多连杆(Multi-link),之所以会如此设计是因为多连杆式独特的连杆配置结合拖曳臂的舒适性与双A臂的操控性、抓地性,能提供平稳的行驶性急吸收大部分从路面传来的震动,并能自动调整轮胎角度,消除对地外倾角变化,车身晃动时,使轮胎与路面永远保持90度垂直,抓地力自然佳。因此要兼顾操纵安全性乘坐舒适性,就得适当的设定连杆安装位置,角度,衬套等特性,各车的多连杆式吊可达成如此复杂连杆配置,是由于容易用电脑解析模拟多连杆式悬吊系的优缺点,多连杆与双A臂式悬吊同样构造复杂,各零件需要高精度,成本高,重量增大(有些使用铝合金制连杆来减轻重量)是其缺点,但可平衡达成其它悬吊方式,达不到的前述性能要求,因此目前多连杆式也可说是最复杂也是最先进的。

基本上,多连杆可以看作为双A臂的衍生设计。但之所以要把他从双A里单独分类出来,是因为现在的多连杆设计已经变的越来越多样化了,有些多连杆上甚至找不到一点双a的痕迹(甚至还有上下A臂加三连杆的超疯狂设计,全车悬吊的材料成本高出别人2~4倍,所以有些车贵不是没有道理的…)。多连杆就目前对于高级房车来说是最佳设计,比双a更多变的几何调整让他能达到更佳的舒适性,稳定性与操控性。很多车厂在标榜自己旗下的高级房车时,都会宣传自家的多连杆又参与了什么新设计之类的,可谓高级的代名词。不过成本高昂,较占底盘空间使之只能用于后悬吊都是其缺点。

多连杆式(Multi-Link)

所以总的来说,现在最经汽车悬架设计济适用,性价比最高的前独立悬挂是麦弗逊,能做高性能调校和匹配的悬挂是多连杆和双叉臂。结构最复杂实现性能最多的是多连杆。但由于后两者在结构上使其质量较重所以为了达到更好的响应速度常用铝合金打造,那么成本就可想而知了。

一般来说,汽车的前后悬挂系统包括弹簧和减震器两个部分,按照结构来分,多见有以下结构形式,麦佛逊,双A臂(双横杆),拖曳臂,扭力梁和多连杆。
麦佛逊式悬挂多用于前轮,是独立悬挂的一种,而且是结构非常简单的一种,布置紧凑,节省空间,前轮定位变化小,具有良好的行驶稳定性。所以,大部分的轿车前悬均采用这种结构,差别主要在选材和减震器、弹簧的调校上面。但麦弗逊式悬架在使用中也有缺点,就是行驶在不平路面时,车轮容易自动转向,故驾驶者必须用力保持方向盘的方向,当受到剧烈冲击时,减震器易造成弯曲,因而影响转向性能,所以很多不吝惜空间和成本的豪华轿车上面并没有采用此种形式。
双A臂悬挂拥有上下两个摇臂,起横向力由两个摇臂同时吸收,支柱只承载车身重量。因此横向刚度大。由于上下使用不等长摇臂(上长下短),让车轮在上下运动时能自动改变外倾角并且减小轮距变化减小轮胎磨损。并且也能自适应路面,轮胎接地面积大,贴地性好。但是由于多了一个上摇臂,所以需要站用较大的空间,本田的轿车前悬喜欢采用这种结构,civic为人所称道的操控性,前悬的双A臂有一定的功劳,遗憾的是8代civic没有沿用这种结构,而采用了麦佛逊另很多车迷遗憾。
拖曳臂式悬挂系统是专为后轮设计的悬挂系统,像标致车系、雪铁龙车系、欧宝车系等欧洲轿车比较喜欢采用这种悬挂系统。拖曳臂式悬挂系统的最大优点是左右两轮的空间较大,而且车身的外倾角没有变化,避震器不发生弯曲应力,所以摩擦小,乘坐性佳,当其刹车时除了车头较重会往下沉外,拖曳臂悬吊的后轮也会往下沉平衡车身,而其缺点是无法提供精准的几何控制,不过如果调校得当,可以用最少的成本和空间达到最好的效果,所以现在的小车多采用这种形式的后悬挂。
扭力梁悬挂是一种半独立悬挂汽车电控悬架系统方式,这种悬挂结构简单,传力可靠,但两轮受冲击震动时会互相影响。对细小的震动能够较好地过滤,而对于大坑洞的反应会比较生硬,大众集团的车型多采用此种后悬挂,不过最新的PQ35平台均改成了多连杆式。
多连杆悬挂系统,又分为5连杆和4连杆。多连杆后悬挂能实现主销后倾角的最佳位置,大幅度减少来自路面的前后方向力,从而改善加速和制动时的平顺性和舒适性,同时也保证了直线行驶的稳定性,在车辆转弯或制动时,5连杆后悬挂结构可使后轮形成正前束,提高了车辆的控制性能,减少转向不足的情况。很多豪华轿车的前悬也使用了4连杆前悬它通过运动学原理巧妙地将牵引力、制动力和转向力分离,同时赋予车辆精确的转向控制。
综上所述,虽然多连杆有很多先天的优点,似乎是最好的方式,但是一下多了这么多受力点,调校会比较困难,而且在占用空间和成本上没有优势,所以我们在购车时不必太在意是否采用了多连杆,如果是A级以下的车型,前麦佛逊,后拖曳臂是非常好的搭配,B级以上则各车厂有不同的喜好,原则上只要和整车风格协调一致,我们大可不必非要认定一种悬挂方式,如果追求性能,那么可以去专业改装店做深度调校。

3. 赛车避震器是怎么调教的

吊是大多数人改装计画的第一步,而悬吊的改装通常都是由换装一套较硬的避震器开始着手。上一期我们曾经说过弹簧最主要的功用是用来消除行经不平路面的震动,既然有了可消除震动的弹簧,那麽又要避震器做什麽呢?避震器它并不是用来支持车身的重量而是用来抑制弹簧吸震后反弹时的震荡和吸收路面冲击的能量。假如你开过避震器坏掉的车,你就可以体会车子通过每一坑洞、起伏后馀波荡漾的弹跳,而避震器正是用来抑制这样的弹跳。没有避震器将无法控制弹簧的反弹,车子遇到崎岖路面时将会产生严重的弹跳,过弯时也会因为弹簧上下的震荡而造成轮胎抓地力和循迹性的丧失。最理想的状况是利用避震器来把弹簧的弹跳限制在一次。

阻尼

当我们以一固定的速度压缩或拉伸避震器其所产生的阻力就称为阻尼。这阻力来自于避震器作动时,活塞会把阻尼油加压使其通过小孔径的阀门,如果改变阀门的孔径就可以改变阻尼的大小。在日本自动车规格(JASO C602)规定以作动速度0.3m/s时的阻力大小来代表避震器的性能,我们称为阻尼系数,单位为Kgf,所谓较硬的避震器就是作动时可产生比较大的阻力。当我们让避震器以非常慢的速度压缩或拉伸时,它的阻力只有来自机构内部的摩擦力,阻尼油几乎不产生阻力。但是当作动速度增加时,阻力的增加会和避震器作动速度变化率的平方成正比,也就是说作动速度增为2倍时阻力却会增为4倍。

避震器的阻力可分为压缩和回弹两部份,压缩阻力和弹簧的硬度有加成效果,作动时可增加弹簧的强度,而回弹阻力则是发生在弹簧受路面冲击压缩后的反弹行程,这也是避震器存在的最大理由,它是用来抵挡弹簧压缩后再将轮胎压回地面的力量,减缓反弹的冲击并保持车辆的平稳。一般道路用的避震器,吸震行程的阻力通常远小于回弹行程,因为吸震行程的阻力太大时会影响行路舒适性,对道路用车来说冲击时和反弹时的阻尼力量比值大约是1:3,但对赛车来说则为1:2~1:1.5,较高的比值会降低舒适性,但却可改善行经不规则路的循迹性。

避震器与车身重量的转移

进弯和出弯时车身重量转移(Weight Transfer)的速度会影响操控的平衡,这影响会持续直到重量转移完成,而车身重量转移的速度是由避震器所控制,改变避震器在压缩和拉伸行程的速度可改变车身动量转移的速度。避震器越硬重量转移的速度越快,重量转移越快则车身子的转向反应也越快。

过弯时转动方向盘,轮胎会产生一个滑移角(Slip Angle),进而产生转向力,这力量作用在滚动中心(Roll Center)和重心(Center of Gravity),然后导致车身重量转移,车身产生滚动(Roll)。此时弯外轮的转向力会随着滑移角的增大及车身重量的转移而加大,车子在达到最大转向力及完成重量转移后会建立一个过弯姿势(Take a set),由于避震器控制重量转移的速度,因此也会影响建立过弯姿势的速度。由于转向反应对操控很重要,因此我们希望过弯姿势的建立越快越好,但也不可太快,必须有时间让车手去感觉过弯姿势的建立,并感受循迹性的极限,如果重量转移太快会让车手来不及去感觉,因此设定一个车身重量转移的速度让热车手去感觉极限的接近,并且有所反应是车辆悬吊设定时的重要课题。我们常说车队会依不同的车手而有不同的车辆设定,对悬吊系统设定来说,不同的车手由于驾驶技术和习惯的不同,对转向反应的感觉速度及反应速度也会不同,因此需要不同的悬吊设定,以求得车手的充分发挥。
赛车避震器

和赛车用轮胎和轮圈不同的是赛车用的避震器可用在一般道路,唯一的缺点是价格相当贵,一支赛车用的避震器往往超过万元,这和一支可能只要几百元的‘原厂’避震器相比真是有如天价,据了解一套HONDA EG6 Gr.A所用的Mugen避震器约要新台币8万,而March用的NISMO竞技用避震器也大约是这个价。 赛车用的避震器通常为可调式,甚至可分别调整压缩和回弹行程的阻尼,经由调整以得到最佳的抑制缓冲效果,这项工能在做悬吊设定的尝试错误过程中扮演了重要的角色。调整时由最软的模式开始,计算它上下摆动的次数(通常超过一次),慢慢加硬直到上下摆动一次后就恢复平静,并且每次比赛前都要再依场地确认设定的正确与否。赛车避震器通常没有橡皮的止档衬垫(End Bushing)取而代之金属的球状轴承,这虽可获得在通过小震动路面时较佳的阻尼效果,提供较清晰的路面反应,但却增加了来自悬吊的震动和噪音。赛车避震器通常有接近1:1的压缩和拉伸阻尼力。此外赛车避震器的作动行程也比较短,一般车也许有10 ,高性能版也许为7 ,赛车可能只有4~5 。所以单换高性能避震器而不换行程相搭配短弹簧可能无法得到应有的效果。

4. 赛车底盘怎么调校

以下转自eaF1联盟】,供大家分享参考。

底盘调校基本

现实烦恼,不知道什么时候有心情搞搞赛车,趁现在有心情,了一下心愿。

调校的事,从接触到现在怕有四年多(02到06),从一开始的时候,就不断想找资料学习,但是网上根本就没有什么可以令人满意的资料介绍。特别在国内(大陆),更加连关于赛车的基本的资料介绍都很少,毕竟赛车这件事在国内才算刚起步,稚嫩得很。作为一个国内的赛车爱好者,总觉得有责任去学习它,然后介绍给国内的广大赛车爱好者知道。

我想调校这件事就像魔术一样,未知的时候怎么也猜不透,但是迷底揭穿后,只是简单不过的一件事。

废话不讲了,直接进入,时间不多了。
补充申明一点,本文内容只是小弟的个人认识,谨作参考。

这里所讲的底盘调校,就是下面这这几项有关的一件事:定风翼(wing),弹簧(spring),阻尼(damper),侧倾杆(anti-roll bar),静止离地高度(ride height),配重(weight dist)。

调校的着眼点,离不开一对概念:“转向过度”和“转向不足”
当前轮的抓地力大的时候,则倾向于转向过度;
当后轮的抓地力大的时候,则倾向于转向不足。

当前轮的负担小的时候,则倾向于转向过度;
当后轮的负担小的时候,则倾向于转向不足。

通过适当的调校,控制转向过度和不足的特性,满足对不同弯角的要求,这就是底盘调校的宗旨。

下面讲怎么控制转向特性:

举一反三,制造转向过度,针对前轮,可以:
1,增加前wing;(wing是属于一种外力)
2,降低赛车前部的高度,(高度低,意味离心力小,则负担小)
3,使重心往后,(前轮负担小)
4,保持前悬挂的压缩。

第1点wing的作用显而易见,不多讲了。
第2点降低高度可以减小负担的原因是:重量一致的情况下,越低意味力臂越短,那么真正的离心力则越小,轮胎的横向抓地力极限一定的话,意味可以更高速度过弯。
可以做两件事可以减低高度,一是减小ride height,二是减小弱簧硬度。因为空气下压力会因车速不同而改变,所以在低速时,ride height比较重要;高速时,弹簧硬度比较重要。
第3点就是关于配重的前后分配。配重偏前,则前轮负担大,倾向转向不足。
第4点是重点,需要耐心地想一想:

悬挂压缩,即弹簧(spring)的压缩,直接说明了轮胎的压力是多少(是悬挂压力,不是胎压),压力意味着抓地力,通过观察遥感(telemetry)数据,可以直接计算出每一个时刻的抓地力。那么压力是怎么样产生的?
压力的产生来自于空气下压力和赛车的自重。
空气下压力和自重虽然都能产生抓地力,但是两者的性质截然不同。
空气下压力不会产生重力加速度(Gforce),空气下压力只随车速变化。
赛车自重会产生重力加速度,重力加速度的结果会使悬挂产生压缩拉伸的变化。
观察遥感,可知在相同的车速下,(即相同的空气下压力下),悬挂的压缩量总和总是一致的。
一台赛车一共有六支弹簧,四个轮子各一支加上第三弹簧(3rd-spirng)前后各一支。弹簧起着承载和传递压力的作用,在空气下压力一致的情况下,赛车自重随着Gforce的驱使压缩和拉伸各支弹簧,减速时,Gforce向前,前弹簧则压缩,后弹簧则拉伸;左转时,Gforce向右,则右边弹簧压缩,左边弹簧则拉伸,这就是赛车自重使各支弹簧压缩拉伸的结果。
但是这样似乎陷入了一个矛盾:前悬挂压缩,没错抓地力增加了,但是同时负重也增加了,这样就达不到我们需要的控制转向特性的效果了吗?
这时,我们要使用阻尼。
正是阻尼,延缓了弹簧的压缩和拉伸的速度,使得我们可以制造重心离开,而悬挂保持压缩的特殊效果。
Gforce的发生是即时的,一加速,一转向就马上有Gforce产生,重力一远离某一支弹簧的时候,弹簧本应马上拉伸到应有的状态,但是在回弹阻尼(rebound)的阻碍延缓作用下,使得那一个轮胎不会瞬时失去压力。
但是需要清楚知道的是,延缓作用并不能阻止弹簧最终到达本应到达的位置,只不过是来得慢一些。

这就是底盘调校的道理,具体怎么发挥,就要看各位是仁是智了。看上去简单得很,却花了小弟四年多时间。

5. 赛车怎么装备悬挂系统

进入商城、

然后点击赛车改装、

按想装备上的车(必须B车或以上才能装备)

然后按确认改装、

祝你成功!

6. 赛车手为什么躺着开赛车

看过赛车比赛的人都会有很多问题,其中不得不提的问题就是为什么赛车手是躺着开车的。这个问题简单地说就是为了更好地适应赛车较低的高度设计。这背后的原理与阻力,下压力和重力有关。

重心。除了更具空气动力学特性,F1赛车如此低的另一个原因是为了获得更低的重心。低重心配合悬挂能够提高赛车在转弯,刹车和加速时的平衡性能。反面例子就是美国的高重心软悬挂大型SUV当汽车加速时会出现抬头现象,同样当汽车刹车时车尾也会抬起,这就造成了汽车的不稳定。为了防止这种现象,F1赛车的重心要始终保持在很低的水平,而F1赛车可以迅速过弯并保持稳定,也得益于空气动力学和这种低重心的设计,因此车手为了适应较低的赛车高度必须躺着开车。当然也有就喜欢躺着开车的。

7. 赛车的内部构造是什么

为了保证赢得F1大赛的胜利,当然拥有一辆性能优越的F1赛车是最为关键的。因此各大汽车公司以及开展汽车运动的各国均拥有一批专门从事赛车设计、制造和研究工作的科技人才。德国约有2000余人,美国有10000多人,而在日本,则有20000多人专为这一工作忙碌着。目前,由车队制作车架、车壳,由车厂制作发动机已成为赛车制造的主流,例如,麦凯伦车队与奔驰公司的合作、威廉姆斯车队与宝马公司的合作均属此类。只有法拉利是一家既生产发动机又生产车架、车壳的公司。

当然这种制造赛车与制造普通汽车在技术上存在着天壤之别,一辆造价超过百万美元F1赛车是大量采用现代科学技术、凭借电子计算器对每个总成及零部件进行精心设计而制造而成的,具有极好的动力性(含加速性)和可靠性,其价值不亚于一架中、小型飞机。

F1赛车的外形是综合考虑减小车身迎风面积和增加与地面附着力以及赛车运动规则而成型的。车身酷似火箭倒放于四个轮子之上,发动机位于后部。除必要的总成、部件外,力求结构简单、操作方便。根据FIA规定,F1赛车连同车手的质量不小于595千克(1995年以前规定赛车自身质量不小于505千克)、宽度不大于2000毫米、从车架最低部位算起的总高度不大于950毫米。因此,厂家制作时的质量不会比规定值高出太多,并能乘受25个重力加速度的冲击。底盘材料采用航空航天设备用的碳素纤维板,内夹铝制蜂窝状结构板,比传统铝板质量轻一倍而强度高一倍。赛车疾驶时,迎面会遇到极大的空气阻力,为了减小空气阻力,赛车外形要尽可能呈流线型(但前端与前轴中心线间的距离不得超过1200毫米,宽度不超过1400毫米),座椅靠背倾角便于使车手处于半卧坐姿,以获得较小的迎风面积。通过减小迎风面积并采用扰流装置,借以减小空气阻力,提高速度。另外,由于造型的原因,当赛车高速前进时还会产生方向向上的升力,使车轮与地面之间的附着力减小,导致赛车?#21457;飘?#65292;影响加速和制动。在赛车尾部安装后翼板后,可以增加向下的压力,使赛车行驶时的附着力增大。但后翼板的长、宽、高尺寸应分别控制在1000毫米、500毫米、800毫米之内。

在50年代,F1赛车曾采用过增压发动机,1977~1989年间,则流行涡轮增压发动机(1986年,本田1.5升涡轮增压发动机曾创下了880千瓦最大功率的记录)。从1989年起,FIA规定禁止使用涡轮增压器,一律使用排量不大于3.5升(1995年又限定为3.0升)、汽缸数目不超过12个的自然吸气式发动机(禁止使用转子发动机),并且限制进排气门的尺寸。在某些赛车的发动机上,为防止受热后尺寸变化影响进、排气量,每缸均采用了3个进气门、2个排气门。在F--1赛车史上,福特.考斯沃兹DFV型发动机堪称最为成功的发动机,它在1967~1982年间共赢得了154次大赛的胜利,并获得了10次世界冠军的称号。目前,雷诺V10、法拉利V12、奔驰V10、标致V10、雅马哈V10、福特V8、本田V10等都是着名的赛车发动机。其中,较为流行的结构型式是以雷诺V10型为代表的发动机。

燃料箱(兼作赛车手的靠背)必须是既可变形而又不是破损的,一般采用强化橡胶制成,其中出油管做成自动断油式结构。它靠一条?#20845;点式?#23433;全带与车手紧扣在一起。燃料箱前面的空间刚好能够包容车手的身体。
发动机采用高标号汽油作燃料,百公里油耗为60~80升(每升汽油的价格高达1-2英镑),并且采用非常先进的计算器控制点火装置。机油和水的冷却均靠行驶时产生的气流进行?#31354;冷?#65292;不设散热器和风扇。

底盘离地间隙只有50.8-76.2毫米(目的在于减低赛车重心高度),以致赛车在飞速行驶而造成震颤时与地面相碰发生串串火花。为加大制动力,F1赛车不像普通汽车那样采用鼓式制动器,而是采用双管路式的制动卡钳(凭两个或四个活塞推动)。制动器底盘则采用碳化合物制成,这样既可获得高的摩擦系数,又可耐高温。

F1赛车必须采用四轮结构,车轮宽度不能超过380毫米,车身不能盖住轮子。轮胎分干地胎和湿地胎两种,干地胎表面光滑,以利于与地面良好贴合;湿地胎具有明显的坑纹,以利于排出轮胎与地面之间的积水,保持必要附着力。为使发动机动力能可靠地传到路面,轮胎制作得相当宽大(前轮约为290毫米,后轮约为380毫米),用以增加与地面的接触面积。轮胎气压需依路面调整,但一般不易过高,以防止高速行驶时产生?#36454;跳?#12290;赛前需用特制的轮胎毯套对其进行加热,使之尽快达到工作温度,以获得较大的附着力(100oC左右时的附着力最大),避免起动或转弯时打滑。比赛中的高速行驶及频繁的强力转向和急刹车,使轮胎磨损极快,经常需要在中途换胎。因此,赛车轮胎只有一个紧固螺栓,便于迅速拆装。

为减少发动机功率损耗,赛车一般不采用自动变速系统。但若选用纯机械变速装置的话,操作起来又比较困难,因此,半自动式变速系统得到广泛采用。变速系统一般采用6~7个前进档,1个倒档。方向盘与转向轮的转角比约为1:1,以保证车手感觉直接,转向灵敏。

方向盘不是固定式地安装在转向轴上,而是采用可拆卸式结构型式,这使车手每次出入时都可将方向盘拆开,非常方便。 大多数赛车均不安装起动机,目的在于减小自重。比赛开始前,发动机预先发动,整装待发,随着比赛信号的出现,车手松开离合器,冲出起跑线。在维修站内,工作人员用轻便起动器发动赛车。但若发动机在比赛途中因故熄火的话,车手只能放弃比赛。不过,在练习赛时,车手可以让维修人员推动赛车来起动发动机。

F1赛车不像普通汽车那样在驾驶过程中不可调校,车手用方向盘上的调整按钮可以调校悬挂系统,以便适应不同的赛道;还可调校刹车系统,以分配前后制动力的大小。所以,车手在车内并非单纯地开车,还要不停地调校各种电子设备。

正是因为F1赛车具有如此先进的结构和装备,才使它具有了普通汽车所难以达到的良好性能。如乔丹车队F1赛车的性能参数为:最大功率515千瓦(700马力);最高油耗80升/百公里;最高车速340公里/小时;从静止状态起步后12秒钟可前进1000米;从100公里/小时制动至完全停止只有18米。而普通汽车公司生产的小轿车的上述参数则分别为:80千瓦(120马力)、10升/百公里、180千米/小时、280米、46米。

8. F1赛车的车子配置

地盘、空气动力学套件、引擎、轮胎
往细了说前翼前悬挂、遥感、方向盘、单体壳、散热器、灭火器、轮胎、刹车、扩散器、尾翼、变速箱、气箱、引擎、车载摄像头。http://image2.sina.com.cn/ty/up/2006-04-23/.jpg和http://image2.sina.com.cn/ty/up/2006-03-01/.jpg这个网址有详细的图片。

9. F1赛车的各项参数是什么

F1赛车的各项参数是碳素纤维增强塑料,排气量3000CC以内的10缸发动机。

车身(BODY):F1赛车的车身采用碳素纤维增强塑料(CFRP)。这是一种异常坚固但却有着轻微重量的优异材料。在使用这种材料之后,被称为无大梁单体结构(Monocogue)的车身基础部分的重量竟然不可思议地只有30KG。

而最后在安装了所有所需部件以及坐上驾驶员之后,整辆F1的重量也只有600KG而已,只有一般民用汽车的重量的三分之一左右。

发动机(ENGINE):根据规定,现在的F1赛车可以使用排气量3000CC以内的10缸发动机,其最高转速可以达到每分钟19000转,最高输出功率达到900马力。

由于F1比赛所需要的稳定性,引擎制作的方向不只是单纯的高速,更需要适应长时间的高速运转以及为了得到更好的转弯性能,也必须提出小体积、轻重量和小尺寸等设计需求。


引擎规格:



1、只能使用4冲程往复式活塞引擎。

2、根据规定,引擎的排量不能超过2400cc。

3、禁止使用增压。

4、所有引擎都必须有8个缸体,并以90o夹角成V字形排列,每个缸体的标准部分必须是圆形的。

5、引擎的每个缸体必须有两个进气和两个排气阀。

10. 用悬挂法和支撑法求出重心位置 具体怎么操作,举例说明一下

悬挂法:将待测物从一点悬挂,沿悬点做一条直线,重心必在该直线上!
同样的方法在做出一条直线,两条直线的交点就是重心!
支撑法原理一样,悬挂法简单!