当前位置:首页 » 数据仓库 » 数据库磁盘阵列教程
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

数据库磁盘阵列教程

发布时间: 2022-08-09 19:00:28

1. 磁盘阵列 详细步骤是什么我要做raid

而她最不需要的人们最善于观赏她,
大多数的事或许从不会发生:这事会,
没有流泪,浑身却湿透了泪水,
欢乐曾荡漾于河边废弃的工地,
生命是蔑视自己
稚子就让回河岸畔,哈哈

2. 如何搭建配置raid10磁盘阵列求教程

raid10的创建过程:
RAID 10 可以被称为1 + 0或0 +1。它将做镜像+条带两个工作。在 RAID 10 中首先做镜像然后做条带。
在 RAID 01 上首先做条带,然后做镜像。RAID 10 比 01 好。
1. 先做两个raid1 . 分别为md1 和md11.
2. 再用这两个raid1,做成开一个raid0. 即OK!

参考以下步骤:
1. 添加4块一样大小的硬盘并查看。 ls /dev/sd* | grep sd[b-e]
/dev/sdb /dev/sdc /dev/sdd /dev/sde.
2. 给四块硬盘分区,每一块都给出全部的空间。
fdisk /dev/sdb -t fd w
fdisk /dev/sdc -t fd w
fdisk /dev/sdd -t fd w
fdisk /dev/sde -t fd w
3. 创建两个raid1。
mdadm -C -v /dev/md1 -l 1 -n 2 /dev/sd[b-c]1
mdadm -C -v /dev/md11 -l 1 -n 2 /dev/sd[d-e]1
4. 创建raid0
mdadm -C -v /dev/md10 -l 0 -n 2 /dev/md1 /dev/md11
5. 查看raid0的状态。
cat /proc/mdstat .
6. 格式化 挂载
mkfs -t xfs -f /dev/md10
创建挂载点: /raid10
挂载: /dev/md10 /raid10
检测挂载是否成功。 df -h | grep /raid10
7, 设置开机自动挂载:
umount /raid10
在/etc/fstab 最后添加这样一行:
/dev/md10 /raid10 xfs defaults 0 0
mount -av
8. 生成配置文件。
mdadm -Dsv >/etc/mdadm.conf

3. 怎么做磁盘阵列

不一定,看你的主板是否带软陈列,如果带的话,那样就可以不需要买磁盘陈列卡了....

先查看主板型号,再到网上查。

Intel南桥芯片ICH5R、ICH6R集成有SATA-RAID控制器,但仅支持SATA-RAID,不支持PATA-RAID。Intel采用的是桥接技术,就是把SATA-RAID控制器桥接到IDE控制器,因此可以通过BIOS检测SATA硬盘,并且通过BIOS设置SATA-RAID。当连接SATA硬盘而又不做RAID时,是把SATA硬盘当作PATA硬盘处理的,安装OS时也不需要驱动软盘,在OS的设备管理器内也看不到SATA-RAID控制器,看到的是IDE ATAPI控制器,而且多了两个IDE通道(由两个SATA通道桥接的)。只有连接两个SATA硬盘,且作SATA-RAID时才使用SATA-RAID控制器,安装OS时需要需要驱动软盘,在OS的设备管理器内可以看到SATA-RAID控制器。安装ICH5R、ICH6R的RAID IAA驱动后,可以通过IAA程序查看RAID盘的性能参数。

VIA南桥芯片VT8237、VT8237R的SATA-RAID设计与Intel不同,它是把一个SATA-RAID控制器集成到8237南桥内,与南桥里的IDE控制器没有关系。当然这个SATA-RAID控制器也不见得是原生的SATA模式,因为传输速度也没有达到理想的SATA性能指标。BIOS不负责检测SATA硬盘,所以在BIOS里看不到SATA硬盘。SATA硬盘的检测和RAID设置需要通过SATA-RAID控制器自己BootROM(也可以叫SATA-RAID控制器的BIOS)。所以BIOS自检后会启动一个BootROM检测SATA硬盘,检测到SATA硬盘后就显示出硬盘信息,此时按快捷键Tab就可以进入BootROM设置SATA-RAID。在VIA的VT8237南桥的主板上使用SATA硬盘,无论是否做RAID安装OS时都需要驱动软盘,在OS的设备管理器内可以看到SATA-RAID控制器。VIA的芯片也只是集成了SATA-RAID控制器。

NVIDIA的nForce2/ nForce3/ nForce4芯片组的SATA/IDE/RAID处理方式是集Intel和VIA的优点于一身。第一是把SATA/IDE/RAID控制器桥接在一起,在不做RAID时,安装XP/2000也不需要任何驱动。第二是在BIOS里的SATA硬盘不像Intel那样需要特别设置,接上SATA硬盘BIOS就可以检测到。第三是不仅SATA硬盘可以组成RAID,PATA硬盘也可以组成RAID,PATA硬盘与SATA硬盘也可以组成RAID。这给需要RAID的用户带来极大的方便,Intel的ICH5R、ICH6R,VIA的VT8237都不支持PATA的IDE RAID。

NVIDIA芯片组BIOS设置和RAID设置简单介绍

nForce系列芯片组的BIOS里有关SATA和RAID的设置选项有两处,都在Integrated Peripherals(整合周边)菜单内。

SATA的设置项:Serial-ATA,设定值有[Enabled], [Disabled]。这项的用途是开启或关闭板载Serial-ATA控制器。使用SATA硬盘必须把此项设置为[Enabled]。如果不使用SATA硬盘可以将此项设置为[Disabled],可以减少占用的中断资源。

RAID的设置项在Integrated Peripherals/Onboard Device(板载设备)菜单内,光标移到Onboard Device,按进入如子菜单:RAID Config就是RAID配置选项,光标移到RAID Config,按就进入如RAID配置菜单:

第一项IDE RAID是确定是否设置RAID,设定值有[Enabled], [Disabled]。如果不做RAID,就保持缺省值[Disabled],此时下面的选项是不可设置的灰色。

如果做RAID就选择[Enabled],这时下面的选项才变成可以设置的黄色。IDE RAID下面是4个IDE(PATA)通道,再下面是SATA通道。nForce2芯片组是2个SATA通道,nForce3/4芯片组是4个SATA通道。可以根据你自己的意图设置,准备用哪个通道的硬盘做RAID,就把那个通道设置为[Enabled]。

设置完成就可退出保存BIOS设置,重新启动。这里要说明的是,当你设置RAID后,该通道就由RAID控制器管理,BIOS的Standard CMOS Features里看不到做RAID的硬盘了。

BIOS设置后,仅仅是指定那些通道的硬盘作RAID,并没有完成RAID的组建,前面说过做RAID的磁盘由RAID控制器管理,因此要由RAID控制器的RAID BIOS检测硬盘,以及设置RAID模式。BIOS启动自检后,RAID BIOS启动检测做RAID的硬盘,检测过程在显示器上显示,检测到硬盘后留给用户几秒钟时间,以便用户按F 1 0 进入RAID BIOS Setup。

nForce芯片组提供的RAID(冗余磁盘阵列)的模式共有下面四种:

RAID 0:硬盘串行方案,提高硬盘读写的速度。

RAID 1:镜像数据的技术。

RAID 0+1:由RAID 0和RAID 1阵列组成的技术。

Spanning (JBOD):不同容量的硬盘组成为一个大硬盘。

操作系统安装过程介绍

按F10进入RAID BIOS Setup,会出现NVIDIA RAID Utility -- Define a New Array(定义一个新阵列)。默认的设置是:RAID Mode(模式)--Mirroring(镜像),Striping Block(串行块)--Optimal(最佳)。

通过这个窗口可以定义一个新阵列,需要设置的项目有:选择RAID Mode(RAID模式):Mirroring(镜像)、Striping(串行)、Spanning(捆绑)、Stripe Mirroring(串行镜像)。

设置Striping Block(串行块):4 KB至128 KB/Optimal

指定RAID Array(RAID阵列)所使用的磁盘

用户可以根据自己的需要设置RAID模式,串行块大小和RAID阵列所使用的磁盘。其中串行块大小最好用默认的Optimal。RAID阵列所使用的磁盘通过光标键→添加。

做RAID的硬盘可以是同一通道的主/从盘,也可以是不同通道的主/从盘,建议使用不同通道的主/从盘,因为不同通道的带宽宽,速度快。Loc(位置)栏显示出每个硬盘的通道/控制器(0-1)/主副状态,其中通道0是PATA,1是SATA;控制器0是主,1是从;M是主盘,S是副盘。分配完RAID阵列磁盘后,按F7。出现清除磁盘数据的提示。按Y清除硬盘的数据,弹出Array List窗口:如果没有问题,可以按Ctrl-X保存退出,也可以重建已经设置的RAID阵列。至此RAID建立完成,系统重启,可以安装OS了。

安装Windows XP系统,安装系统需要驱动软盘,主板附带的是XP用的,2000的需要自己制作。从光驱启动Windows XP系统安装盘,在进入蓝色的提示屏幕时按F6键,告诉系统安装程序:需要另外的存储设备驱动。当安装程序拷贝一部分设备驱动后,停下来提示你敲S键,指定存储设备驱动:

系统提示把驱动软盘放入软驱,按提示放入软盘后,敲回车。系统读取软盘后,提示你选择驱动。nForce的RAID驱动与Intel和VIA的不同,有两个:NVIDIA RAID CLASS DRIVER和NVIDIA Nforce Storage Controller都要安装。

第一次选择NVIDIA RAID CLASS DRIVER,敲回车系统读入,再返回敲S键提示界面,此时再敲S键,然后选择NVIDIA Nforce Storage Controller,敲回车,系统继续拷贝文件,然后返回到下面界面。

在这个界面里显示出系统已经找到NVIDIA RAID CLASS DRIVER和NVIDIA Nforce Storage Controller,可以敲回车继续。
系统从软盘拷贝所需文件后重启,开始检测RAID盘,找到后提示设置硬盘。此时用户可以建立一个主分区,并格式化,然后系统向硬盘拷贝文件。在系统安装期间不要取出软盘,直到安装完成。

剩余的磁盘分区等安装完系统后,我们可以用XP的磁盘管理器分区格式化。用XP的磁盘管理器分区,等于/小于20GB的逻辑盘可以格式化为FAT32格式。大于20GB的格式化为NTF格式。

4. 怎样设磁盘阵列

RAID数据恢复

电脑无忧--主要业务范围
电脑维修 笔记本维修培训 IT外包服务/IT服务外包
笔记本电脑维修 数据恢复 联系电话:021-54252021;54257079;54257540
地址:上海徐汇区天钥桥路380弄20号汇峰大厦1D [徐家汇地铁站2号口出来 走100米]

磁盘阵列系RAID介绍

时间:[2004-06-23 14:21] 作者:不清楚作者是谁 被读5432次 您好!来自 218.6.247.114 的朋友

RAID,为Rendant Arrays of Independent Disks的简称,中文为廉价冗余磁盘阵列。

磁盘阵列其实也分为软阵列 (Software Raid)和硬阵列 (Hardware Raid) 两种. 软阵列即通过软件程序并由计算机的
CPU提供运行能力所成. 由于软件程式不是一个完整系统故只能提供最基本的 RAID容错功能. 其他如热备用硬盘的设置,
远程管理等功能均一一欠奉. 硬阵列是由独立操作的硬件提供整个磁盘阵列的控制和计算功能. 不依靠系统的CPU资源.
由于硬阵列是一个完整的系统, 所有需要的功能均可以做进去. 所以硬阵列所提供的功能和性能均比软阵列好. 而且,
如果你想把系统也做到磁盘阵列中, 硬阵列是唯一的选择. 故我们可以看市场上 RAID 5 级的磁盘阵列均为硬阵列. 软
阵列只适用于 Raid 0 和 Raid 1. 对于我们做镜像用的镜像塔, 肯定不会用 Raid 0或 Raid 1。

作为高性能的存储系统,巳经得到了越来越广泛的应用。RAID的级别从RAID概念的提出到现在,巳经发展了六个级别,
其级别分别是0、1、2、3、4、5等。但是最常用的是0、1、3、5四个级别。下面就介绍这四个级别。

RAID 0:将多个较小的磁盘合并成一个大的磁盘,不具有冗余,并行I/O,速度最快。RAID 0亦称为带区集。它是将多个
磁盘并列起来,成为一个大硬盘。在存放数据时,其将数据按磁盘的个数来进行分段,然后同时将这些数据写进这些盘中。
所以,在所有的级别中,RAID 0的速度是最快的。但是RAID 0没有冗余功能的,如果一个磁盘(物理)损坏,则所有的数
据都无法使用。

RAID 1:两组相同的磁盘系统互作镜像,速度没有提高,但是允许单个磁盘错,可靠性最高。RAID 1就是镜像。其原理为
在主硬盘上存放数据的同时也在镜像硬盘上写一样的数据。当主硬盘(物理)损坏时,镜像硬盘则代替主硬盘的工作。因
为有镜像硬盘做数据备份,所以RAID 1的数据安全性在所有的RAID级别上来说是最好的。但是其磁盘的利用率却只有50%,
是所有RAID上磁盘利用率最低的一个级别。

RAID Level 3

RAID 3存放数据的原理和RAID0、RAID1不同。RAID 3是以一个硬盘来存放数据的奇偶校验位,数据则分段存储于其余硬盘
中。它象RAID 0一样以并行的方式来存放数,但速度没有RAID 0快。如果数据盘(物理)损坏,只要将坏硬盘换掉,RAID
控制系统则会根据校验盘的数据校验位在新盘中重建坏盘上的数据。不过,如果校验盘(物理)损坏的话,则全部数据都
无法使用。利用单独的校验盘来保护数据虽然没有镜像的安全性高,但是硬盘利用率得到了很大的提高,为n-1。

RAID 5:向阵列中的磁盘写数据,奇偶校验数据存放在阵列中的各个盘上,允许单个磁盘出错。RAID 5也是以数据的校验
位来保证数据的安全,但它不是以单独硬盘来存放数据的校验位,而是将数据段的校验位交互存放于各个硬盘上。这样,
任何一个硬盘损坏,都可以根据其它硬盘上的校验位来重建损坏的数据。硬盘的利用率为n-1。

RAID 0-1:同时具有RAID 0和RAID 1的优点。

冗余:采用多个设备同时工作,当其中一个设备失效时,其它设备能够接替失效设备继续工作的体系。在PC服务器上,通
常在磁盘子系统、电源子系统采用冗余技术。

磁盘阵列(Disk Array)原理

1.为什么需要磁盘阵列?

如何增加磁盘的存取(access)速度,如何防止数据因磁盘的故障而失落及如何有效
的利用磁盘空间,一直是电脑专业人员和用户的困扰;而大容量磁盘的价格非常昂贵,对
用户形成很大的负担。磁盘阵列技术的产生一举解决了这些问题。

过去十几年来,CPU的处理速度增加了五十倍有多,内存(memory)的存取速度亦大
幅增加,而数据储存装置--主要是磁盘(hard disk)--的存取速度只增加了三、四倍,形
成电脑系统的瓶颈,拉低了电脑系统的整体性能(through put),若不能有效的提升磁盘
的存取速度,CPU、内存及磁盘间的不平衡将使CPU及内存的改进形成浪费。

目前改进磁盘存取速度的的方式主要有两种。一是磁盘快取控制(disk cache
controller),它将从磁盘读取的数据存在快取内存(cache memory)中以减少磁盘存取
的次数,数据的读写都在快取内存中进行,大幅增加存取的速度,如要读取的数据不在快
取内存中,或要写数据到磁盘时,才做磁盘的存取动作。这种方式在单工环境(single-
tasking envioronment)如DOS之下,对大量数据的存取有很好的性能(量小且频繁的存
取则不然),但在多工(multi-tasking)环境之下(因为要不停的作数据交换(swapping)
的动作)或数据库(database)的存取(因为每一记录都很小)就不能显示其性能。这种方
式没有任何安全保障。

其二是使用磁盘阵列的技术。磁盘阵列是把多个磁盘组成一个阵列,当作单一磁盘
使用,它将数据以分段(striping)的方式储存在不同的磁盘中,存取数据时,阵列中的相
关磁盘一起动作,大幅减低数据的存取时间,同时有更佳的空间利用率。磁盘阵列所利用
的不同的技术,称为RAID level,不同的level针对不同的系统及应用,以解决数据安全
的问题。

一般高性能的磁盘阵列都是以硬件的形式来达成,进一步的把磁盘快取控制及磁盘
阵列结合在一个控制器(RAID controler或控制卡上,针对不同的用户解决人们对磁
盘输出入系统的四大要求:
(1)增加存取速度,
(2)容错(fault tolerance),即安全性
(3)有效的利用磁盘空间;
(4)尽量的平衡CPU,内存及磁盘的性能差异,提高电脑的整体工作性能。

2.磁盘阵列原理

磁盘阵列中针对不同的应用使用的不同技术,称为RAID level,RAID是Rendent
Array of Inexpensive Disks的缩写,而每一level代表一种技术,目前业界公认的标
准是RAID 0~RAID 5。这个level并不代表技术的高低,level 5并不高于level 3,level
1也不低过level 4,至于要选择那一种RAID level的产品,纯视用户的操作环境
(operating environment)及应用(application)而定,与level的高低没有必然的关系。
RAID 0及RAID 1适用于PC及PC相关的系统如小型的网络服务器(network server)及
需要高磁盘容量与快速磁盘存取的工作站等,比较便宜;RAID 3及RAID 4适用于大型电
脑及影像、CAD/CAM等处理;RAID 5多用于OLTP,因有金融机构及大型数据处理中心的
迫切需要,故使用较多而较有名气, RAID 2较少使用,其他如RAID 6,RAID 7,乃至RAID
10等,都是厂商各做各的,并无一致的标准,在此不作说明。介绍各个RAID level之前,
先看看形成磁盘阵列的两个基本技术:

磁盘延伸(Disk Spanning):

译为磁盘延伸,能确切的表示disk spanning这种技术的含义。如图磁盘阵列控制器,
联接了四个磁盘,这四个磁盘形成一个阵列(array),而磁盘阵列的控制器(RAID
controller)是将此四个磁盘视为单一的磁盘,如DOS环境下的C:盘。这是disk
spanning的意义,因为把小容量的磁盘延伸为大容量的单一磁盘,用户不必规划数据在
各磁盘的分布,而且提高了磁盘空间的使用率。并使磁盘容量几乎可作无限的延伸;而各
个磁盘一起作取存的动作,比单一磁盘更为快捷。很明显的,有此阵列的形成而产生
RAID的各种技术。

磁盘或数据分段(Disk Striping or Data Striping):

因为磁盘阵列是将同一阵列的多个磁盘视为单一的虚拟磁盘(virtual disk),所以其数
据是以分段(block or segment)的方式顺序存放在磁盘阵列中,数据按需要分段,从第一
个磁盘开始放,放到最后一个磁盘再回到第一个磁盘放起,直到数据分布完毕。至于分段
的大小视系统而定,有的系统或以1KB最有效率,或以4KB,或以6KB,甚至是4MB或8MB
的,但除非数据小于一个扇区(sector,即521bytes),否则其分段应是512byte的倍数。
因为磁盘的读写是以一个扇区为单位,若数据小于512bytes,系统读取该扇区后,还要
做组合或分组(视读或写而定)的动作,浪费时间。从上图我们可以看出,数据以分段于在
不同的磁盘,整个阵列的各个磁盘可同时作读写,故数据分段使数据的存取有最好的效
率,理论上本来读一个包含四个分段的数据所需要的时间约=(磁盘的access time+数据
的tranfer time)X4次,现在只要一次就可以完成。

若以N表示磁盘的数目,R表示读取,W表示写入,S表示可使用空间,则数据分段的性能
为:
R:N(可同时读取所有磁盘)
W:N(可同时写入所有磁盘)
S:N(可利用所有的磁盘,并有最佳的使用率)

Disk striping也称为RAID 0,很多人以为RAID 0没有甚么,其实这是非常错误的观念,
因为RAID 0使磁盘的输出入有最高的效率。而磁盘阵列有更好效率的原因除数据分段
外,它可以同时执行多个输出入的要求,因为阵列中的每一个磁盘都能独立动作,分段放
在不同的磁盘,不同的磁盘可同时作读写,而且能在快取内存及磁盘作并行存取
(parallel access)的动作,但只有硬件的磁盘阵列才有此性能表现。

从上面两点我们可以看出,disk spanning定义了RAID的基本形式,提供了一个便宜、
灵活、高性能的系统结构,而disk striping解决了数据的存取效率和磁盘的利用率问
题,RAID 1至RAID 5是在此基础上提供磁盘安全的方案。

RAID 1

RAID 1是使用磁盘镜像(disk mirroring)的技术。磁盘镜像应用在RAID 1之前就在很
多系统中使用,它的方式是在工作磁盘(working disk)之外再加一额外的备份磁盘
(backup disk),两个磁盘所储存的数据完全一样,数据写入工作磁盘的同时亦写入备份
磁盘。磁盘镜像不见得就是RAID 1,如Novell Netware亦有提供磁盘镜像的功能,但并
不表示Netware有了RAID 1的功能。一般磁盘镜像和RAID 1有二点最大的不同:

RAID 1无工作磁盘和备份磁盘之分,多个磁盘可同时动作而有重叠(overlaping)读取的
功能,甚至不同的镜像磁盘可同时作写入的动作,这是一种最佳化的方式,称为负载平衡
(load-balance)。例如有多个用户在同一时间要读取数据,系统能同时驱动互相镜像的
磁盘,同时读取数据,以减轻系统的负载,增加I/O的性能。

RAID 1的磁盘是以磁盘延伸的方式形成阵列,而数据是以数据分段的方式作储存,因而
在读取时,它几乎和RAID 0有同样的性能。从RAID的结构就可以很清楚的看出RAID 1
和一般磁盘镜像的不同。

下图为RAID 1,每一笔数据都储存两份:
从图可以看出:
R:N(可同时读取所有磁盘)
W:N/2(同时写入磁盘数)
S:N/2(利用率)

读取数据时可用到所有的磁盘,充分发挥数据分段的优点;写入数据时,因为有备份,所
以要写入两个磁盘,其效率是N/2,磁盘空间的使用率也只有全部磁盘的一半。

很多人以为RAID 1要加一个额外的磁盘,形成浪费而不看好RAID 1,事实上磁盘越来越
便宜,并不见得造成负担,况且RAID 1有最好的容错(fault tolerence)能力,其效率也
是除RAID 0之外最好的。

在磁盘阵列的技术上,从RAID 1到RAID 5,不停机的意思表示在工作时如发生磁盘故障,
系统能持续工作而不停顿,仍然可作磁盘的存取,正常的读写数据;而容错则表示即使磁
盘故障,数据仍能保持完整,可让系统存取到正确的数据,而SCSI的磁盘阵列更可在工
作中抽换磁盘,并可自动重建故障磁盘的数据。磁盘阵列之所以能做到容错及不停机,
是因为它有冗余的磁盘空间可资利用,这也就是Rendant的意义。

RAID 2

RAID 2是把数据分散为位(bit)或块(block),加入海明码Hamming Code,在磁盘阵列中
作间隔写入(interleaving)到每个磁盘中,而且地址(address)都一样,也就是在各个磁
盘中,其数据都在相同的磁道(cylinder or track)及扇区中。RAID 2的设计是使用共
轴同步(spindle synchronize)的技术,存取数据时,整个磁盘阵列一起动作,在各作磁
盘的相同位置作平行存取,所以有最好的存取时间(accesstime),其总线(bus)是特别的
设计,以大带宽(band wide)并行传输所存取的数据,所以有最好的传输时间(transfer
time)。在大型档案的存取应用,RAID 2有最好的性能,但如果档案太小,会将其性能拉
下来,因为磁盘的存取是以扇区为单位,而RAID 2的存取是所有磁盘平行动作,而且是作
单位元的存取,故小于一个扇区的数据量会使其性能大打折扣。RAID 2是设计给需要连
续且大量数据的电脑使用的,如大型电脑(mainframe to supercomputer)、作影像处理
或CAD/CAM的工作站(workstation)等,并不适用于一般的多用户环境、网络服务器
(network server),小型机或PC。

RAID 2的安全采用内存阵列(memory array)的技术,使用多个额外的磁盘作单位错误校
正(single-bit correction)及双位错误检测(double-bit detection);至于需要多少个
额外的磁盘,则视其所采用的方法及结构而定,例如八个数据磁盘的阵列可能需要三个
额外的磁盘,有三十二个数据磁盘的高档阵列可能需要七个额外的磁盘。

RAID 3

RAID 3的数据储存及存取方式都和RAID 2一样,但在安全方面以奇偶校验(parity
check)取代海明码做错误校正及检测,所以只需要一个额外的校检磁盘(parity disk)。
奇偶校验值的计算是以各个磁盘的相对应位作XOR的逻辑运算,然后将结果写入奇偶校
验磁盘,任何数据的修改都要做奇偶校验计算,如图:

如某一磁盘故障,换上新的磁盘后,整个磁盘阵列(包括奇偶校验磁盘)需重新计算一次,
将故障磁盘的数据恢复并写入新磁盘中;如奇偶校验磁盘故障,则重新计算奇偶校验值,
以达容错的要求.

较之RAID 1及RAID 2,RAID 3有85%的磁盘空间利用率,其性能比RAID 2稍差,因为要
做奇偶校验计算;共轴同步的平行存取在读档案时有很好的性能,但在写入时较慢,需要
重新计算及修改奇偶校验磁盘的内容。RAID 3和RAID 2有同样的应用方式,适用大档
案及大量数据输出入的应用,并不适用于PC及网络服务器。

RAID 4

RAID 4也使用一个校验磁盘,但和RAID 3不一样,如图:

RAID 4是以扇区作数据分段,各磁盘相同位置的分段形成一个校验磁盘分段(parity
block),放在校验磁盘。这种方式可在不同的磁盘平行执行不同的读取命今,大幅提高磁
盘阵列的读取性能;但写入数据时,因受限于校验磁盘,同一时间只能作一次,启动所有
磁盘读取数据形成同一校验分段的所有数据分段,与要写入的数据做好校验计算再写
入。即使如此,小型档案的写入仍然比RAID 3要快,因其校验计算较简单而非作位(bit
level)的计算;但校验磁盘形成RAID 4的瓶颈,降低了性能,因有RAID 5而使得RAID 4
较少使用。

RAID 5
RAID5避免了RAID 4的瓶颈,方法是不用校验磁盘而将校验数据以循环的方式放在每一
个磁盘中,如下图:

磁盘阵列的第一个磁盘分段是校验值,第二个磁盘至后一个磁盘再折回第一个磁盘的分
段是数据,然后第二个磁盘的分段是校验值,从第三个磁盘再折回第二个磁盘的分段是
数据,以此类推,直到放完为止。图中的第一个parity block是由A0,A1...,B1,B2计算
出来,第二个parity block是由B3,B4,...,C4,D0计算出来,也就是校验值是由各磁盘
同一位置的分段的数据所计算出来。这种方式能大幅增加小档案的存取性能,不但可同
时读取,甚至有可能同时执行多个写入的动作,如可写入数据到磁盘1而其parity
block在磁盘2,同时写入数据到磁盘4而其parity block在磁盘1,这对联机交易处理
(OLTP,On-Line Transaction Processing)如银行系统、金融、股市等或大型数据库的
处理提供了最佳的解决方案(solution),因为这些应用的每一笔数据量小,磁盘输出入
频繁而且必须容错。

事实上RAID 5的性能并无如此理想,因为任何数据的修改,都要把同一parityblock的
所有数据读出来修改后,做完校验计算再写回去,也就是RMW cycle(Read-Modify-Write
cycle,这个cycle没有包括校验计算);正因为牵一而动全身,所以:
R:N(可同时读取所有磁盘)
W:1(可同时写入磁盘数)
S:N-1(利用率)

RAID 5的控制比较复杂,尤其是利用硬件对磁盘阵列的控制,因为这种方式的应用比其
他的RAID level要掌握更多的事情,有更多的输出入需求,既要速度快,又要处理数据,
计算校验值,做错误校正等,所以价格较高;其应用最好是OLTP,至于用于图像处理等,
不见得有最佳的性能。

2.磁盘阵列的额外容错功能:Spare or Standby driver

事实上容错功能已成为磁盘阵列最受青睐的特性,为了加强容错的功能以及使系统在磁
盘故障的情况下能迅速的重建数据,以维持系统的性能,一般的磁盘阵列系统都可使用
热备份(hot spare or hot standby driver)的功能,所谓热备份是在建立(configure)
磁盘阵列系统的时候,将其中一磁盘指定为后备磁盘,此一磁盘在平常并不操作,但若阵
列中某一磁盘发生故障时,磁盘阵列即以后备磁盘取代故障磁盘,并自动将故障磁盘的
数据重建(rebuild)在后备磁盘之上,因为反应快速,加上快取内存减少了磁盘的存取,
所以数据重建很快即可完成,对系统的性能影响很小。对于要求不停机的大型数据处理
中心或控制中心而言,热备份更是一项重要的功能,因为可避免晚间或无人值守时发生
磁盘故障所引起的种种不便。

另一个额外的容错功能是坏扇区转移(bad sector reassignment)。坏扇区是磁盘故障
的主要原因,通常磁盘在读写时发生坏扇区的情况即表示此磁盘故障,不能再作读写,甚
至有很多系统会因为不能完成读写的动作而死机,但若因为某一扇区的损坏而使工作不
能完成或要更换磁盘,则使得系统性能大打折扣,而系统的维护成本也未免太高了。坏扇
区转移是当磁盘阵列系统发现磁盘有坏扇区时,以另一空白且无故障的扇区取代该扇区,
以延长磁盘的使用寿命,减少坏磁盘的发生率以及系统的维护成本。所以坏扇区转移功
能使磁盘阵列具有更好的容错性,同时使整个系统有最好的成本效益比。其他如可外接
电池备援磁盘阵列的快取内存,以避免突然断电时数据尚未写回磁盘而损失;或在RAID
1时作写入一致性的检查等,虽是小技术,但亦不可忽视。

3.硬件磁盘阵列还是软件磁盘阵列

市面上有所谓硬件磁盘阵列与软件磁盘阵列之分,因为软件磁盘阵列是使用一块SCSI
卡与磁盘连接,一般用户误以为是硬件磁盘阵列。以上所述主要是针对硬件磁盘阵列,
其与软件磁盘阵列有几个最大的区别:

l 一个完整的磁盘阵列硬件与系统相接。
l 内置CPU,与主机并行运作,所有的I/O都在磁盘阵列中完成,减轻主机的工作负载,
增加系统整体性能。
l 有卓越的总线主控(bus mastering)及DMA(Direct Memory Access)能力,加速数据
的存取及传输性能。
l 与快取内存结合在一起,不但增加数据的存取及传输性能,更因减少对磁盘的存取
而增加磁盘的寿命。
l 能充份利用硬件的特性,反应快速。

软件磁盘阵列是一个程序,在主机执行,透过一块SCSI卡与磁盘相接形成阵列,它最大
的优点是便宜,因为没有硬件成本(包括研发、生产、维护等),而SCSI卡很便宜(亦有的
软件磁盘阵列使用指定的很贵的SCSI卡);它最大的缺点是使主机多了很多进程
(process),增加了主机的负担,尤其是输出入需求量大的系统。目前市面上的磁盘阵列
系统大部份是硬件磁盘阵列,软件磁盘阵列较少。

4.磁盘阵列卡还是磁盘阵列控制器

磁盘阵列控制卡一般用于小系统,供单机使用。与主机共用电源,在关闭主机电源时存
在丢失Cache中的数据的的危险。磁盘阵列控制卡只有常用总线方式的接口,其驱动程
序与主机、主机所用的操作系统都有关系,有软、硬件兼容性问题并潜在地增加了系统
的不安定因素。在更换磁盘阵列卡时要冒磁盘损坏,资料失落,随时停机的风险。

独立式磁盘阵列控制一般用于较大型系统,可分为两种:
单通道磁盘阵列和多通道式磁盘阵列,单通道磁盘阵列只能接一台主机,有很大的
扩充限制。多通道磁盘阵列可接多个系统同时使用,以群集(cluster)的方式共用磁盘阵
列,这使内接式阵列控制及单接式磁盘阵列无用武之地。目前多数独立形式的磁盘阵列
子系统,其本身与主机系统的硬件及操作环境?BR>
--
※ 来源:.广州网易 BBS bbs.nease.net.[FROM: 202.103.153.151]
发信人: secu (secu), 信区: WinNT
标 题: Re: NT下做RAID
发信站: 广州网易 BBS (Mon Aug 24 17:59:42 1998), 转信

【 在 davychen (xiaoque) 的大作中提到: 】
: 【 在 Magicboy (师傅仔) 的大作中提到: 】
: : 请问用SCSI硬盘做软件RAID与用性能更高一些的IDE硬盘做软件镜象,哪个
: : 性能更好一些?
: 当然是SCSI,但用软件镜象不能实现双工。因为备分的只是数据部分,引导区部分不在
: 上面。如果用IDE的话,无论RAID0,1,5,10,50都必须同时读写。可能很快斐捎才袒?/font>
: 道或扇区。RAID 0,1只要求两个硬盘,RAID 5则至少三个硬盘。

首先,IDE的性能不会比SCSI更高的。特别是在多任务的情况下。一般广告给出的是
最大传送速度,并不是工作速度。同一时期的IDE与SCSI盘相比,主要是产量比较大,
电路比较简单,所以价格比SCSI低很多,但要比性能,则差远了。

--
※ 来源:.广州网易 BBS bbs.nease.net.[FROM: 202.103.153.151]
发信人: secu (secu), 信区: WinNT
标 题: RAID的盘数
发信站: 广州网易 BBS (Mon Aug 24 18:06:16 1998), 转信

RAID并没有限制使用多少个盘,应时盘越多越好。
对于SCSI结构的RAID来说,盘的最大数量与SCSI通道(SCSI总线)的数量有关
一般是每个通道最多装15个盘(SCSI/3)
对于FC-AL(光纤)则是每个通道200个盘

当然,要有这样大的磁盘箱才行! :)

5. 如何配置磁盘阵列

有多种磁盘阵列的方法,你可以去服务器厂商(正睿)的网上找找磁盘阵列的配置图文教程参考一下,很快就清楚了!

6. 磁盘阵列卡怎么做raid

注意:请预先备份您服务器上的数据,配置磁盘阵列的过程将会删除您的硬盘上的所有数据! 一、 为什么要创建逻辑磁盘?当硬盘连接到阵列卡(RAID)上时,操作系统将不能直接看到物理的硬盘,因此需要创建成一个一个的被设置为RAID0,1和5等的逻辑磁盘(也叫容器),这样系统才能够正确识别它。逻辑磁盘(Logic Drive)、容器(Container)或虚拟磁盘(Virtual Drive)均表示一个意思,他们只是不同阵列卡产商的不同叫法。二、 创建逻辑磁盘的方式使用阵列卡本身的配置工具,即阵列卡的BIOS。(一般用于重装系统或没有安装操作系统的情况下去创建容器(Adaptec阵列卡)/逻辑驱动器(AMI/LSI阵列卡)。使用第三方提供的配置工具软件去实现对阵列卡的管理。如Dell Array Manager。(这些软件用于服务器上已经安装有操作系统)三、 正确识别您的阵列卡的型号识别您的磁盘阵列控制器(磁盘阵列控制器为可选项, 如果没有购买磁盘阵列控制器的话以该步骤可以省去)如果您有一块 AMI/LSI磁盘阵列控制器(PERC2/SC,PERC2/DC,PERC3/SC,PERC3/DC, PERC4/DI, PERC4/DC), 在系统开机自检的时候您将看到以下信息: Dell PowerEdge Expandable RAID Controller BIOS X.XX Jun 26.2001 Copyright (C) AMERICAN MEGATRENDS INC. Press CTRL+M to Run Configuration Utility or Press CTRL+Hfor WebBios 或者PowerEdge Expandable RAID Controller BIOS X.XX Feb 03,2003 Copyright (C) LSI Logic Corp. Press CTRL+M to Run Configuration Utility or Press CTRL+Hfor WebBios 此款阵列卡的配置方法请参考如下:在AIM/LSI磁盘阵列控制器上创建Logical Drive (逻辑磁盘) --- PERC2/SC,PERC2/DC,PERC3/SC,PERC3/DC,PERC3/DCL --- PERC4 DI/DC (略有不同,请仔细阅读下列文档)*注意:请预先备份您服务器上的数据,配置磁盘阵列的过程将会删除您的硬盘上的所有数据!1) 在自检过程中,当提示按< Control>< M> 键,按下并进入RAID的配置界面。 2) 如果服务器在Cluster 模式下,下列信息将会显示"按任意键继续"。3) 选中 Configure,并按回车。4) 如果需要重新配置一个RAID,请选中 New Configuration, 并按回车。如果已经存在一个可以使用的逻辑磁盘,请选中 View/Add Configuration,并按回车。本文,我们将会选择 "New Configuration"为例(注意: 选择New Configuration将删去原有磁盘阵列上的配置信息)5) 选中 YES ,并按回车。 6) 按空格键选中准备要创建逻辑磁盘的硬盘,当该逻辑磁盘里最后的一个硬盘被选中后,按回车键。7) 如果只创建一个逻辑磁盘,则进入步骤8; 7-1) 按空格键选中第二个逻辑磁盘里的硬盘。7-2) 当该逻辑磁盘里最后一个硬盘被选中后,按回车键。7-3) 当需要配置更多的逻辑磁盘,重复7.1和7.2步骤直到所有逻辑磁盘被创建。8) 按F10进行逻辑磁盘的配置。当您的阵列卡的类型是PERC4 DI/DC,将显示下列信息,否则请直接到步骤11。9) 按空格键选择阵列。跨接信息,例如Span-1(跨接-1),出现在阵列框内。 可以创建多个阵列,然后选择将其跨接。10) 按F10配置逻辑磁盘。11) 选择合适的RAID类型,其余接受默认值。注:Dell 推荐把所有的阵列空间分配给一个逻辑盘。12)选中 Accept ,并按回车。13) 按ESC键退回,选中 YES ,并按回车。 14) 按任意键继续。15) 初始化逻辑磁盘(Logical driver)(刚创建的逻辑磁盘需要经过初始化,才能使用) 按ESC 键退回主菜单,选中 Initialize ,并按回车。16) 选中需要初始化的逻辑磁盘,并按空格键接受。17) 选中 YES ,并按回车。18) 按任意键继续,并重启系统,RAID配置完成。 <SCRIPT src="/comment/commencount.asp?id=86839">
<script>

7. 关于磁盘阵列,最好把详细过程发出来

1.公司介绍
本公司全称:北京世纪长久电子技术有限公司,清华东路25号505室,注册商标是AMASTOR,公司主要经营存储设备,比如SATA,SAS,FC系列磁盘阵列,还经营IPSAN,和NAS等存储,另外还经营双机软件,提供SAN存储区域网络解决方案。想了解更多信息请浏览我们公司的网址 www.amastor.com
2.什么是磁盘阵列
使用RAID技术给数据提供安全
使用冗余技术把数据备份成双份或者多份
在线更换设备,比如热拔插控制器,硬盘,风扇,数据线等等,不会造成业务的中断。
3.为什么要使用磁盘阵列,什么地方用到磁盘阵列
大容量
高性能,速度快
具有一定的数据安全功能
所以数据存储的支持设备,在需要大容量,速度和数据安全的时候需要磁盘阵列
4.什么是RAID以及RAID级别
RAID就是存储条带化的意思,
RAID 0就是把数据分成块写入每一块磁盘,
RAID 1写一块,备用一块,就是所谓的镜像
RAID 2 带海明码校验(淘汰)
RAID 3 带奇偶校验码的并行传送(视频节目,大量连续的)不适合数据库
RAID 4 带奇偶校验的独立磁盘接口,一块盘放校验信息,负荷比较重
RAID 5 分布式奇偶校验的独立磁盘结构,(允许一块盘出错)将校验信息分别放在不同的盘上。硬盘使用是(N-1)
RAID 6 最新的RAID技术,两种奇偶校验的磁盘结构,允许两块硬盘出错,适用于数据绝对不能出错的情况下。硬盘使用率(N-2)
5.存储的结构
存储可分为DAS(直接与服务器连接),NAS(网络附加存储 服务器+磁盘阵列),还有SAN,更好的拓展能力可以实现资源共享。
6.硬盘的分类
硬盘可分为SCSI SATA SAS FC硬盘

8. 服务器组raid阵列卡请问谁有详细教程。

可以的。
一般磁盘阵列两种形式,本机的raid磁盘组和外挂的阵列柜。
本机的raid磁盘组,常见用两块盘做成raid1,放系统和应用程序,其他盘做成raid5存放数据库等生产数据,多数卡都可以做多个阵列,而一台机器根据需要可以装一块或多块阵列卡,唯一限制的是机箱的硬盘笼子。浪潮的低端nas即这种形式。
服务器上可以安装多个hba卡,通过sas,scsi,fc线缆即可连接多个同端口的阵列柜。比如西安某客户有一台ibm x3650m3机器,安装了一块lsi的sas hba卡,连接ds3200 sas阵列柜,后来空间不够用了,客户给机器加了一块qlogic的8gb fc hba卡,连一台v3500阵列柜,扩充了容量。

9. 求磁盘阵列教程(视频或图文)

ROAD0
1
一般常用的
先安装两块相同型号的硬盘
主板BIOS上面开启这个选项
格式化分区
和常规差不多
系统盘选择xp的安装版,不是ghost版本哦
win7的话可以直接安装
ok

10. 数据库服务器如何挂载磁盘阵列

一般数据库服务器和磁盘阵列是一块使用的。磁盘阵列挂载到数据库服务器上。
数据库服务器是一台服务器,跑的是数据应用程序,所以叫数据库服务器,一般核心数据是不会放在数据库服务器的本地磁盘的(出于安全和性能的考虑)。
磁盘阵列就是存储盘柜。支持IPSAN、FCSAN等。