‘壹’ 令牌环网的应用
令牌环网利用令牌(代表发信号的许可)来避免网络中的冲突,与使用冲突检测算法CSMA/CD的以太网相比,提高网络的数据传送率。此外,还可以设置发送的优先度。一个4M的令牌环网络和一个10M的以太网数据传送率相当,一个16M的令牌环网络的数据传送率接近一个100M的以太网。
但网络不可复用,导致网络利用率低下。当网络中一个结点拿到令牌使用网络后,不管此结点使用多少带宽,其它结点必须等待其使用完网络并放弃令牌后才有机会申请令牌并使用网络。此外,网络中还需要专门结点维护令牌。
(1)华为令牌环网怎么配置扩展阅读
令牌环网的媒体接入控制机制采用的是分布式控制模式的循环方法。在令牌环网中有一个令牌(Token)沿着环形总线在入网节点计算机间依次传递,令牌实际上是一个特殊格式的帧,本身并不包含信息,仅控制信道的使用,确保在同一时刻只有一个节点能够独占信道。
当环上节点都空闲时,令牌绕环行进。节点计算机只有取得令牌后才能发送数据帧,因此不会发生碰撞。由于令牌在网环上是按顺序依次传递的,因此对所有入网计算机而言,访问权是公平的。
‘贰’ 什么是令牌简述令牌环网的基本工作原理
Token Ring:令牌环(IEEE 802.5 LAN协议)
(Token Ring:IEEE 802.5 LAN protocol)
令牌环网(Token Ring)是一种 LAN 协议,定义在 IEEE 802.5 中,其中所有的工作站都连接到一个环上,每个工作站只能同直接相邻的工作站传输数据。通过围绕环的令牌信息授予工作站传输权限。
IEEE 802.5 中定义的令牌环源自 IBM 令牌环 LAN 技术。两种方式都基于令牌传递(Token Passing)技术。虽有少许差别,但总体而言,两种方式是相互兼容的。
令牌环上传输的小的数据(帧)叫为令牌,谁有令牌谁就有传输权限。如果环上的某个工作站收到令牌并且有信息发送,它就改变令牌中的一位(该操作将令牌变成一个帧开始序列),添加想传输的信息,然后将整个信息发往环中的下一工作站。当这个信息帧在环上传输时,网络中没有令牌,这就意味着其它工作站想传输数据就必须等待。因此令牌环网络中不会发生传输冲突。
信息帧沿着环传输直到它到达目的地,目的地创建一个副本以便进一步处理。信息帧继续沿着环传输直到到达发送站时便可以被删除。发送站可以通过检验返回帧以查看帧是否被接收站收到并且复制。
与以太网 CSMA/CD 网络不同,令牌传递网络具有确定性,这意味着任意终端站能够传输之前可以计算出最大等待时间。该特征结合另一些可靠性特征,使得令牌环网络适用于需要能够预测延迟的应用程序以及需要可靠的网络操作的情况。
此外,光纤分布式数据接口(FDDI)中也运用了令牌传递协议。
‘叁’ 令牌环的工作过程
令牌环的由来:令牌环技术由IBM在20世纪70年代发明,是第二个常用的LAN体系。它支持的速度有 1、4或16Mbps。有一种称为“高速令牌环网”的新技术,它可以100Mbps运行。令牌环的工作过程:每个节点均包含一个转发器,转发器从两条链路中的一条接收比特流然后通过另一条链路发送比特流。当数据流经过时,转发器通过简单的复制来接收帧。所有的工作站都以逻辑环的方式连接到网络中,环的访问由循环令牌帧控制。令牌传递的要素:�6�1在空闲的局域网上,3字节长的令牌总是不停的循环传递。�6�1令牌类似于帧,区别在于令牌的第2字节第4位用来指示网络是否空闲,该位会影响令牌环上的介质访问控制。�6�13个优先级决定节点是否能捕获该令牌,如果令牌的优先级高于节点的待发送帧,则令牌继续传递。�6�1一个节点只有在获得令牌控制权后才能发送帧。�6�1后续节点转发此帧,直到它回到源节点。�6�1同一时间只能有1帧在环中运行。
□ 令牌环的帧结构
令牌环的帧同以太网有明显的不同
□ 令牌环的结构与特点
令牌环网络结构:MAU:多站接入单元,是在令牌环网络中实现单个工作站互联的设备,也称为令牌环集线器。令牌环的网络结构在逻辑上是环型,但其物理结构则是星型。令牌环的特点:�6�1无冲突�6�1在高负载环境下也特别稳定和有效�6�1在同样的LAN中增加工作站的数量对令牌环的影响没有以太网的影响大。�6�1价格相对昂贵。适用环境:令牌环LAN具有广泛的功能,如电气级的自恢复和自配置功能,因此令牌环对于要求可靠性和可预测响应时间的网络来说是一个不错的选择。因此,在诸如工厂生产系统和航线预定系统的网络中通常使用令牌环。
□ FDDI
光纤分布式数据接口(FDDI)。指的是传输距离达2公里,速率可达100Mbps,利用光纤电缆进行令牌传输的局域网络。FDDI发展于20世纪80年代早期,适用于构建各项指标要求比较严格的高数据流网络的主干网。FDDI可以以100M的速率传输数据,在单个网络中支持500个或更多节点。FDDI的主要特征:双环结构:FDDI也是使用令牌传输方式来运转,但它使用两个环,一个是主环,另一个是次环(备份环)。在正常情况下,使用主环,而次环处于备用模式。当线路或节点出现故障时,中断或毁坏的节点两端的节点将两条链路连接起来成为一个更长的单环路网络,保证其他节点的通信正常进行。多消息发送: 可在环上有多于一个的令牌同时传输数据。同步通信: 在小流量时段内让出部分带宽,模拟“T1/T3”通信信道。
□ 小结:
令牌环与FDDI网络虽然不如以太网那样占主导地位,但也凭借自身的特点在局域网中得到了广泛的应用。令牌环网中的工作站通过争夺在网络中循环传递的令牌获得在网络中传递数据的能力。令牌环网中不存在冲突的概念。因此同以太网相比,在重负荷的情况下以太网的性能急剧下降,而令牌环和FDDI网仍然可以提供很高的有效吞吐量。通过学习令牌帧的格式,我们可以看到令牌帧可以提供比以太帧更多的功能,但令牌环网的部署成本要比同性能的以太网高。这也是为什么令牌环不如以太网普及的一个原因。FDDI是一种100 M光纤传输技术,也是使用令牌传输技术来运转。FDDI采用双环拓扑结构,包含两个方向相反的环,相关联的两个信道比单链路提供了更高的可靠性和可恢复性。FDDI经常用在要求苛刻、吞吐量大的网络中做高速主干网,为局域网的工作组提供连接。
‘肆’ 令牌环网与以太网的联系,以及令牌环网的特点...以及协议的相关信息...
令牌环网 常用于IBM系统中,其支持的速率为4Mbps和16Mbps两种。目前Novell、IBM LAN Server支持16MbpsIEEE802.5/令牌环网技术。
令牌环网是IBM公司于70年代发展的,现在这种网络比较少见。在老式的令牌环网中,数据传输速度为4Mbps或16Mbps,新型的快速令牌环网速度可达100Mbps。令牌环网的传输方法在物理上采用了星形拓扑结构,但逻辑上仍是环形拓扑结构。其通信传输介质可以是无屏蔽双绞线、屏蔽双绞线和光纤等。 结点间采用多站访问部件(Multistation Access Unit,MAU)连接在一起。MAU是一种专业化集线器,它是用来围绕工作站计算机的环路进行传输。由于数据包看起来像在环中传输,所以在工作站和MAU中没有终结器。
在这种网络中,有一种专门的帧称为“令牌”,在环路上持续地传输来确定一个结点何时可以发送包。令牌为24位长,有3个8位的域,分别是首定界符(Start Delimiter,SD)、访问控制(Access Control,AC)和终定界符(End Delimiter,ED)。首定界符是一种与众不同的信号模式,作为一种非数据信号表现出来,用途是防止它被解释成其它东西。这种独特的8位组合只能被识别为帧首标识符(SOF)。
令牌环网的媒体接入控制机制采用的是分布式控制模式的循环方法。在令牌环网中有一个令牌(Token)沿着环形总线在入网节点计算机间依次传递,令牌实际上是一个特殊格式的帧,本身并不包含信息,仅控制信道的使用,确保在同一时刻只有一个节点能够独占信道。当环上节点都空闲时,令牌绕环行进。节点计算机只有取得令牌后才能发送数据帧,因此不会发生碰撞。由于令牌在网环上是按顺序依次传递的,因此对所有入网计算机而言,访问权是公平的。
令牌在工作中有“闲”和“忙”两种状态。“闲”表示令牌没有被占用,即网中没有计算机在传送信息;“忙”表示令牌已被占用,即网中有信息正在传送。希望传送数据的计算机必须首先检测到“闲”令牌,将它置为“忙”的状态,然后在该令牌后面传送数据。当所传数据被目的节点计算机接收后,数据被从网中除去,令牌被重新置为“闲”。令牌环网的缺点是需要维护令牌,一旦失去令牌就无法工作,需要选择专门的节点监视和管理令牌。 由于目前以太网技术发展迅速,令牌网存在固有缺点,令牌在整个计算机局域网已不多见,原来提供令牌网设备的厂商多数也退出了市场,所以在目前局域网市场中令牌网可以说是“明日黄花”了。
太网 让读者更易理解,读时有个参考的东西。历史
以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的一个。人们通常认为以太网发明于1973年,当年罗伯特.梅特卡夫(Robert Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。但是梅特卡夫本人认为以太网是之后几年才出现的。在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。
1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐,成立了3Com公司。3com对迪吉多, 英特尔, 和施乐进行游说,希望与他们一起将以太网标准化、规范化。这个通用的以太网标准于1980年9月30日出台。当时业界有两个流行的非公有网络标准令牌环网和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。
梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。Saltzer在一篇与他人合着的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。梅特卡夫和Saltzer曾经在麻省理工学院 MAC项目(Project MAC)的同一层楼里工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。
以太网(Ethernet)。指的是由Xerox公司创建并由Xerox,Intel和DEC公司联合开发的基带局域网规范。以太网络使用CSMA/CD(载波监听多路访问及冲突检测技术)技术,并以10M/S的速率运行在多种类型的电缆上。以太网与IEEE802·3系列标准相类似。
它不是一种具体的网络,是一种技术规范。
以太网是当今现有局域网采用的最通用的通信协议标准。该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10 Base T以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。一、标准以太网
开始以太网只有10Mbps的吞吐量,使用的是CSMA/CD(带有碰撞检测的载波侦听多路访问)的访问控制方法,这种早期的10Mbps以太网称之为标准以太网。以太网主要有两种传输介质,那就是双绞线和光纤。所有的以太网都遵循IEEE 802.3标准,下面列出是IEEE 802.3的一些以太网络标准,在这些标准中前面的数字表示传输速度,单位是“Mbps”,最后的一个数字表示单段网线长度(基准单位是100m),Base表示“基带”的意思,Broad代表“带宽”。
·10Base-5 使用粗同轴电缆,最大网段长度为500m,基带传输方法;
·10Base-2 使用细同轴电缆,最大网段长度为185m,基带传输方法;
·10Base-T 使用双绞线电缆,最大网段长度为100m;
· 1Base-5 使用双绞线电缆,最大网段长度为500m,传输速度为1Mbps;
·10Broad-36 使用同轴电缆(RG-59/U CATV),最大网段长度为3600m,是一种宽带传输方式;
·10Base-F 使用光纤传输介质,传输速率为10Mbps;
二、快速以太网
随着网络的发展,传统标准的以太网技术已难以满足日益增长的网络数据流量速度需求。在1993年10月以前,对于要求10Mbps以上数据流量的LAN应用,只有光纤分布式数据接口(FDDI)可供选择,但它是一种价格非常昂贵的、基于100Mpbs光缆的LAN。1993年10月,Grand Junction公司推出了世界上第一台快速以太网集线器Fastch10/100和网络接口卡FastNIC100,快速以太网技术正式得以应用。随后Intel、SynOptics、3COM、BayNetworks等公司亦相继推出自己的快速以太网装置。与此同时,IEEE802工程组亦对100Mbps以太网的各种标准,如100BASE-TX、100BASE-T4、MII、中继器、全双工等标准进行了研究。1995年3月IEEE宣布了IEEE802.3u 100BASE-T快速以太网标准(Fast Ethernet),就这样开始了快速以太网的时代。
快速以太网与原来在100Mbps带宽下工作的FDDI相比它具有许多的优点,最主要体现在快速以太网技术可以有效的保障用户在布线基础实施上的投资,它支持3、4、5类双绞线以及光纤的连接,能有效的利用现有的设施。 快速以太网的不足其实也是以太网技术的不足,那就是快速以太网仍是基于CSMA/CD技术,当网络负载较重时,会造成效率的降低,当然这可以使用交换技术来弥补。 100Mbps快速以太网标准又分为:100BASE-TX 、100BASE-FX、100BASE-T4三个子类。
· 100BASE-TX:是一种使用5类数据级无屏蔽双绞线或屏蔽双绞线的快速以太网技术。它使用两对双绞线,一对用于发送,一对用于接收数据。在传输中使用4B/5B编码方式,信号频率为125MHz。符合EIA586的5类布线标准和IBM的SPT 1类布线标准。使用同10BASE-T相同的RJ-45连接器。它的最大网段长度为100米。它支持全双工的数据传输。
· 100BASE-FX:是一种使用光缆的快速以太网技术,可使用单模和多模光纤(62.5和125um) 多模光纤连接的最大距离为550米。单模光纤连接的最大距离为3000米。在传输中使用4B/5B编码方式,信号频率为125MHz。它使用MIC/FDDI连接器、ST连接器或SC连接器。它的最大网段长度为150m、412m、2000m或更长至10公里,这与所使用的光纤类型和工作模式有关,它支持全双工的数据传输。100BASE-FX特别适合于有电气干扰的环境、较大距离连接、或高保密环境等情况下的适用。
· 100BASE-T4:是一种可使用3、4、5类无屏蔽双绞线或屏蔽双绞线的快速以太网技术。100Base-T4使用4对双绞线,其中的三对用于在33MHz的频率上传输数据,每一对均工作于半双工模式。第四对用于CSMA/CD冲突检测。在传输中使用8B/6T编码方式,信号频率为25MHz,符合EIA586结构化布线标准。它使用与10BASE-T相同的RJ-45连接器,最大网段长度为100米。
三、千兆以太网
千兆以太网技术作为最新的高速以太网技术,给用户带来了提高核心网络的有效解决方案,这种解决方案的最大优点是继承了传统以太技术价格便宜的优点。 千兆技术仍然是以太技术,它采用了与10M以太网相同的帧格式、帧结构、网络协议、全/半双工工作方式、流控模式以及布线系统。由于该技术不改变传统以太网的桌面应用、操作系统,因此可与10M或100M的以太网很好地配合工作。升级到千兆以太网不必改变网络应用程序、网管部件和网络操作系统,能够最大程度地投资保护。 为了能够侦测到64Bytes资料框的碰撞,Gigabit Ethernet所支持的距离更短。Gigabit Ethernet 支持的网络类型,如下表所示:
传输介质 距离
1000Base-CX Copper STP 25m
1000Base-T Copper Cat 5 UTP 100m
1000Base-SX Multi-mode Fiber 500m
1000Base-LX Single-mode Fiber 3000m
千兆以太网技术有两个标准:IEEE802.3z和IEEE802.3ab。IEEE802.3z制定了光纤和短程铜线连接方案的标准。IEEE802.3ab制定了五类双绞线上较长距离连接方案的标准。
1. IEEE802.3z
IEEE802.3z工作组负责制定光纤(单模或多模)和同轴电缆的全双工链路标准。IEEE802.3z定义了基于光纤和短距离铜缆的1000Base-X,采用8B/10B编码技术,信道传输速度为1.25Gbit/s,去耦后实现1000Mbit/s传输速度。 IEEE802.3z具有下列千兆以太网标准:
· 1000Base-SX 只支持多模光纤,可以采用直径为62.5um或50um的多模光纤,工作波长为770-860nm,传输距离为220-550m。
· 1000Base-LX 多模光纤:可以采用直径为62.5um或50um的多模光纤,工作波长范围为1270-1355nm,传输距离为550m。
单模光纤:可以支持直径为9um或10um的单模光纤,工作波长范围为1270-1355nm,传输距离为5km左右。
· 1000Base-CX 采用150欧屏蔽双绞线(STP),传输距离为25m。
2. IEEE802.3ab
IEEE802.3ab工作组负责制定基于UTP的半双工链路的千兆以太网标准,产生IEEE802.3ab标准及协议。IEEE802.3ab定义基于5类UTP的1000Base-T标准,其目的是在5类UTP上以1000Mbit/s速率传输100m。 IEEE802.3ab标准的意义主要有两点:
(1) 保护用户在5类UTP布线系统上的投资。
(2) 1000Base-T是100Base-T自然扩展,与10Base-T、100Base-T完全兼容。不过,在5类UTP上达到1000Mbit/s的传输速率需要解决5类UTP的串扰和衰减问题,因此,使IEEE802.3ab工作组的开发任务要比IEEE802.3z复杂些
四、万兆以太网
万兆以太网规范包含在 IEEE 802.3 标准的补充标准 IEEE 802.3ae 中,它扩展了 IEEE 802.3 协议和 MAC 规范使其支持 10Gb/s 的传输速率。除此之外,通过 WAN 界面子层(WIS:WAN interface sublayer),10千兆位以太网也能被调整为较低的传输速率,如 9.584640 Gb/s (OC-192),这就允许10千兆位以太网设备与同步光纤网络(SONET) STS -192c 传输格式相兼容。
· 10GBASE-SR 和 10GBASE-SW 主要支持短波(850 nm)多模光纤(MMF),光纤距离为 2m 到 300 m 。
10GBASE-SR 主要支持“暗光纤”(dark fiber),暗光纤是指没有光传播并且不与任何设备连接的光纤。
10GBASE-SW 主要用于连接 SONET 设备,它应用于远程数据通信。
· 10GBASE-LR 和 10GBASE-LW 主要支持长波(1310nm)单模光纤(SMF),光纤距离为 2m 到 10km (约32808英尺)。
10GBASE-LW 主要用来连接 SONET 设备时,
10GBASE-LR 则用来支持“暗光纤”(dark fiber)。
· 10GBASE-ER 和 10GBASE-EW 主要支持超长波(1550nm)单模光纤(SMF),光纤距离为 2m 到 40km (约131233英尺)。
10GBASE-EW 主要用来连接 SONET 设备,
10GBASE-ER 则用来支持“暗光纤”(dark fiber)。
· 10GBASE-LX4 采用波分复用技术,在单对光缆上以四倍光波长发送信号。系统运行在 1310nm 的多模或单模暗光纤方式下。该系统的设计目标是针对于 2m 到 300 m 的多模光纤模式或 2m 到 10km 的单模光纤模式。总线型:所需的电缆较少、价格便宜、管理成本高,不易隔离故障点、采用共享的访问机制,易造成网络拥塞。早期以太网多使用总线型的拓扑结构,采用同轴缆作为传输介质,连接简单,通常在小规模的网络中不需要专用的网络设备,但由于它存在的固有缺陷,已经逐渐被以集线器和交换机为核心的星型网络所代替。
星型:管理方便、容易扩展、需要专用的网络设备作为网络的核心节点、需要更多的网线、对核心设备的可靠性要求高。采用专用的网络设备(如集线器或交换机)作为核心节点,通过双绞线将局域网中的各台主机连接到核心节点上,这就形成了星型结构。星型网络虽然需要的线缆比总线型多,但布线和连接器比总线型的要便宜。此外,星型拓扑可以通过级联的方式很方便的将网络扩展到很大的规模,因此得到了广泛的应用,被绝大部分的以太网所采用。
‘伍’ 双环令牌环网的组建
搞笑,谁还用这个东西啊!?
‘陆’ 华为HG8240怎么设路由设值
我移动的宽带,碰到了与你一样的问题,网上找的好像不管用。
参考如下:
华为HG8240光纤猫开启路由
关于HG8240光纤猫很多人说不可以开路由,或者不成功。其实是可以开启路由的,因为他是三层的。至少我目前也在用,也帮客户开启成功了可以同时上4台机。
开启也很简单没什么技术含量,
1. IP要设置在192.168.100.2--254 登录猫的IP 129.168.100.1 超级用户名 telecomadmin 密码admintelecom
语言选china
2。先左边找到树目录LAN ,进去看到LAN1-4框框把他全部勾上后点应用。
3. 再找到WAN树目录进去,如果原来里面建有的都删除不管什么,没有的就不需要直接新建,选INTERNET
使能都打勾 ,LAN ID与8210P 原来没有删之前有的就记住抄下来,填上去。没有的找安装人员。选择中路由功能,方式拨号PPPOE,然后填自己的宽带账户和密码,最后的LAN1-4也要选中勾起 。就应用可以了。过几分钟点点状态看看。如果显示PPPOE 有IP后就是成功了,没有就是不成功,开始我的也不行原因就是LAN ID 和8201P错了。关于这两个值是多少 我就不敢说了,我的就是45 与 0.开始是46与1 死都连不上。改了就好了。如果看到状态那里PPPOE拨号成功显示IP后,你就可以在下面设置那树目录那里找到保存当前的设置到FLASH中写进FLASH,这样重启后也不会还原的。如果没有保存一断电或重启猫后就没有还原到了原来的状态。又需要重新来过的。
4 可以参考下面基本配置3那里:来自网上
conf t
vlan 20 【这个ID是有依据的】
name test 20【这是命名】
exit
这里的ID是有限制的
给你说下ID范围和解释
1. 0和4095 仅仅限于系统使用 用户不能查看和使用
2. 1 正常 cisco默认的vlan,用户可以使用但是不能删除
3. 2--1001 正常 用于以太网的VLAN,用户可以创建。使用。删除。
4. 1002--1005 正常 用于FDDI和令牌环的CISCO默认VLAN,用户不能删除
5. 1006--1024 保留 仅仅限于系统使用。用户不能查看和使用。
6. 1025--4094 扩展 仅仅用于以太网VLAN
上面说是三层。就是说带有猫 电话 网络数字电视的端口。如果你开启了路由后 后面的电话与网络电视就不能用了。
你要想留下 电话 网络数字电视的端口,那就加一个路由吧。设置跟普通路由一样没什么两样的。可以把路由的WAN口连接到8240的LAN1口 ,IP就要跟路由的去填写了,这样就可以保留了原来的三层也能实现了路由功能了。
‘柒’ 令牌环网和令牌总线的介质访问控制方法
如果某结点有数据帧要发送,它必须等待空闲令牌的到来。当此结点获得空闲令牌之后,将令牌标志位由“闲”变为“忙”,然后传送数据。令牌环的基本工作过程如下图所示。
IEEE802.5标准对以上技术进行了一些改进,主要表现在以下几点:
--单令牌协议,即环中只能存在一个有效令牌
--支持多优先级方案
--设置一个监控站,执行环维护功能
--通过预约指示器进行令牌预约。
‘捌’ 令牌环网和以太网互联用交换机还是路由器
一般要用路由器,属于不同介质之间的互联;路由器的一个特点就是可以连接不同介质的线路。
至少配一个令牌环接口,一个以太网接口。
好像没有见过同时支持以太网和令牌环的交换机。
‘玖’ 良好的网络设备安全配置管理原则
网络配置与管理
第一章
1. 计算机技术与通讯技术的紧密结合产生了计算机网络。它经历了三个阶段的发展过程:
具有通信功能的单机系统、具有通信功能的多机系统和计算机网络。
2. 计算机网络按逻辑功能分为资源子网和通信子网两部分。
资源子网是计算机网络中面向用户的部分,负责数据处理工作。
通信子网是网络中数据通信系统,它用于信息交换的网络节点处理机和通信链路组成,主要负责通信处理工作。
3. 网络设备,在现代网络中,依靠各种网络设备把各个小网络连接起来,形成了一个更大的网络,也就是Internet。网络设备主要包括:网卡(NIC)、调制解调器(Modem)、集线器(Hub)、中继器(Repeater)、网桥(Bridge)、交换机(Switch)、路由器(Router)和网关(Gateway)等。
4. 集线器是一种扩展网络的重要设备,工作在物理层。中继器工作在物理层,是最简单的的局域网延伸设备,主要作用是放大传输介质上传输的信号。网桥,工作在数据链路层,用于连接同类网络。交换机分为二层交换机和三层交换机,二层工作在数据链路层,根据MAC地址转发帧。三层交换机工作在网络层,根据网络地址转发数据包。每个端口都有桥接功能,所有端口都是独立工作的,连接到同一交换机的用户独立享受交换机每个端口提供的带宽,因此用交换机来扩展网络的时候,不会出现网络性能恶化的情况,这是目前使用最多的网络扩展设备。路由器,工作在网络层,它的作用是连接局域网和广域网。网关工作在应用层。
5. 传输介质,可分为有线传输介质和无线传输介质。
6. 计算机网络的分类,根据地理范围可以分为局域网(LAN)、城域网(MAN)、广域网(WAN)、和互联网(Internet)4种。
7. 局域网的分类,局域网主要是以双绞线为传输介质的以太网,基本上是企业和事业的局域网。
8. 以太网分为标准以太网,快速以太网,千兆以太网和10G以太网。
9. 令牌环网,在一种专门的帧称为“令牌”,在环路上持续地传输来确定一个结点何时可以发送包。
10. FDDI网,光纤分布式数据接口。同IBM的令牌环网技术相似,并具有LAN和令牌环网所缺乏的管理、控制和可靠性措施。
11. ATM网,异步传输模式,ATM使用53字节固定长度的单元进行交换。ATM的优点:使用相同的数据单元,可实现广域网和局域网的无缝连接。支持VLAN(虚拟局域网)功能,可以对网络进行灵活的管理和配置。具有不同的速率,分为25、51、155、622Mbps,从而为不同的应用提供不同的速率。ATM采用“信元交换”来代替“包交换”进行实验,发现信元交换的速度是非常快的。
12. 无线局域网,所采用的是802.11系列标准,它也是由IEEE 802标准委员会制定的。目前一系列标准主要有4个标准:802.11b 802.11a 802.11g 802.11z,前三个标准都是针对传输速度进行的改进。802.11b,它的传输速度为11MB/S,因为它的连接速度比较低,随后推出了802.11a标准,它的连接速度可达54MB/S。但由于两者不兼容,所以推出了802.11g,这样原有的802.11b和802.11a标准的设备都可以在同一网络中使用。802.11z是一种专门为了加强无线局域网安全的标准。因为无线局域网的“无线”特点,给网络带来了极大的不安全因素,为此802.11z标准专门就无线网络的安全做了明确规定,加强了用户身份认证制度,并对传输的数据进行加密。
13. 网络协议的三要素为:语法,语义,同步。
14. OSI参考模型是计算机网络的基本体系结构模型,通常使用的协议有:TCP/IP协议、IPX/SPX协议、NetBEUI协议等。
15. OSI模型将通信会话需要的各种进程划分7个相对独立的功能层次,从下到上依次是:物理层 数据链路层 网络层 传输层 会话层 表示层 应用层。
16. TCP/IP参考模型包括4个功能层:应用层 传输层 网际层及接口层
17. 协议组件 IP:网络层协议。 TCP:可靠的主机到主机层协议。 UDP:尽力转发的主机到主机层协议。 ICMP:在IP网络内为控制、测试、管理功能而设计的多协议。
18. IP地址介绍,地址实际上是一种标识符,它能够帮助找到目的站点,起到了确定位置的作用。IP 地址分为A B C DE类地址。
19. IP地址的使用规则:
20. 网络号全0的地址保留,不能作为标识网络使用。主机号全0的地址保留,用来标识网络地址。
网络号全1、主机号全0的地址代表网络的子网掩码。
地址0.0.0.0:表示默认路由。
地址255.255.255.255:代表本地有限广播。
主机号全1的地址表示广播地址,称为直接广播或是有限广播。可以跨越路由器。
21. 划分子网后整个IP地址就分为三个部分:主网号,它对应于标准A,B,C类的网络号部分。借用主机位作为网络号的部分,这个被称为子网号。剩余的主机号。
22. 子网掩码的意义,在掩码中,用1表示网络位,用0表示主机位。
23. IPV4地址不够用了,所以出现了IPV6地址。,在表示和书写时,用冒号将128位分割成8个16位的段,这里的128位表示在一个IPV6地址中包括128个二进制数,每个段包括4位的16进制数字。
第二章
1. 路由器是一种网络连接设备,用来连接不同的网络以及接入Internet。
IOS是路由器的操作系统,是路由器软件商的组成部分。
2. 路由器和PC机一样,也需要操作系统才能运行。Cisco(思科)路由器的操作系统叫做IOS,路由器的平台不同、功能不同,运行的IOS也不相同。IOS是一个特殊格式的文件,对于IOS文件的命名,思科采用了特殊的规则。
4. 网络互连:把自己的网络同其他的网络互连起来,从网络中获取更多的信息和向网络发布自己的消息。网络互连有多种方式,其中执行最多是网桥互连和路由器互连。
5. 路由动作包括两项基本内容:寻径和转发。寻径:判断到达目的地的最佳路径,由路由器选择算法来实现。
6. 路由选择方式有两种:静态路由和动态路由。
7.RIP协议最初是为Xerox网络系统的Xerox parc通用协议设计的,是Internet中常用的路由协议。RIP采用距离向量算法,也称为距离向量协议。 RIP执行非常广泛,它简单,可靠,便于配置。
8.ROP已不能互连,OSPF随机产生。它是网间工程任务组织的内部网关协议工作组为IP网络而开发的一种路由协议。是一种基于链路状态的路由协议。
9.BGP是为TCP/IP互联网设计的外部网关协议,用于多个自治域之间。
10.路由表的优先问题,它们各自维护的路由表都提供给转发程序,但这些路由表的表项间可能会发生冲突。这种冲突可通过配置各路由表的优先级来解决。通常静态路由具有默认的最高优先级,当其他路由表项与它矛盾时,均按静态路由转发。
11. 路由算法有一下几个设计目标:最优化 简洁性 快速收敛性灵活性坚固性
路由算法执行了许多种不同的度量标准去决定最佳路径。
通常所执行的度量有:路径长度。可靠性,时延。带宽。负载通信成本等。
第三章
进入快速以太网接口配置模式命令:Router(Config)#Interface Fasterthernet interface-number
配置IP地址及其掩码的命令:Router(Config-if)#ip address ip-address ip-mask【secondary】
启用接口的命令:Router(Config)#no shutdown
进入接口SO配置模式:Router1(config)#interface serial 0
配置路由器接口SO的IP地址:Router1(config-if)#ip address 172.16.2.1255.255.255.0
配置Router1的时钟频率(DCE):Router1(config-if)#clock rate 64000
开启路由器fastetherner0接口:Router1(config)#no shutdown
第四章
静态路由的优点:1.没有额外的路由器的cpu负担2.节约带宽3.增加安全性
静态路由的缺点:1.网络管理员必须了解网络的整个拓扑结构
2.如果网络拓扑发生变化,管理员要在所有的路由上动手修改路由表
3.不适合于大型网络
默认路由是在路由选择表中没有对应于特定目标网络的条目是使用的路由
华为路由器配置默认路由:【RunterC】ip route-static 0. 0.0.0.0.0.0.0 192.168.40.1
静态路由的默认管理距离:1
目前使用的动态路由协议又两种:内部网关协议(IGP)和外部网关协议(RGP)
三种路由协议:距离矢量(Distance vector),链路状态(Link state)和混合型(Hybrid)
RIP目前有两个版本:RIPv1和RIPv2。RIPv1是个有类路由协议,而RIPv2是个无类路由协议
路由更新计时为:30秒 路由无效计时为:180秒保持停止计时为:大于等于180秒 路由刷新时间:240秒
复合度量包括4个元素:带宽、延迟、负载、可靠性
访问控制列表(ACL)是应用路由器接口的指令列表,这些指令列表用来告诉路由器哪些数据包可以接收,哪些数据包需要拒绝
ACL通过在访问控制列表中对目的地进行归类来管理通信流量,处理特定的数据包
ACL适用于所有的路由协议,如IP,IPX等
设置ACL的一些规则:
1. 按顺序地比较,先比较第一行,再比较第二行,直到最后一行
2. 从第一行起,直到一个符合条件的行,符合以后,其余的行就不再继续比较下去
3. 默认在每个ACL中最后一行为隐含的拒绝,如果之前没找到一条许可语句,意味着包将被丢弃
两种主要的访问控制列表:1.标准访问控制列表2.扩展访问控制列表
ACL号为1-99和1300-1999
扩展ACL使用的数字表号在100-199之间
第五章
交换机对数据包的转发是建立在MAC地址基础上
冗余路径带来的问题:广播风暴、重复帧拷贝、MAC地址表表项不稳定
STP(生成树协议)的主要任务是防止2层的循环,STP使用生成树算法(STA)来创建拓扑数据库
IEEE版本的STP的默认优先级是32768,决定谁是根桥。假如优先级一样,那就比较MAC地址,MAC地址小的作为根桥
运行STP的交换机端口的5中状态:堵塞、监听、学习、禁用、转发
交换机对于数据的转发有一下三种方式:1.存储-转发式交换方 2.直通式交换方式 3.消除片断式交换方式
可堆叠交换机就是指一个交换机中一般同时具有UP和DOWN堆叠端口
可堆叠交换机常用的堆叠方式有两种:菊花型和星型
SVI端口的配置第三层逻辑接口称为:SVI P168
交换环境中的两种连接类型:access links、trunk links
附加VLAN 信息的方法,最具代表性的有:Inter-Switch link(ISL)、IEEE 802.1Q(俗称dot 1 Q)
当出现违反端口安全原则的情况时,端口有一下几种措施:
Suspend(挂起):端口不再工作,直到有数据帧流入并带有合法的地址
Disable(禁用):端口不再工作,除非人工使其再次启用
Ignore(忽略):忽略其违反安全性,端口仍可工作
计算机网络按逻辑功能可分为资源子网和通信子网两部分
网卡工作在网络模型的物理层
集线器是多端口中继器,工作在网络模型的物理层,所有端口共享设备
宽带
中继器工作在网络模型的物理层,是局域网的延伸设备。
网桥工作在网络模型的数据链路层,用于连接同类网络
交换机工作在网络模型的数据链路层,根据MAC地址转发数据帧,每个端口
独占宽带。
路由器工作在网络模型的网络层,根据IP地址转发数据包。
网关
网络有线通信介质通常包括双绞线、同轴电缆、光缆等
计算机网络按地里范围可以分为LAN、MAN、WAN、INTERNET
标准以太网宽带为10Mbps,实用CSMA/CD的访问控制方法,遵循
IEEE802.3标准,使用双绞线和同轴电缆为介质
10Base-5,使粗同轴电缆,最大网段长度500M,基带传输
10Base-2,使细同轴电缆,最大网段长度185M,基带传输
10Base-T,使双绞线,最大网段长度100M
快速以太网宽带为100Mbps,使用CSMA/CD的访问控制方法,使用双绞线
和光纤
100Base-TX,使双绞线,使用2对线路传输信号
100Base-T4,使双绞线,使用4对线路传输信号
100Base-FX,使用光纤,使用4B/5B编码方式
令牌环网,使用专门的数据帧称为令牌,传送数据
FDDI光纤分布式数据接口,使用光纤为传输介质,采用令牌传递数据
ATM异步传输模式使用53字节固定长度的信元传输数据
无线局域网WLAN采用802.11系列标准,有802.11a、802.11b、802.11g、
802.11n、802.11z
网络协议是计算机网络体系结构中关键要素之一,它的三要素为:语法、
语义、同步
TCP/IP中文为传输控制协议/互联网协议,是internet的基础协议,使用IP
地址通信
IPX/SPX中文为NetBIOS增强用户接口,特点是简单、通信效率高的广播型协
议
OSI参考模型七层:物理层、数据链路层、网络层、传输层、会话层、表示
层、应用层
物理层:传送单位是比特流,定义物理特性
数据链路层:传送单位是数据帧,确保链路连接
网络层:传送单位是数据包,提供网间通信
传输层:传送单位是信息,提供端到端的可靠传输
会话层:管理通信双发会话
表示层:负责数据编码转换
应用层:提供应用服务接口
TCP/IP模型四层:网络接口层、网际层、传输层、应用层
应用层协议:Telnet、FTP、SMTP、HTTP等 传输层协议:TCP、UDP
网际层协议:IP、ICMP、IGMP
网络接口层协议:ARP、RARP