当前位置:首页 » 数据仓库 » 数据库中所有带注释的病毒蛋白
扩展阅读
webinf下怎么引入js 2023-08-31 21:54:13
堡垒机怎么打开web 2023-08-31 21:54:11

数据库中所有带注释的病毒蛋白

发布时间: 2022-07-03 15:56:09

Ⅰ 病毒特征码数据库构建

是一类个体微小,无完整细胞结构,含单一核酸(DNA或RNA)型,必须在活细内寄生并复制的非细胞型微生物。

“virus”一词源于拉丁文,原指一种动物来源的毒素。病毒能增殖、遗传和演化,因而具有生命最基本的特征,但至今对它还没有公认的定义。最初用来识别病毒的性状,如个体微小、一般在光学显微镜下不能看到、可通过细菌所不能通过的滤器、在人工培养基上不能生长、具有致病性等,现仍有实用意义。但从本质上区分病毒和其他生物的特征是:①含有单一种核酸(DNA或RNA)的基因组和蛋白质外壳,没有细胞结构;②在感染细胞的同时或稍后释放其核酸,然后以核酸复制的方式增殖,而不是以二分裂方式增殖;③严格的细胞内寄生性。病毒缺乏独立的代谢能力,只能在活的宿主细胞中,利用细胞的生物合成机器来复制其核酸并合成由其核酸所编码的蛋白,最后装配成完整的、有感染性的病毒单位,即病毒粒。病毒粒是病毒从细胞到细胞或从宿主到宿主传播的主要形式。

目前,病毒一词的涵义可以是:指那些在化学组成和增殖方式是独具特点的,只能在宿主细胞内进行复制的微生物或遗传单位。它的特点是:只含有一种类型的核酸(DNA或RNA)作为遗传信息的载体;不含有功能性核糖体或其它细胞器;RNA病毒,全部遗传信息都在RNA上编码,这种情况在生物学上是独特的;体积比细菌小得多,仅含有少数几种酶类;不能在无生命的培养基中增殖,必须依赖宿主细胞的代谢系统复制自身核酸,合成蛋白质并装配成完整的病毒颗粒,或称病毒体(完整的病毒颗粒是指成熟的病毒个体)。

病毒性质的两重性;

一、病毒生命形式的两重性

1、病毒存在的两重性 病毒的生命活动很特殊,对细胞有绝对的依存性。其存在形式有二:一是细胞外形式,一是细胞内形式。存在于细胞外环境时,则不显复制活性,但保持感染活性,是病毒体或病毒颗粒形式。进入细胞内则解体释放出核酸分子(DNA或RNA),借细胞内环境的条件以独特的生命活动体系进行复制,是为核酸分子形式。

2、病毒的结晶性与非结晶性 病毒可提纯为结晶体。我们知道结晶体是一个化学概念,是很多无机化合物存在的一种形式,我们可以认为某些病毒有化学结晶型和生命活动型的两种形式。

3、颗粒形式与基因形式 病毒以颗粒形式存在于细胞之外,此时,只具感染性。一旦感染细胞病毒解体而释放出核酸基因组,然后才能进行复制和增殖,并产生新的子代病毒。有的病毒基因组整合于细胞基因组,随细胞的繁殖而增殖,此时病毒即以基因形式增殖,而不是以颗粒形式增殖,这是病毒潜伏感染的一种方式。

二、病毒结构和功能的两重性

1、标准病毒与缺陷病毒 在病毒的增殖过程中,由于其基因组因某种微环境因素的影响或转录过程的错误而发生突变,以致有装配不全的病毒颗粒产生,称为缺陷病毒,产生缺陷病毒的原亲代病毒,则称为标准病毒,缺陷病毒颗粒有干扰标准病繁殖的作用。

2、假病毒与真病毒 一种细胞有两种病毒同时感染的情况,在增殖过程中,一种病毒可以穿上本身的外壳,这就是真病毒,是这种病毒的应有“面目”;如果一种病毒的核酸被以另一病毒编码的外壳,则称为假病毒,此时一种病毒的本来性质,被另一种病毒的性质所掩盖。

3、杂种病毒和纯种病毒 两种病毒混合感染时,除了出现假型病毒外,还有可能出现病毒核酸重组的情况,即一种病毒颗粒之中,可含有两种病毒的遗传物质,此可称为杂种病毒,折实病毒学中一个相当常见的现象。

三、病毒病理学的两重性

1、病毒的致病性和非致病性 关于致病性和非致病性问题,是同宿主细胞相对二言的,在分子水平、细胞水平和机体水平,可能有不同的含义。在细胞水平有细胞病变作用,但在机体水平可能并不显示临床症状,此可称为亚临床感染或不显感染。

2、病毒感染的急性和慢性 病毒感染所致的临床症状有急、慢之分,有的病毒一般只表现急性感染而很少表现慢性感染;有的则既有急性过程,也有慢性过程。

目前对病毒的概念可以是:病毒是代谢上无活性,有感染性,而不一定有致病性的银子,他们小于细胞,但大于大多数大分子,他们无例外地在生活细胞内繁殖,他们含有一个蛋白质或脂蛋白外壳和一种核酸,DNA或RNA,甚至只含有核酸而内有蛋白质,或只有蛋白质而没有核酸,它们作为大分子似乎太复杂,作为生物体它们的生理和复制方式又千姿百态。Lwoff在“病毒的概念”一文中强调病毒的特殊性时指出,“病毒应该就是病毒,因为它们是病毒”。

病毒的形态

(1) 球状病毒;(2)杆状病毒;(3)砖形病毒;(4)有包膜的球状病毒;(5)具有球状头部的病毒;(6)封于包含体内的昆虫病毒。

病毒的大小

较大的病毒直径为300-450纳米,较小的病毒直径仅为18-22纳米

病毒的组成

病毒主要由核酸和蛋白质组成

病毒的复制过程叫做复制周期。其大致可分为连续的五个阶段:吸附、侵入、脱壳、病毒大分子的合成、病毒的装配与释放

病毒的分类

国际病毒分类委员会(ICNV)第七次报告(1999),将所有已知的病毒根据核酸类型分为DNA病毒——单股DNA病毒,DNA病毒——双股DNA病毒,DNA与RNA反转录病毒,RNA病毒——双股RNA病毒,RNA病毒——单链、单股RNA病毒,裸露RNA病毒及类病毒等八大类群。此外,还增设亚病毒因子一类。这个报告认可的病毒约4000种,设有三个病毒目,64个病毒科,9个病毒亚科,233个病毒属,其中29个病毒属为独立病毒属。亚病毒因子类群,不设科和属。包括卫星病毒和prion(传染性蛋白质颗粒或朊病毒)。一些属性不很明确的属称暂定病毒属。

病毒在自然界分布广泛,可感染细菌、真菌、植物、动物和人,常引起宿主发病。但在许多情况下,病毒也可与宿主共存而不引起明显的疾病。

简史

在发现病毒以前,人们早已开始不自觉地利用病毒为人类服务。中国在16世纪前后,就用天花患者脓疮中的浆液给健康人接种而使之获得免疫力。差不多同时,荷兰的种植者用嫁接法使郁金香感染病毒而开出美丽的碎色花朵;1796年E.琴纳发明了牛痘苗;1885年L.路易斯·巴斯德首创了狂犬病疫苗。

1892年Д.И.伊万诺夫斯基发现患烟草花叶病的烟叶汁通过阻留细菌的滤器后,仍保留其感染性;1898年M.W.拜耶林克再次发现了这一事实,并指出该病是一类与细菌不同的病原体所引起的。这是认识病毒的开端。以后相继发现许多人类、植物和动物的疾病是由病毒引起的。1898年 F.A.J.勒夫勒和 P.伏罗施发现了牛的口蹄疫病毒;1915年F.W.特沃特和1917年F.埃雷尔分别发现了细菌病毒即噬菌体。

从30年代起开始探索病毒的理化性质,M.施莱辛格提纯了噬菌体并指出它是由蛋白质和DNA构成的;1935年W.M.斯坦利获得了烟草花叶病毒的结晶;1936年首次在电子显微镜下看到该病毒是一种杆状颗粒。以后许多病毒相继被提纯,对他们的形态结构和化学组分进行了研究,为病毒分类提供了依据。

由于病毒的结构和组分简单,有些病毒又易于培养和定量,因此从20世纪40年代以来,病毒始终是分子生物学研究的重要材料。30年代末,以M.德尔布吕克为代表的一派学者开始用大肠杆菌的T偶数噬菌体研究其复制和遗传机制,奠定了分子遗传学的基础。70年代,研究重点逐渐转向动物病毒。分子生物学发展中的重要进展,如DNA和 RNA是遗传物质的确证,三联体密码学说的形成,核酸复制机制的阐明,遗传信息流中心法则的提出,反转录酶、基因的重叠和不连续性等的发现,以至基因工程的兴起和致癌理论的发展,几乎无一不与病毒有关。一些蛋白质和核酸的一级结构分析,也常常是首先以病毒为材料研究完成的。反过来,分子生物学研究又促进了对病毒结构、复制和遗传的认识,使病毒学发展成一门独立的分支学科。

在实践方面,病毒的研究对防治人类、植物和动物的病毒病作出了重要贡献。病毒疫苗的发展,为控制人类疾病(如天花、黄热病、脊髓灰质炎、麻疹等)和畜禽疾病(如牛瘟、猪瘟、鸡新城疫等)提供了有效措施;由于综合防治和抗病育种等措施的利用,有效地控制了马铃薯退化病、小麦土传花叶病、白菜芜菁花叶病等农作物病害;利用昆虫病毒作为杀虫剂的研究,也在大力开展并已进入实用阶段。

培养和检测

病毒研究的发展常常与病毒培养和检测方法的进步有密切的关系,特别在脊椎动物病毒方面,小鼠和鸡胚接种、组织培养、超速离心、凝胶电泳、电子显微镜和免疫测定等技术,对病毒学的发展具有深刻的影响。

噬菌体的培养和检测方法最为简单。将噬菌体接种到易感细菌的肉汤培养物中,经18~24小时后,混浊的培养物重新透明,此时细菌被裂解,大量噬菌体被释放到肉汤中,再经除菌过滤,即为粗制噬菌体。为了测定其中噬菌体的数量,将粗制噬菌体稀释到每一接种量含100个左右,与过量的细菌混合,然后铺种于琼脂平皿上,在温箱中培养过夜,细菌繁殖成乳白色衬底,被噬菌体裂解的区域则在此衬底上表现为圆形的透明斑,称为噬斑。噬斑数代表该接种量中有活力的噬菌体数量。如果挑出单个噬斑来培养,就能获得由单个噬菌体所繁殖的后代,达到分离纯化的目的。

动物病毒(见脊椎动物病毒)的培养可在自然宿主、实验动物、鸡胚或细胞培养中进行,以死亡、发病或病变等作为病毒繁殖的直接指标,或以血细胞凝集、抗原测定等作为间接指标。收获发病动物的组织磨成悬液或有病变的细胞培养液,即为粗制病毒。测定活病毒数量可采用空斑法,其原理与噬斑法相同,但以易感的动物单层细胞代替细菌,在接种适当稀释的病毒后,用含有培养液和中性红的琼脂覆盖,使病毒感染局限在小面积内形成病变区,衬底的健康细胞被中性红染成红色,病变区不染色而显示为空斑。

至今植物病毒的培养和检测大都是在整株植物上进行的。从捣碎的病叶汁中制备病毒,常用枯斑法检测。用手指蘸上混有金刚砂的稀释病毒在植物叶片上轩轻磨擦,经一定时间后出现单个分开的圆形坏死或退绿斑点,称为枯斑。

除了利用病毒的致病性定量检测病毒外,还可应用物理方法,如在电子显微镜下计数病毒颗粒,或用紫外分光光度计测定提纯病毒的蛋白和核酸量,这些方法所测得的数据包括了有感染性和无感染性的病毒粒。

应用电子显微镜不但能看清病毒粒的大小、形态,还可以分辨其表面的蛋白亚单位和内部的核壳等超微结构。

大小与形态

不同病毒的大小变动于20~450纳米之间。最大的为痘病毒科,大小为(170~260)×(300~450)纳米,最小的为双联病毒科,直径18~20纳米。

病毒的形态也是多样的:球状(包括二十面体),如脊髓灰质炎病毒和有包膜的如疱疹病毒;杆状(包括棒状),如烟草花叶病毒;丝状,如甜菜黄花病毒;弹状,如水疱性口炎病毒;复杂构型,如蝌蚪状的T偶数噬菌体。有些病毒在细胞内呈自然晶体排列。

结构

最简单的病毒中心是核酸,外面包被着1层有规律地排列的蛋白亚单位,称为衣壳。构成衣壳的形态亚单位称为壳粒,由核酸和衣壳蛋白所构成的粒子称为核壳。较复杂的病毒外边还有由脂质和糖蛋白构成包膜。核壳按壳粒的排列方式不同而分为3种模式:二十面体对称,如脊髓灰质炎病毒;螺旋对称,如烟草花叶病毒;复合对称,如 T偶数噬菌体。在脂质的包膜上还有1种或几种糖蛋白,在形态上形成突起,如流感病毒的血凝素和神经氨酸酶。昆虫病毒中有1类多角体病毒,其核壳被蛋白晶体所包被,形成多角形包涵体。

化学组成

核酸带有遗传密码的病毒基因组。病毒依所含核酸种类不同可分为 DNA病毒和 RNA病毒。动物病毒或含DNA,或含RNA;植物病毒除少数组外大多为RNA病毒;噬菌体除少数科外大多为DNA病毒。

DNA或RNA可以是线型的或环状的,可以是单链的或双链的。RNA可以分节段或不分节段,单链RNA又分正链的和负链的。

在分节段的RNA植物病毒中,常见多分体基因组,即同一病毒的几个RNA节段分别装入衣壳中,形成大小不同的颗粒,有的分装在两种颗粒中称二分体基因组,如豇豆花叶病毒;有的分装在3种颗粒中称三分体基因组,如黄瓜花叶病毒和雀麦花叶病毒。

通过遗传学和生物化学方法,已查明一些病毒的基因图谱。对MS2和ΦΧ174噬菌体。花椰菜花叶病毒、SV40和乙型肝炎病毒核酸的核苷酸序列,已全部查明。

①蛋白质 病毒的主要组分,依其功能可分为衣壳蛋白、膜蛋白、糖蛋白和内在酶4类。

衣壳蛋白包裹核酸形成保护性的外壳。简单的病毒只有1种衣壳蛋白,较复杂的如腺病毒衣壳是由六邻体、五邻体和纤维3种蛋白构成的。在有包膜的病毒如流感和水疱性口炎病毒中,膜蛋白一方面与外层脂质相连结,另一方面又同内部的核壳相连结,起到维系病毒内外结构的作用。糖蛋白位于包膜表面,有的形成突起,如流感病毒的血凝素,能与细胞膜受体结合。病毒虽无完整的酶系统,但常含有一些特殊的酶,如流感病毒的神经氨酸酶和噬菌体的溶菌酶。此外,呼肠孤病毒科、弹状病毒科、正粘病毒科和副粘病毒科病毒粒中含RNA多聚酶,反录病毒科含反转录酶,均与核酸复制有关。目前已查明十几种病毒蛋白的全氨基酸序列。

②脂质 存在于包膜中,包膜是在病毒成熟时从细胞质膜或核膜芽生获得的,所以病毒脂质常具有宿主细胞脂质的特征。用有机溶剂或去污剂破坏包膜脂质,可使病毒粒裂解。

③糖 除核酸中的戊糖外,病毒包膜还含有与蛋白或脂质结合的多糖。

烟草花叶病毒、流感病毒和枯草杆菌噬菌体的电子显微镜照片和结构模式图(见植物病毒、正粘病毒科和细菌病毒)。

复 制

病毒复制指病毒粒入侵宿主细胞到最后细胞释放子代毒粒的全过程,包括吸附、进入与脱壳、病毒早期基因表达、核酸复制、晚期基因表达、装配和释放等步骤。各步的细节因病毒而异。

吸附与进入

T4噬菌体先以其尾丝与大肠杆菌表面受体结合,随后尾鞘收缩,裸露出的尾轴穿入细菌外壁,把头部内储存的DNA注射到细菌体内。动物病毒也是先与细胞受体结合,以后或是靠细胞的吞噬作用进入,或是病毒包膜与细胞质膜融合后使核壳进入。植物病毒则是通过伤口侵入或通过媒介昆虫直接注入。一般情况下,病毒均须经脱壳,即脱去外被的蛋白质释放核酸,才能进行下一步复制。

基因表达

将其核酸上的遗传信息转录成信使核糖核酸(mRNA),然后再翻译成蛋白质。一般在核酸复制以前的称早期基因表达,所产生的早期蛋白质,有的是核酸复制所需的酶,有的能抑制细胞核酸和蛋白质的合成;在核酸复制开始以后的称晚期基因表达,所产生的晚期蛋白质主要是构成毒粒的结构蛋白质。早期和晚期蛋白质中都包括一些对病毒复制起调控作用的蛋白质。

转录

因病毒核酸的类型而异,共有6种方式:双链DNA(dsDNA)的病毒如 SV40,其转录方式与宿主细胞相同;含单链DNA(ssDNA)的病毒如小DNA病毒科,需要通过双链阶段后再转录出mRNA;含单链正链RNA(ss+RNA)的病毒如脊髓灰质炎病毒、烟草花叶病毒和Qβ噬菌体,其RNA可直接作为信使,利用宿主的蛋白质合成机器合成它所编码的蛋白质;含单链负链RNA(ss-RNA)的病毒如水疱性口炎病毒和流感病毒,需先转录成互补的正链作为其mRNA,ssRNA的反录病毒如鸡肉瘤病毒和白血病病毒,需先经反转录成dsDNA而整含到宿主染色体中,于表达时再转录成mRNA,含dsRNA的呼肠孤病毒,则以保守型复制方式转录出与原来双链中的正链相同的mRNA。

近年来发现有些病毒(如腺病毒和SV40)的基因是不连续的,有外显子与内含子之分,转录后有剪接过程,把内含子剪除而把外显子连接起来,才有mRNA的功能。多数病毒的mRNA还需经过其他加工,如在5′端加上“帽子”结构和在3′端加上多聚腺嘌呤核苷酸。

病毒基因转录所需酶的来源也不相同,如小DNA病毒科、乳多泡病毒科所需依赖于DNA的RNA多聚酶,都是利用宿主原有的酶;而弹状病毒科、正粘病毒科、副粘病毒科和呼肠孤病毒科所需的依赖于RNA的RNA多聚酶,以及反录病毒科所需的反转录酶,都是病毒粒自备的。

翻译

不同病毒mRNA翻译的方式是不同的。一般认为噬菌体的翻译是多顺反子的,如Qβ的RNA上有3个顺反子(为单个肽链编码的基因功能单位),可沿着1条mRNA独立地翻译出3种多肽。动物病毒的翻译是单顺反子的,即由其基因组转录成不同的mRNA,每种mRNA翻译成一种多肽。分节段基因组病毒如流感病毒和呼肠孤病毒,每1节段RNA构成1个顺反子,多分体基因组的植物病毒也是如此。脊髓灰质炎病毒的mRNA先被翻译成1个分子量为20万的巨肽,再经裂解成为衣壳蛋白和酶。

有些病毒如ΦΧ174,Qβ噬菌体和 SV40等,存在基因重叠现象,即按读码位相不同而从同一核苷酸序列可以表达出一种以上的蛋白质。这是病毒经济地利用其有限的遗传信息的1种方式。

核酸复制

DNA病毒按照经典的沃森-克里克碱基配对方式进行 DNA复制。乳多泡病毒的环状 DNA按“滚环”模式进行复制时,需要有核酸内切酶和连接酶参与。病毒RNA是通过半保留方式复制的,即以病毒RNA(vRNA)为模板,同时转录几个互补链(cRNA),cRNA转录完成并脱落后,又以同样方式再转录出新的vRNA。因此,在感染细胞中可以查出具有部分双链结构而又拖着多条长短不同单链“尾巴”(正在合成中的互补链)的“复制中间体”。

病毒核酸复制所需酶的来源也各不相同。SV40DNA合成所需的酶都来自宿主。含RNA的Qβ噬菌体、小RNA病毒科和含ssRNA的植物病毒所需RNA多聚酶的某个亚基,可能由病毒基因编码,而其他亚基来自宿主。疱疹病毒DNA复制所需的酶,部分地由病毒编码,如DNA多聚酶和胸苷激酶,可能还有核苷酸还原酶。痘类病毒的独立自主能力最强,甚至能在去核细胞中进行DNA复制,其基因组至少能为75种蛋白质编码,包括DNA多聚酶、胸苷激酶、脱氧核糖核酸酶和聚核苷酸连接酶。

装配与释放

病毒核酸和结构蛋白是分别复制的,然后装配成完整的病毒粒。最简单的装配方式(如烟草花叶病毒)是核酸与衣壳蛋白相互识别,由衣壳亚单位按一定方式围绕RNA聚集而成,不借助酶,也无需能量再生体系。许多二十面体病毒粒先聚集其衣壳,然后再装入核酸。有包膜的病毒,在细胞内形成核完后转移至被病毒修饰了的细胞核膜或质膜下面,以芽生方式释放病毒粒。T4噬菌体则先分别装配头部、尾部和尾丝,最后组合成完整病毒粒,裂解细菌而释放,其中有些步骤需酶的作用。

细胞水平上的感染类型和宿主反应

很早发现噬菌体感染有裂解性和溶源性之分。以大肠杆菌的λ噬菌体为例,裂解性感染于经历上述复制周期后产生大量子代病毒粒而将细菌裂解;而溶源性感染时,噬菌体DNA环化并整合到大肠杆菌 DNA的特异性位点上,随着细菌的分裂而传给子代细菌,细菌不被裂解也不产生子代病毒粒。营养条件、紫外线或化学药物都能使溶性源感染转化为裂解性。动物的DNA病毒如 SV40、腺病毒、疱疹病毒等于感染敏感细胞(称为容许细胞)后,形成裂解性感染,而于感染不大敏感的细胞(称为不容许细胞)后,则形成转化性感染。转化性感染与溶源性感染相似,病毒DNA或其片段整合于细胞染色体上,并随细胞分裂而传给子代细胞,表达其部分基因(一般为早期基因),但不产生子代病毒粒,细胞也不死亡,但被转化成类似于肿瘤细胞,可无限地传代。另一方面,RNA肿瘤病毒(如鸡肉瘤病毒)必须先将其RNA反转录成dsDNA并整合到细胞染色体上,才能进行复制,所以这种感染方式是独特的,既是转化性感染,又产生大量病毒粒。

宿主细胞对病毒感染的反应有4种:无明显反应、细胞死亡、细胞增生后死亡和细胞转化。例如,副粘病毒SV5在细胞培养中产生大量病毒而不引起明显反应。多数病毒感染敏感细胞时,由于抑制了细胞核酸和蛋白质合成而引起细胞死亡。痘病毒感染时,先刺激细胞多次分裂然后死亡,造成痘疱病灶。DNA病毒和RNA肿瘤病毒则引起细胞转化。

有些动物病毒于感染宿主细胞后,在胞核或细胞质内形成具有特殊染色特性的内含物,称为包涵体,如痘病毒的细胞质内包涵体和疱疹病毒的胞核内包涵体。这些包涵体有的是由未成熟或成熟的病毒粒构成,有的是宿主细胞的反应产物,有的是两者的混合物。有些昆虫病毒的病毒粒包埋在蛋白基质中,形成包涵体如核型多角体病毒。

脊椎动物细胞感染病毒后的另一种反应是产生干扰素。干扰素是一种动物细胞编码的蛋白,其基因平常处于不活动状态,于病毒感染或经双链RNA诱导后活化。干扰素有广谱的抗病毒作用,但并不直接作用于病毒,其作用机制是通过与细胞膜结合,激活具有抗病毒作用的3种酶,阻断了病毒mRNA的翻译。干扰素在防止病毒扩散和疾病恢复中有一定作用,并有可能成为一种抗病毒药物。

机体水平上的感染类型和宿主反应

高等动、植物感染病毒后,可表现为显性感染和持续感染,动物病毒还可表现为隐性感染。隐性感染无临床症状,显性感染表现为临床疾病;在持续感染中,病毒在机体内长期存在。动物病毒的持续感染又分为潜伏感染、慢性感染和长程感染3类。潜伏感染如疱疹,平常无症状也查不到病毒,但由于内外因素的刺激而复发时出现病毒;慢性感染如乙型肝炎,有或无症状,但可查到病毒;长程感染限于少数病毒,如绵羊的 Maedi-visna(一种反录病毒感染)可查到病毒;潜伏期和病程都很长,进行性发病直至死亡。

高等动物能对病毒感染产生特异性免疫反应。免疫反应分为体液免疫和细胞免疫两类,体液免疫表现为由B细胞产生的抗体,其中包括能特异地灭活病毒的中和抗体。中和抗体在预防再感染中起主导作用。细胞免疫的主要表现是识别病毒抗原并发生反应的T淋巴细胞,在清除病毒和病毒感染细胞中起主导作用。

植物细胞对病毒常有过敏反应,细胞迅速死亡,形成枯斑,同时病毒复制也受到限制。另一种反应是产生一种很象干扰素的抗病毒因子,能保护未受感染的细胞。

致瘤作用

有一些病毒能诱发良性肿瘤,如痘病毒科的兔纤维瘤病毒、人传染性软疣病毒和乳多泡病毒科的乳头瘤病毒;另有一些能诱发恶性肿瘤,按其核酸种类可分为DNA肿瘤病毒和RNA肿瘤病毒。DNA肿瘤病毒包括乳多泡病毒料的SV40和多瘤病毒,以及腺病毒科和疱疹病毒科的某些成员,从肿瘤细胞中可查出病毒核酸或其片段和病毒编码的蛋白,但一般没有完整的病毒粒。RNA肿瘤病毒均属反录病毒科,包括鸡和小鼠的白血病和肉瘤病毒,从肿瘤细胞中可查到病毒粒。这两类病毒均能在体外转化细胞。在人类肿瘤中,已证明EB病毒与伯基特淋巴瘤和鼻咽癌有密切关系;最近,从一种T细胞白血病查到反录病毒。此外,Ⅱ型疱疹病毒可能与宫颈癌病因有关,乙型肝炎病毒可能与肝癌病因有关。但是,病毒大概不是唯一的病因,环境和遗传因素可能起协同作用。

起 源

对于病毒的起源曾有过种种推测;一种观点认为病毒可能类似于最原始的生命;另一种认为病毒可能是从细菌退化而来,由于寄生性的高度发展而逐步丧失了独立生活的能力,例如由腐生菌→寄生菌→细胞内寄生菌→支原体→立克次氏体→衣原体→大病毒→小病毒;还有一种则认为病毒可能是宿主细胞的产物。这些推测各有一定的依据,目前尚无定论。因此病毒在生物进化中的地位是未定的。但是,不论其原始起源如何,病毒一旦产生以后,同其他生物一样,能通过变异和自然选择而演化。

分 类

病毒分类命名的工作现由国际病毒分类委员会负责,已于 1971、1976、1979和 1982年发表过 4次报告。

1982年将资料较齐全而能分类的病毒划分为7大群,分群的根据是基因组的核酸种类(DNA或 RNA)、类型(ds或ss)和有无包膜。7大群中包括59个科组:

dsDNA,有包膜 4科

dsDNA,无包膜 8科,1组

ssDNA,无包膜 3科,1组

dsRNA,有包膜 1科

dsRNA,无包膜 1科,4个可能科

ssRNA,有包膜 8科,1组

ssRNA,无包膜 4科,22组,1个可能组

如按宿主分类,则为:

细菌病毒 10科

真菌病毒 3个可能科

植物病毒 24组,1个可能组

无脊椎动物病毒 2科,1组

脊椎动物病毒 9科

无脊椎、脊椎动物共有的病毒有6科,即痘病毒科虹彩病毒科、小DNA病毒科、披膜病毒科、布尼亚病毒科和小RNA病毒科,以及一个可能科,即二节段双链RNA病毒。

无脊椎、脊椎动物和植物共有的病毒有2科,即呼肠孤病毒科和弹状病毒科。

Ⅱ 数据库在植物检疫中的作用是什么

数据库在植物检疫中的作用越来越重要。各种类型的检疫数据库相继建立,并应用于植物检疫。EPPO建立了植物检疫PQ数据库。该数据库包括了EPPO所有A1和A2名单中的有害生物的寄主范围、地理分布及其他详尽的目录。同时,包括每种有害生物在一个国家中发生程度的细节如温室、田间发生情况,传入日期及扑灭情况的信息。EPPO还和CABI合作,为欧盟(EU)编制了植物检疫资料单的数据库,其目的是使欧盟的植物检疫建立在统一的检疫条款基础之上。资料单使用标准化的标题,分别是有害生物(包括学名、异名、分类地位、俗名、命名和分类的说明)、寄主、地理分布、生物学、检测和鉴定、传播和扩散的方式、有害生物的重要性(包括经济影响、防治和检疫风险)和植物检疫措施及参考文献。目前不仅有电子版的数据库,还出版了《欧洲检疫性有害生物》的参考书。

FAO开发的全球检疫信息系统亦是一个相类似的检疫数据库。该数据库不仅提供同上述相似的数据,而且还能提供有关国家和地区植保组织的植物检疫条例摘要、检疫性有害生物名单及处理方法。另外,FAO/国际作物遗传资源局IBPGR的种质资源安全运输的技术指南、美国农业部反映检疫截获信息的植物检疫截获记录数据库、亚洲太平洋地区的植物检疫中心和培训研究所(PLANTI)的植物信息数据库(PLANT1NFO)等都是有关植物检疫的专业数据库。另外,USDA-APHIS和USDA-ARS建立的国家农业病原信息系统(NAPIS)和世界植物病原数据库(WPPD)及由澳大利亚AQIS建立的病虫害信息库亦是检疫中很重要的数据库。CABI在1998年推出了全球植物保护手册(CPC)的光盘,可供各植检单位使用。该光盘提供了大量的有害生物的生物学资料、信息和照片。

在中国,检验检疫部门亦已经开发了一个《动植物检验检疫文献题录数据库》。该库收录了农业部1996年公布的97种进境动物的一二类传染病、寄生虫病和84种(类)进境植物检疫为险性有害生物的文献,包括自1971年至今的近11万条有关动物疫情和植物有害生物的信息,并可查询有关的寄主信息,是动植物检验检疫部门开展科研工作进行文献检索的有力工具。

除以上数据库外,还有其他类型的事实型数据库,包括拜耳公司(BayerAG)的有害生物名称和异名数据库,有关防治方法特别是遗传抗性和杀虫剂信息的数据库(Russell,1991年;Kidd,1991年)及关于标本和培养物的数据库(Allsop等,1989年)等均大大便利了PRA工作的开展。特别值得一提的是,因为生物命名法的不断变化,其连续性还不完善,而且生物数量巨大,因此生物名称库在提供获取其他信息的途径时,具有特别重要的意义。CABI国际农业生物中心索引库CABIThesaurus就建立了与农业及相关学科有关的75000个词库,其中1/10的术语是昆虫名称。在其节肢动物名称索引(ANI)中,约有10万个昆虫和其他节肢动物的名称和异名,且这些异名在植物保护的文献中经常遇到。其他还有澳大利亚国际农业研究中心编制的东南亚农业主要节肢动物及杂草名录,FAO(1993年)编制的亚太地区主要作物重要有害生物名录等,均是有价值的信息源。现代信息技术亦为了解各国的检疫法规提供了便利,如欧盟建立的JUSTIS-CELEX数据库系统。该系统包括欧共体1952年成立以来颁布的全部法规,如贸易、金融、海关和动植物检验检疫法规等。在中国,亦已建立了《中外法律信息系统》,这些法规数据库将为检疫执法和决策提供有力的证据。

随着分子遗传学越来越广泛地应用于植物保护,特别是有害生物的分类和鉴定中,其迅速扩大的核酸蛋白序列数据库可为PRA工作提供有害生物在分子水平上的信息。目前已建立的核酸蛋白序列数据库有欧洲分子生物学实验室核酸序列数据库EMBI(1988年)、基因银行Genbank(1992年)、美国的核糖体数据库RAP(RibosomalDatabaseProject,1993年)、日本的DNA数据库DDBJ(DNADataBaseofJapan)和基因序列数据库GS-DB等。可以预期,这些数据库将在有害生物如病毒、类病毒、植原体(Phytoplasma)和细菌的分类和鉴定方面起越来越重要的作用,特别是在种下水平的变异识别上可能对检疫决策具有重要意义。如中国的检疫性有害生物香蕉细菌性枯萎病(Ralstomasolanacearum)就是该病原的小种2。

Ⅲ 数据库中怎样表示注释

Mysql可以在SQL代码中注释的。可用两个方式经行注释。

1.以“ #”号开头直到行尾的所有内容都认为是注释。

2.另一种为C 风格的注释。即,以“/ *”开始,以“* /”结束的所有内容都认为是注释。C 风格的注释可跨多行。


Ⅳ 蛋白质序列数据库包含哪些内容

蛋白质数据库

1. PIR和PSDPIR国际蛋白质序列数据库(PSD)是由蛋白质信息资源(PIR)、慕尼黑蛋白质序列信息中心(MIPS)和日本国际蛋白质序列数据库(JIPID)共同维护的国际上最大的公共蛋白质序列数据库。这是一个全面的、经过注释的、非冗余的蛋白质序列数据库,包含超过142,000条蛋白质序列(至99年9月),其中包括来自几十个完整基因组的蛋白质序列。所有序列数据都经过整理,超过99%的序列已按蛋白质家族分类,一半以上还按蛋白质超家族进行了分类。PSD的注释中还包括对许多序列、结构、基因组和文献数据库的交叉索引,以及数据库内部条目之间的索引,这些内部索引帮助用户在包括复合物、酶-底物相互作用、活化和调控级联和具有共同特征的条目之间方便的检索。每季度都发行一次完整的数据库,每周可以得到更新部分。

PSD数据库有几个辅助数据库,如基于超家族的非冗余库等。PIR提供三类序列搜索服务:基于文本的交互式检索;标准的序列相似性搜索,包括BLAST、FASTA等;结合序列相似性、注释信息和蛋白质家族信息的高级搜索,包括按注释分类的相似性搜索、结构域搜索GeneFIND等。

PIR和PSD的网址是:http://pir.georgetown.e/。

数据库下载地址是:ftp://nbrfa.georgetown.e/pir/。

2. SWISS-PROT

SWISS-PROT是经过注释的蛋白质序列数据库,由欧洲生物信息学研究所(EBI)维护。数据库由蛋白质序列条目构成,每个条目包含蛋白质序列、引用文献信息、分类学信息、注释等,注释中包括蛋白质的功能、转录后修饰、特殊位点和区域、二级结构、四级结构、与其它序列的相似性、序列残缺与疾病的关系、序列变异体和冲突等信息。SWISS-PROT中尽可能减少了冗余序列,并与其它30多个数据建立了交叉引用,其中包括核酸序列库、蛋白质序列库和蛋白质结构库等。

利用序列提取系统(SRS)可以方便地检索SWISS-PROT和其它EBI的数据库。

SWISS-PROT只接受直接测序获得的蛋白质序列,序列提交可以在其Web页面上完成。

SWISS-PROT的网址是:http://www.ebi.ac.uk/swissprot/。

3. PROSITE

PROSITE数据库收集了生物学有显着意义的蛋白质位点和序列模式,并能根据这些位点和模式快速和可靠地鉴别一个未知功能的蛋白质序列应该属于哪一个蛋白质家族。有的情况下,某个蛋白质与已知功能蛋白质的整体序列相似性很低,但由于功能的需要保留了与功能密切相关的序列模式,这样就可能通过PROSITE的搜索找到隐含的功能motif,因此是序列分析的有效工具。PROSITE中涉及的序列模式包括酶的催化位点、配体结合位点、与金属离子结合的残基、二硫键的半胱氨酸、与小分子或其它蛋白质结合的区域等;除了序列模式之外,PROSITE还包括由多序列比对构建的profile,能更敏感地发现序列与profile的相似性。PROSITE的主页上提供各种相关检索服务。

PROSITE的网址是:http://www.expasy.ch/prosite/。

4. PDB

蛋白质数据仓库(PDB)是国际上唯一的生物大分子结构数据档案库,由美国Brookhaven国家实验室建立。PDB收集的数据来源于X光晶体衍射和核磁共振(NMR)的数据,经过整理和确认后存档而成。目前PDB数据库的维护由结构生物信息学研究合作组织(RCSB)负责。RCSB的主服务器和世界各地的镜像服务器提供数据库的检索和下载服务,以及关于PDB数据文件格式和其它文档的说明,PDB数据还可以从发行的光盘获得。使用Rasmol等软件可以在计算机上按PDB文件显示生物大分子的三维结构。

RCSB的PDB数据库网址是:http://www.rcsb.org/pdb/。

5. SCOP

蛋白质结构分类(SCOP)数据库详细描述了已知的蛋白质结构之间的关系。分类基于若干层次:家族,描述相近的进化关系;超家族,描述远源的进化关系;折叠子(fold),描述空间几何结构的关系;折叠类,所有折叠子被归于全α、全β、α/β、α+β和多结构域等几个大类。SCOP还提供一个非冗余的ASTRAIL序列库,这个库通常被用来评估各种序列比对算法。此外,SCOP还提供一个PDB-ISL中介序列库,通过与这个库中序列的两两比对,可以找到与未知结构序列远缘的已知结构序列。

SCOP的网址是:http://scop.mrc-lmb.cam.ac.uk/scop/。

6. COG

蛋白质直系同源簇(COGs)数据库是对细菌、藻类和真核生物的21个完整基因组的编码蛋白,根据系统进化关系分类构建而成。COG库对于预测单个蛋白质的功能和整个新基因组中蛋白质的功能都很有用。利用COGNITOR程序,可以把某个蛋白质与所有COGs中的蛋白质进行比对,并把它归入适当的COG簇。COG库提供了对COG分类数据的检索和查询,基于Web的COGNITOR服务,系统进化模式的查询服务等。

COG库的网址是:http://www.ncbi.nlm.nih.gov/COG。

下载COG库和COGNITOR程序在:ftp://ncbi.nlm.nih.gov/pub/COG。

Ⅳ 蛋白质序列数据库的数据库分类

PIR数据库按照数据的性质和注释层次分四个不同部分,分别为PIR1、PIR2、PIR3和PIR4。PIR1中的序列已经验证,注释最为详尽;PIR2中包含尚未确定的冗余序列;PIR3中的序列尚未加以检验,也未加注释; 而PIR4中则包括了其它各种渠道获得的序列,既未验证,也无注释。除了PIR外,另一个重要的蛋白质序列数据库则是SwissProt。该数据库由瑞士日内瓦大学于1986年创建,目前由瑞士生物信息学研究所(Swiss Institute of Bioinformatics,简称SIB)和欧洲生物信息学研究所 EBI共同维护和管理。瑞士生物信息研究所下属的蛋白质分析专家系统(Expert Protein Analysis System,,简称ExPASy)的Web服务器除了开发和维护SwissProt数据库外,也是国际上蛋白质组和蛋白质分子模型研究的中心,为用户提供大量蛋白质信息资源。北京大学生物信息中心设有ExPASy的镜象。PIR和SwissProt是创建最早、使用最为广泛的两个蛋白质数据库。随着各种模式生物基因组计划的进展,DNA序列特别是EST序列大量进入核酸序列数据库。蛋白质序列数据库TrEMBL是从EMBL中的cDNA序列翻译得到的。TrEMBL数据库创建是于1996年[Bairoch, 2000],意为“Translation of EMBL”。该数据库采用SwissProt数据库格式,包含EMBL数据库中所有编码序列的翻译。TrEMBL数据库分两部分,SP-TrEMBL和 REM-TrEMBL。SP-TrEMBL中的条目最终将归并到SwissProt数据库中。而Rem-TrEMBL则包括其它剩余序列,包括免疫球蛋白、T细胞受体、少于8个氨基酸残基的小肽、合成序列、专利序列等。与TrEMBL类似,GenPept是由GenBank翻译得到的蛋白质序列。由于TrEMBL和GenPept均是由核酸序列通过计算机程序翻译生成,这两个数据库中的序列错误率较大,均有较大的冗余度。另一个常用的蛋白质序列数据库是已知三维结构蛋白质的一级结构序列数据库NRL-3D[Namboodiri, 1990]。该数据库的序列是从三维结构数据库PDB中提取出来。

Ⅵ 数据库中怎么注释

在SQL标准中标准的注释方式是"--"注释,即单行注释,不过不同的数据库注视方式也略有不同,下面是各个数据库支持饿方式

Ⅶ 如何用NCBI数据库查病毒全基因的背景信息

选择NCBI genome数据库,这个库中收录目前经过测序的所有物种的参考基因组。你只要输入你需要的病毒名称比如HIV,就可以看到这个病毒的全基因组序列。你还可以点击某条序列,进入到详细信息界面,就可以看到这个序列的来源。

Ⅷ 怎样查核酸检测

很多人去做了核酸检测,但是在网上查不到结果,遇到这种情况怎么办呢?下面我们就来看看原因分析和解决办法。
这里需要注意:
目前网上查询核酸结果仅支持7天以内,超过后就查不到了哦
如果刚做完核酸检测肯定也查不到,因为每个核酸检测点需要时间进行上传信息

1、打开微信,搜索国务院客户端微信小程序。

2、进入小程序后,在首页里,点击核酸检测证明。

3、进入前需要进行登录验证,点击确定。

4、然后输入你的身份信息进行实名认证。

5、认证成功后,点击下方的立即查询。

6、然后就可以查询到自己的核酸检测结果了。

核算检测怎么做

口咽拭子采样就是在咽喉部位用棉签涂擦,刷取咽喉部位上皮细胞的检测。受检测者只要放松心情,张口发出“啊——”的声音就可以了,检测过程并没有创伤风险,是非常安全的检测。

检测时可能会有恶心、想要呕吐的不适感觉,不过这些不适症状通常只需要半分钟到两分钟左右就可以完全缓解了。鼻咽拭子采样是将一根细棉签深入鼻孔,从下鼻道深入抵达鼻咽后壁,然后捻转棉签取样。棉签进入鼻腔的深度约为鼻尖到耳垂的距离。

咽拭子核酸检测最快6小时出结果,但由于目前检测量非常大,受检测者通常在24小时后收到检测报告。一旦发现咽拭子核酸检测阳性,实验室一般都会立刻复核一遍。

如果仍为阳性,可以确认为受检测人员上呼吸道存在病毒核酸,如果受检测者还有发热、咽痛、咳嗽等症状,就可以诊断为确诊病例了。如果除了咽拭子核酸阳性,受检测者没有任何不适症状,就诊断为无症状感染者。无症状感染者也有传染性,所以同样需要到隔离点隔离。

Ⅸ 各种数据库中的sql语句中都怎么加注释

1、在powerBuilder中新建一个Physical Data Model,在其中新建一个用户表。