當前位置:首頁 » 網頁前端 » 射頻前端綜合的主要措施
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

射頻前端綜合的主要措施

發布時間: 2022-09-18 21:25:15

⑴ 移動管家汽車無鑰匙進入一鍵啟動系統射頻天線工作原理

一、天線原理

1.1 天線的定義:

能夠有效地向空間某特定方向輻射電磁波或能夠有效的接收空間某特定方向來的電磁波的裝置。

1.2 天線的功能:

Ø 能量轉換-導行波和自由空間波的轉換;

Ø 定向輻射(接收)-具有一定的方向性。

1.3 天線輻射原理

天線

二、射頻原理

2.1 射頻的定義:

射頻(RF)是Radio Frequency的縮寫,表示可以輻射到空間的電磁頻率,頻率范圍從300kHz~300GHz之間。射頻就是射頻電流,簡稱RF,它是一種高頻交流變化電磁波的簡稱。每秒變化小於1000次的交流電稱為低頻電流,大於10000次的稱為高頻電流,而射頻就是這樣一種高頻電流。射頻(300K-300G)是高頻(大於10K)的較高頻段,微波頻段(300M-300G)又是射頻的較高頻段。

在電子學理論中,電流流過導體,導體周圍會形成磁場;交變電流通過導體,導體周圍會形成交變的電磁場,稱為電磁波。在電磁波頻率低於100kHz時,電磁波會被地表吸收,不能形成有效的傳輸,但電磁波頻率高於100kHz時,電磁波可以在空氣中傳播,並經大氣層外緣的電離層反射,形成遠距離傳輸能力。我們把具有遠距離傳輸能力的高頻電磁波稱為射頻。射頻技術在無線通信領域中被廣泛使用,有線電視系統就是採用射頻傳輸方式。

射頻

2.2 最基本的RFID系統由三部分組成:

2.2.1.標簽(Tag,即射頻卡):由耦合元件及晶元組成,標簽含有內置天線,用於和射頻天線間進行通信;

2.2.2.閱讀器:讀取(在讀寫卡中還可以寫入)標簽信息的設備;

2.2.3.天線:在標簽和讀取器間傳遞射頻信號。有些系統還通過閱讀器的RS232或RS485介面與外部計算機(上位機主系統)連接,進行數據交換。

2.3 系統的基本工作流程是:閱讀器通過發射天線發送一定頻率的射頻信號,當射頻卡進入發射天線工作區域時產生感應電流,射頻卡獲得能量被激活;射頻卡將自身編碼等信息通過卡內置發送天線發送出去;系統接收天線接收到從射頻卡發送來的載波信號,經天線調節器傳送到閱讀器,閱讀器對接收的信號進行解調和解碼然後送到後台主系統進行相關處理;主系統根據邏輯運算判斷該卡的合法性,針對不同的設定做出相應的處理和控制,發出指令信號控制執行機構動作。

在耦合方式(電感-電磁)、通信流程(FDX、HDX、SEQ)、從射頻卡到閱讀器的數據傳輸方法(負載調制、反向散射、高次諧波)以及頻率范圍等方面,不同的非接觸傳輸方法有根本的區別,但所有的閱讀器在功能原理上,以及由此決定的設計構造上都很相似,所有閱讀器均可簡化為高頻介面和控制單元兩個基本模塊。高頻介麵包含發送器和接收器,其功能包括:產生高頻發射功率以啟動射頻卡並提供能量;對發射信號進行調制,用於將數據傳送給射頻卡;接收並解調來自射頻卡的高頻信號。不同射頻識別系統的高頻介面設計具有一些差異。

閱讀器的控制單元的功能包括:與應用系統軟體進行通信,並執行應用系統軟體發來的命令;控制與射頻卡的通信過程(主-從原則);信號的編解碼。對一些特殊的系統還有執行反碰撞演算法,對射頻卡與閱讀器間要傳送的數據進行加密和解密,以及進行射頻卡和閱讀器間的身份驗證等附加功能。

無線射頻識別系統的讀寫距離是一個很關鍵的參數。長距離無線射頻識別系統的價格還很貴,因此尋找提高其讀寫距離的方法很重要。影響射頻卡讀寫距離的因素包括天線工作頻率、閱讀器的RF輸出功率、閱讀器的接收靈敏度、射頻卡的功耗、天線及諧振電路的Q值、天線方向、閱讀器和射頻卡的耦合度,以及射頻卡本身獲得的能量及發送信息的能量等。大多數系統的讀取距離和寫入距離是不同的,寫入距離大約是讀取距離的40%~80%。

射頻前端產業鏈
終端設備的無線通信模塊主要分為天線、射頻前端模塊(RF FEM)、射頻收發模塊、以及基帶信號處理器四部分。其中射頻前端是無線連接的核心,是在天線和射頻收發模塊間實現信號發送和接收的基礎零件。 射頻前端晶元主要是實現信號在不同頻率下的收發,包括射頻功率放大器(PA)、射頻低雜訊放大器(LNA)、射頻開關、濾波器、雙工器等。目前射頻前端晶元主要應用於手機和通訊模塊市場、WiFi路由器市場和通訊基站市場等。

天線的原理是什麼
小時候家裡的收音機、電視機,都帶著可以靈活轉動拉伸的桿子,大家一定對這個可以轉來轉去的桿子記憶猶新,或許也好奇的發現這個桿子的長度與方向和收音機、電視的接收效果有某種神秘的聯系。

RFID技術原理
通過介紹RFID應用系統的基本工作原理來具體說明射頻天線的設計是RFID不同應用系統的關鍵.然後分別介紹幾種典型的RFID天線及其設計原理.

人體結構對天線性能的影響
天線是手機、智能手錶、藍牙耳機、可植入醫療設備等無線電子產品收發信號必不可少的裝置,其性能好壞將直接影響通信質量。除了考慮天線在電子產品物理結構內的性能評估外,我們不得不考慮人體對天線性能的影響。以可穿戴設備天線為例,其工作頻率大多為2.4GHz~2.48GHz或者5.725~5.875GHz,且多以倒F天線為基礎進行設計和優化。

電磁干擾影響天線接收靈敏度案例分析
在無線網路中,射頻模塊有傳導TRP和傳導TIS兩項重要指標,而模塊裝上天線後,整機在OTA暗室中需測試TRP與TIS,在此我們將其定義為輻射TRP和輻射TIS。輻射TRP一般不會出問題,而輻射TIS容易受產品內部電磁雜訊的干擾。當輻射TIS不達標時,首先要考慮傳導TIS是否達標,傳導TIS和射頻電路中的器件(如雙工器的隔離度)、各節電路的匹配等因素有關。射頻電路部分工作流程如下:

⑵ 射頻前端模組,看這一篇就夠了

姓名:劉軒     學號:19020100412   學院:電子工程學院

轉自:https://zhuanlan.hu.com/p/297965743

【嵌牛導讀】射頻前端模組技術介紹

【嵌牛鼻子】射頻前端  濾波器  

【嵌牛提問】中國企業如何克服「拿來主義」,快速迭代發展?

【嵌牛正文】

射頻前端(RFFE, Radio Frequency Front-End)晶元是實現手機及各類移動終端通信功能的核心元器件,全球市場超過百億美金級別。過去10年本土手機的全面崛起,為本土射頻前端產業的發展奠定了堅實的產業基礎;而5G在中國的率先商用化,以及全球貿易環境的變化,又給本土射頻行業加了兩捆柴火。射頻前端晶元產業在我國也已經有了15年以上的發展歷史,創新和創業活動非常活躍,各類企業數十家,也是市場和資本高度關注的領域。本文作者有幸在射頻晶元行業從業11年,從2G時代做到今天的5G,也在外企、民企、國企都工作過,直接開發並大量量產過射頻的每一類型產品。這篇文章總結了作者與一些行業朋友近些年的討論,嘗試對射頻模組產品的技術市場及商業邏輯進行梳理。同時,本土射頻發展了十餘年,競爭是行業主線,合作與友誼是非常稀缺的資源。本文將會重點分享「模組化」的相關知識,也是希望更多的本土廠商去通過「合作」分享模組化的巨大機遇。

引言

根據魏少軍教授在「2020全球CEO峰會」的《人間正道是滄桑-關於大變局下的戰略定力》主題演講,統計得出對中國市場依賴度最高(依營收佔比計算)的美國公司,如下圖。我們可以看到SKYWORKS、Qualcomm、Qorvo、Broadcom這四家美國射頻巨頭(其中SKYWORKS和Qorvo以射頻業務為主;Qualcomm和Broadcom包含了射頻業務)恰好占據了排行榜前4名。

射頻前端的國際情況

射頻前端技術主要集中在濾波器(Filter)、功率放大器(PA, Power Amplifier)、低雜訊放大器(Low Noise Amplifier)、開關(RF Switch)。目前全球射頻市場由引言提到的四家美國射頻公司Skyworks、Qualcomm、Qorvo、Broadcom與日本Murata這五大射頻巨頭寡佔。

五家射頻巨頭在PA與LNA等市場佔有率超過九成。濾波器方面,則分為聲表面波(SAW, Surface Acoustic Wave)與體表面波(BAW, Bulk Acoustic Wave)濾波兩種主要技術。目前,SAW濾波器市場由Murata占據一半,Skyworks約10%,Qorvo約4%,其餘則被太陽誘電、TDK等大廠瓜分。BAW濾波器的市場則由美國企業占據9成市場。

由此可見,射頻前端是巨大的市場,能容納5家國際巨頭持續發展。國際巨頭的技術跨度大,模組化能力強;模組化產品是國際競爭的主賽道。每家巨頭都擁有BAW技術或其替代方案。

射頻前端的國內情況

關於射頻前端的國內情況有很多文章都曾提到,這里不贅述,只給幾個共識比較多的結論:

1.本土公司普遍以分立器件為主要方向;分立器件是當前本土競爭的主賽道。2.本土公司缺乏先進濾波器技術及產品,模組化能力普遍不強。

5G模組化挑戰及機遇的來源

PCB布線空間及射頻調試時間的挑戰,下沉到了入門級手機,打通了國產模組晶元的迭代升級路徑。

射頻模組晶元,不是一個新生的產品系列。事實上,射頻模組晶元的使用幾乎與LTE商業化同時發生。過去10年內,各種復雜的射頻模組已經普遍應用在了各品牌的旗艦手機中;與此同時,在大量的入門級手機上,分立器件的方案也完全能夠滿足各方面的要求。因此在過去10年就出現了涇渭分明的兩個市場:旗艦機型用模組方案;入門機型用分立方案。模組方案要求「高集成度和高性能」,因而價格也很高;而分立方案要求「中低集成度和中等性能」,售價相對而言就低不少。兩種方案之間存在巨大的技術和市場差異,我們可以把這個稱作4G時代的「模組鴻溝」。

4G時代的「模組鴻溝」

5G的到來,徹底改變了這個狀況。

相比於4G入門級手機的2~4根天線,5G入門級手機的天線數目增加到了8~12根;需要支持的頻段及頻段組合也在4G的基礎上顯著增加。大家知道,射頻元器件的數目,與天線數目及頻段強相關,這就意味著射頻元器件的數目出現了急劇地增長。與此同時,由於結構設計的要求,5G手機留給射頻前端的PCB面積是無法增加的,因此分立方案的面積大大超過了可用的PCB面積。這是空間帶來的約束。

還有一個挑戰,來自於調試時間。4G使用分立器件方案的射頻調試時間,一般在一周以內。隨著5G射頻復雜度的顯著提升,假設使用分立方案,可能會帶來3~5倍的調試時間增加;從成本上來講,還需要消耗更貴的5G測試設備、熟悉5G測試的工程師資源。如果使用模組,大部分的調試已經在模組設計過程中在內部實現了,調試工作量將更多地移到軟體端,因此調試效率大大提升。這是時間帶來的約束。

時間和空間的約束,強烈而普遍。因此在入門級5G手機中,就天然出現了對「中低性能和高集成度」模組的需求,與旗艦手機的「中高性能和高集成度」模組形成了管腳統一。既然都需要高集成度的模組,只是指標要求不一樣,這樣國產的模組晶元就可以從「中低性能」(5G入門級手機)向「中高性能」(5G旗艦手機)迭代演進。因此,「模組鴻溝」便被填平了。

任何事情都是兩面的。「模組鴻溝」被填平以後,分立市場的空間也出現了風險;對專長於分立晶元的本土企業來講,也需要巨大的資源和力量去在模組產品中找到自身的位置;如果不能突破,就會在不遠的未來進入到瓶頸階段。

在5G的早期階段,目前市場上也出現了一種混合方案,即用分立器件和模組混搭的方案。這個方案的出現,有很多客觀的原因,其中就包括歷史上形成的「模組鴻溝」。這種方案是妥協的產物,犧牲了一些關鍵指標,而且面積上也做了讓步。如果沒有專注做國產化模組的晶元公司,就不會有優秀的國產模組晶元;如果沒有優秀的國產模組晶元,模組方案的價格永遠高高在上。

濾波器技術簡要分類

BAW 濾波器: 即體聲波濾波器。具有插入損耗小、帶外衰減大等優點,同時對溫度變化不敏感,BAW濾波器的尺寸大小會隨著頻率升高而縮小,因此尤其適用於1.7GHz以上的中高頻通信,在5G與sub-6G的應用中有明顯優勢。

SAW濾波器: 即聲表面波濾波器。採用石英晶體、鈮酸鋰、壓電陶瓷等壓電材料,利用其壓電效應和表面波傳播的物理特性而製成的一種濾波專用器件。SAW濾波器具有性能穩定、使用方便、頻帶寬等優點,是頻率在1.6GHz以下的應用主流。但存在插入損耗大、處理高頻率信號時發熱問題嚴重等缺點,因此在處理1.6GHz以上的高頻信號時適用性較差。

LC型濾波器: 即電感電容型濾波器。LC濾波器一般是由濾波電容、電抗和電阻適當組合而成,電感與電容一起組成LC濾波電路。

射頻模組簡要分類

射頻前端模組是將射頻開關、低雜訊放大器、濾波器、雙工器、功率放大器等兩種或者兩種以上的分立器件集成為一個模組,從而提高集成度和性能,並使體積小型化。根據集成方式的不同,主集天線射頻鏈路可分為:FEMiD(集成射頻開關、濾波器和雙工器)、PAMiD(集成多模式多頻帶PA和FEMiD)、LPAMiD(LNA、集成多模式多頻帶PA和FEMiD)等;分集天線射頻鏈路可分為:DiFEM(集成射頻開關和濾波器)、LFEM(集成射頻開關、低雜訊放大器和濾波器)等。

主集天線射頻鏈路

分集天線射頻鏈路

射頻前端的「價值密度」

既然5G手機PCB面積是受限制的資源,同時我們需要在5G手機內「擠入」更多的射頻功能器件,因此我們評價每一類型射頻器件時,需要建立一個參數來進行統一描述,作為反映其價值與PCB佔用面積的綜合指標。

ValueDensity=(平均銷售價格ASP)/(晶元封裝大小)

接下來,我們使用VD值這個工具,分別分析一下濾波器、功率放大器、射頻模組三類產品的情況。

1. 濾波器的VD值

首先說明一點,由於通常情況下濾波器還需要外部的匹配電路,實際的VD值比器件的VD值還要再低一些。我們先忽略這個因素。根據以上的數據,我們可以得到一些結論:從LTCC到四工器,VD值持續增加,從1.2到10.0,增加比較快速。

2. 功率放大器的VD值

根據以上數據,也可以看到: a) 從2G到4G,VD值從0.6增加到了1.5。b) 4G向CAT1演進的小型化產品,以及向HPUE或者Phase5N演進的大功率PA,VD值增加到了2附近。

3. 射頻模組的VD值

根據以上數據,可以觀察到: a) 接收模組普遍的VD值在5附近;b) 接收模組中的小封裝H/M/L LFEM,VD值非常突出,大於10;c) 發射模組(除FEMiD以外),VD值在4~6之間;d) FEMiD具有發射模組最高的VD值。因此當FEMiD與VD值較低的MMMB PA混搭時,也能達到合理的PCB布圖效率。

表格匯總的同時,我們也增加了技術國產化率和市場國產化率的參考數據。一般來講,市場國產化率較低的、或者技術國產化率遠遠超過國產化率數字的細分品類,VD值會虛高一些。在本土相應產品市佔率提高以後,未來還會有比較明顯的降價空間。

射頻發射模組的五重山

發射1: PA與LC型濾波器的集成,主要應用在3GHz~6GHz的新增5G頻段,典型的產品是n77、n79的PAMiF或者LPAMiF。這些新頻段的5GPA設計非常有挑戰,但由於新頻段頻譜相對比較「干凈」,所以對濾波器的要求不高,因此LC型的濾波器(IPD、LTCC)就能勝任。綜合來看,這類產品屬於有挑戰但不復雜的產品,其技術和成本均由PA絕對掌控。

發射2: PA與BAW(或高性能SAW)的集成,典型產品是n41的PAMiF或者Wi-Fi的iFEM類產品,頻段在2.4GHz附近。這類產品的頻段屬於常見頻段,PA部分的技術規格有一定挑戰但並不高。由於工作在了2.4GHz附近,頻段非常擁擠,典型的產品內需要集成高性能的BAW濾波器來實現共存。這類產品由於濾波器的功能並不復雜,PA仍有技術控制力;但在成本方面,濾波器可能超過了PA。綜合來講,這類產品屬於有挑戰但不復雜的產品,PA有一定的控制力。

發射3: LowBand發射模組。LB (L)PAMiD通常集成了1GHz以下的4G/5G頻段(例如B5、B8、B26、B20、B28等等),包括高性能功率放大器以及若干低頻的雙工器;在不同的方案里,還可能集成GSM850/900及DCS/PCS的2GPA,以進一步提高集成度。低頻的雙工器通常需要使用TC-SAW技術來實現,以達到最佳的系統指標。根據系統方案的需要,如果在LB PAMiD的基礎上再集成低雜訊放大器(LNA),這類產品就叫做LB LPAMiD。可以看到,這類產品的復雜度已經比較高:PA方面,需要集成高性能的4G/5GPA,有時候還需要集成大功率的2GPA Core;濾波器方面,通常需要3~5顆使用晶圓級封裝(WLP)的TC-SAW雙工器。總成本的角度來看(假設需要集成2GPA),PA/LNA部分和濾波器部分佔比基本相當。LB (L)PAMiD是需要有相對比較平衡的技術能力,因此第三級台階出現在了PA和Filter的交界處。

發射4: FEMiD。這類產品通常包含了從低頻到高頻的各類濾波器/雙工器/多工器,以及主通路的天線開關;並不集成PA。FEMiD產品通常需要集成LTCC、SAW、TC-SAW、BAW(或性能相當的I.H.PSAW)和SOI開關。村田公司定義了這類產品,並且過去近8年的時間內,占據了該市場的絕對主導權。三星、華為等手機大廠,曾經或正在大量使用這類產品在其中高端手機中。如前文所述,有競爭力的PAMiD供應商主要集中在北美地區;出於供應鏈多樣化的考慮,一些出貨量非常大的手機型號,就可能考慮使用MMMB(Multi-Mode Multi-Band) PA加FEMiD的架構。MMMB PA的合格供應商廣泛分布在北美、中國、韓國,而日本村田的FEMiD產能非常巨大(主要表現在LTCC和SAW)。又如前文所述,FEMiD的VD值非常高,整體方案的空間利用率也在合理范圍內。

發射5: M/H (L)PAMiD。這類產品是射頻前端最高市場價值也是綜合難度最大的領域,是射頻前端細分市場的巔峰。M/H通常覆蓋的頻率范圍是1.5GHz~3.0GHz。這個頻段范圍,是移動通信的黃金頻段。最早的4個FDDLTE 頻段Band1/2/3/4在這個范圍內,最早的4個TDD LTE頻段B34/39/40/41在這個范圍內,TDS-CDMA的全部商用頻段在這個范圍內,最早商用的載波聚合方案(Carrier Aggregation)也出現在這個范圍(由B1+B3四工器實現),GPS、Wi-Fi 2.4G、Bluetooth等重要的非蜂窩網通信也都工作在這個范圍。可以想像,這段頻率范圍最大的特點就是「擁擠」和「干擾」,也恰恰是高性能BAW濾波器發揮本領的廣闊舞台。由於這個頻率范圍商用時間較長,該頻率范圍內的PA技術相對比較成熟,核心的挑戰來自於濾波器件。

先解釋一下為什麼這段頻率是移動通信的黃金頻率。在很長的發展過程中,移動通信的驅動力來自移動終端的普及率,而移動終端普及的核心挑戰在於終端的性能和成本。過高的頻率,例如3GHz以上、10GHz以上,半導體晶體管的特性下降很快,很難做出高性能;而過低的頻率,例如800MHz以下、300MHz以下,需要天線的尺寸會非常巨大,同時用來做射頻匹配的電感值和電容值也會很大,在終端尺寸的約束下,超低頻段的射頻性能很難達到系統指標。簡而言之,從有源器件(晶體管)的性能角度出發,希望頻率低一些;從無源器件(電容電感和天線)的性能角度出發,希望頻率高一些。有源器件與無源器件從本質上的沖突,到應用端的折衷,再到模組內的融合,恰如兩股強大的冷暖洋流,在人類最波瀾壯闊的移動通信主航道上,相匯於1.5~3GHz的頻段,形成了終端射頻最復雜也最有價值的黃金漁場:M/HB (L)PAMiD。多麼地美妙!

這類高端產品的市場,目前主要由美商Broadcom、Qorvo、RF360等廠商占據。下圖是Qorvo公司在其官方公眾號上提供的晶元開蓋分析。可以看到,該類產品包含10顆以上的BAW,2~3顆的GaAs HBT,以及3~5顆SOI和1顆CMOS控制器,具有射頻產品最高的技術復雜度。該類產品通常需要集成四工器或者五/六工器這類超高VD值的器件。

M/H LPAMiD開蓋圖

射頻接收模組的五重山

接收模組的五重山模型,如上圖所述。

接收1: 使用RF-SOI工藝在單顆die上實現了射頻Switch和LNA。雖然僅僅是單顆die,但從功能上也屬於復合功能的射頻模組晶元。這類產品主要的技術是RF-SOI,在4G和5G都有一些應用。

接收2 :使用RF-SOI工藝實現LNA和Switch的功能,然後與一顆LC型(IPD或者LTCC)的濾波器晶元實現封裝集成。LC型濾波器適合3~6GHz大帶寬、低抑制的要求,適用於5G NR部分的n77/n79頻段。這類產品也是SOI技術主導,主要應用在5G。

接收3: 從接收3往上走,接收模組開始需要集成若干SAW濾波器,集成度越來越高。通常需要集成單刀多擲(SPnT)或者雙刀多擲(DPnT)的SOI開關,以及若干通路支持載波聚合(CA)的SAW濾波器。封裝方式上,由於「接收3」的集成程度還不極限,因此有多種可能的路徑。其中國際廠商的產品主要以WLP技術為主,除了在可靠度及產品厚度方面有優勢,主要還是可以在更高集成度的其他產品中進行復用。

接收4: 這類產品叫做MIMO M/H LFEM。主要是針對M/H Band的頻段(例如B1/3/39/40/41/7)應用了MIMO技術,增加通信速率,在一些中高端手機是屬於入網強制要求。看起來通信業對M/H這個黃金頻段果然是真愛啊。技術角度出發,這類產品以RF-SOI技術實現的LNA加Switch為基礎,再集成4~6個通路的M/H高性能SAW濾波器。國際廠商在這些頻段已經開始普遍使用TC-SAW的技術,以達到最好的整體性能。

接收5: 接收晶元的最高復雜度,就是H/M/L的LFEM。這類產品以非常小的尺寸,實現了10~15路頻段的濾波(SAW Filter)、通路切換(RF-Switch)以及信號增強(LNA),具有超高的Value Density值(10左右),在5G項目上能幫助客戶極大地壓縮Rx部分佔用的PCB面積,把寶貴的面積用在發射/天線等部分,提升整體性能。這類產品需要的綜合技能最高,也基本必須要用WLP形式的先進封裝方式才能滿足尺寸、可靠度、良率的要求。

總結

1.射頻模組的核心要求是多種元器件的小型化及模組集成。

2.無論是發射模組還是接收模組,純5G的模組是困難但不復雜,最有挑戰也最具價值的是4G/5G同時支持的高復雜度模組。

⑶ 什麼叫射頻前端(無線電方面);個人理解主要指信號的接收能力如天線增益、射頻放大、輸入衰減等,請問對么

我理解的是靠近天線部分的是射頻前端,包括發射通路和接收通路。
發射通路東西不多,功率放大、濾波之類的。
一般講得比較多的是接收通路,包括低雜訊放大器(LNA)、濾波器等器件,包括增益、靈敏度、射頻接收帶寬等指標,要根據產品特點進行設計,目的是保證有用的射頻信號能完整不失真地從空間拾取出來並輸送給後級的變頻、中頻放大等電路。

⑷ 什麼是射頻前端

射頻前端是射頻收發器和天線之間的一系列組件,主要包括功率放大器(PA)、天線開關(Switch)、濾波器(Filter)、雙工器(Duplexer和Diplexer)和低雜訊放大器(LNA)等,直接影響著手機的信號收發。

其中:

1、功率放大器(PA)用於實現發射通道的射頻信號放大;

2、天線開關(Switch)用於實現射頻信號接收與發射的切換、不同頻段間的切換;

3、濾波器(Filter)用於保留特定頻段內的信號,而將特定頻段外的信號濾除;

4、雙工器(Duplexer和Diplexer)用於將發射和接收信號的隔離,保證接收和發射在共用同一天線的情況下能正常工作;

5、低雜訊放大器(LNA)用於實現接收通道的射頻信號放大。

(4)射頻前端綜合的主要措施擴展閱讀:

一、射頻前端的作用:

射頻前端晶元是移動智能終端產品的核心組成部分,追求低功耗、高性能、低成本是其技術升級的主要驅動力,也是晶元設計研發的主要方向。

射頻前端晶元與處理器晶元不同,後者依靠不斷縮小製程實現技術升級,而作為模擬電路中應用於高頻領域的一個重要分支,射頻電路的技術升級主要依靠新設計、新工藝和新材料的結合。

二、射頻前端的材料:

行業中普遍採用的器件材料和工藝平台包括 RF CMOS、SOI、砷化鎵、鍺硅以及壓電材料等,逐漸出現的新材料工藝還有氮化鎵、微機電系統等,行業中的各參與者需在不同應用背景下,尋求材料、器件和工藝的最佳組合,以提高射頻前端晶元產品的性能。

三、射頻前端的成本:

一款終端往往需要支持多個頻段,這種頻段的增加直接導致射頻前端設計復雜度的提升,往往方寸之間就要容納上百個元器件。特別是千兆級網路的來臨,多載波、高階的調制、4x4 MIMO等技術的融入令前端設計復雜度直線提升,復雜度的提升直接意味著成本的增加,並在手機BOM成本中佔有越來愈高比例,足見其重要性。

⑸ 射頻前端設備是什麼

射頻前端是指在通訊系統中,天線和中頻(或基帶)電路之間的部分。在這一段里信號以射頻形式傳輸。對於無線接收機來說,射頻前端通常包括:放大器,濾波器,變頻器以及一些射頻連接和匹配電路。

⑹ 5g殺到,射頻前端的需要怎樣的工藝和技術

不久前,中國華為公司主推的PolarCode(極化碼)方案,成為5G控制信道eMBB場景編碼方案。消息一出,在網路上就炸開了鍋,甚至有媒體用「華為碾壓高通,拿下5G時代」來形容這次勝利。那麼,媒體報道是否名副其實,除了編碼之外,5G還有哪些關鍵技術呢?▲5G通信到底是什麼5G,顧名思義是第五代通信技術,3GPP定義了5G三大場景:增強型移動寬頻(eMBB,EnhanceMobileBroadband),按照計劃能夠在人口密集區為用戶提供1Gbps用戶體驗速率和10Gbps峰值速率,在流量熱點區域,可實現每平方公里數十Tbps的流量密度。海量物聯網通信(mMTC,),不僅能夠將醫療儀器、家用電器和手持通訊終端等全部連接在一起,還能面向智慧城市、環境監測、智能農業、森林防火等以感測和數據採集為目標的應用場景,並提供具備超千億網路連接的支持能力。低時延、高可靠通信(uRLLC,UltraReliable&LowLatencyCommunication),主要面向智能無人駕駛、工業自動化等需要低時延高可靠連接的業務,能夠為用戶提供毫秒級的端到端時延和接近100%的業務可靠性保證。從中可以看出,相對於4G通信,5G通信能夠提供覆蓋更廣泛的信號,而且上網的速度更快、流量密度更大,同時還將滲透到物聯網中,實現智慧城市、環境監測、智能農業、工業自動化、醫療儀器、無人駕駛、家用電器和手持通訊終端的深度融合,換言之,就是萬物互聯。————————▲5G通信有哪些關鍵技術有媒體將中國華為主推的Polar在信道控制eMBB場景中擊敗美國主推的LDPC和法國主推的Turbo2.0,認為是華為掌握了5G的核心專利,並用「華為碾壓高通,拿下5G時代」來形容。但這種描述是比較值得商榷的。本次高通和華為爭奪的eMBB場景編碼方案,就這件事情本身而言還不能成為核心專利。核心專利是由幾個體系來組成的,一般來說,物理層都認為是最核心的關鍵技術,這其中就包括編碼,編碼一方面可以傳遞信號,同時編碼技術也可以增加抗干擾能力,Turbo2.0、PolarCode、LDPC就是目前法國、中國、美國主推的編碼方案。另外一個就是多址,多址技術指的是解決多個用戶同時和基站通信的問題,怎麼來分享資源的技術,第一代通信採用的是FDMA技術,第二代通信採用的是TDMA技術,第三代通信採用的是CDMA技術,第四代通信採用的是OFDMA技術,5G時代多址是一個很關鍵的爭奪點,現在流行看法就是NOMA。不過,4G奠基性技術「軟頻率復用」的發明人楊學志不久前撰文《NOMA只是一個誤解》,認為NOMA未必能問鼎5G時代,依舊存在一定變數。還有一項關鍵技術就是多天線,多天線是一種增加容量的技術,在理論上能把容量提高很多倍。簡單的說,就是在現有多天線的基礎上通過增加天線數,甚至配置數十根甚至數百根以上天線,支持數十個獨立的空間數據流,實現用戶系統頻譜效率的大幅提升。現在比較火的是MIMO技術,大規模MIMO技術不僅能夠在不增加頻譜資源的情況下降低發射功率、減小小區內以及小區間干擾,還能實現頻譜效率和功率效率在4G的基礎上再提升一個量級。此外,射頻調制解調技術也屬於關鍵技術。————————▲為何說「華為碾壓高通,拿下5G時代」名不副實所謂核心專利,是指能在物理層方面做出基礎性的創新並掌握話語權的專利技術,所謂話語權就是,一旦技術商用後,就具備獅子大開口的技術實力。比如高通在3G時代掌握擁有軟切換和功率控制兩大核心專利以及兩千項外圍專利,具備了像愛立信、華為、諾基亞、中興等全球通信廠商徵收「高通稅」的技術資本。華為如果僅憑一項Polar碼是構不成核心專利的,何況Polar碼也並非華為原創。美國高通主推的LDPC是由國際信息領域泰斗Gallager約五十年前提出的,經過50多年的發展和改進,技術已經非常成熟,雖然由於提出的時間較早,部分理念已經不能稱之為先進,但經過多次改進和擴展,依舊是非常優秀的技術。法國主推的Turbo2.0是Turbo的延伸和發展,Turbo碼是4G時代使用的編碼之一,在技術上同樣非常成熟。而中國主推的Polar碼是由土耳其畢爾肯大學ErdalArikan教授(是Gallager的學生)在2008年首次提出,polar碼的優勢在於糾錯能力強,而且是世界上唯一一種已知的能夠被嚴格證明達到信道容量的信道編碼方法,這對於高帶寬網路的規范管理具有重要的意義,在某些應用場景中已經取得了和Turbo碼和LDPC碼相同或更優的性能。但劣勢也非常明顯,就是誕生時間太短,技術不夠成熟。本次Polar碼戰勝LDPC碼和Turbo碼贏得的是eMBB場景短碼控制信道。之前說過,3GPP定義了5G三大場景:增強型移動寬頻(eMBB)、海量物聯網通信(mMTC)、低時延、高可靠通信(uRLLC)。而華為這次僅僅獲得了eMBB場景中短碼的控制信道,而高通卻斬獲了eMBB場景的長碼和短碼的編碼信道,而且mMTC和URLLC場景的編碼方案還懸而未決。拋開之前提到的多址技術、多天線技術、射頻調制解調技術等關鍵技術,僅僅憑華為在編碼上取得了eMBB場景中短碼的控制信道,一些媒體就聲稱「華為碾壓高通,拿下5G時代」,這既不符合客觀實際,也頗有捧殺的嫌疑。誠然,本次能夠在編碼標準的制定上占據一席之地是中國通信產業取得的勝利和實力的體現,但也不可忘乎所以,將取得的局部性勝利定義為「拿下5G時代」。內容來自:科普中國

⑺ 射頻收發器和射頻前端

射頻收發器是指接收、發射、解調、調制電路,是「靠後」一點的電路;射頻前端一般指收發轉換電路、低噪放之類電路,RFID應該要射頻前端,RFID是雙向通訊,需要射頻前端進行收發切換。

⑻ saw是前段階段嗎

是的。
SAW主要應用於移動端射頻前端。也用於基站、汽車電子、物聯網等領域。在智能手機射頻前端領域,主要用的是SAW(聲表面波)濾波器和BAW(體聲波)濾波器。

⑼ 什麼叫射頻前端

有的說法射頻前端包括射頻接收電路中中頻之前的部分,包括LNA,濾波器,混頻器,本振等.
也有從混頻器前分的,也就是說前端只包括LNA和濾波器.從混頻器開始往後算後端.

⑽ 5G給射頻前端帶來了哪些影響

靠近天線部分的設備是射頻前端設備。
射頻前端包括發射通路和接收通路。
發射通路的器件不多,功率放大、濾波之類的。
接收通路的器件比較多一點,包括低雜訊放大器(LNA)、濾波器等器件,包括增益、靈敏度、射頻接收帶寬等指標,要根據產品特點進行設計,目的是保證有用的射頻信號能完整不失真地從空間拾取出來並輸送給後級的變頻、中頻放大等電路。