當前位置:首頁 » 服務存儲 » 存儲陣列的優勢
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

存儲陣列的優勢

發布時間: 2022-06-04 09:57:11

⑴ 磁碟陣列何意思,有什麼好處

陣列可以有幾個盤組成一個大的,那樣就是把數據分別存放在二個盤,優點比單盤讀寫速度快,缺點一個盤壞了,數據全沒。2,一個硬碟儲存,一個備份,優點不容易丟失數據,缺點浪費磁碟。詳情你可以網路下,裡面有幾種陣列方法的,

⑵ 磁碟陣列有什麼優點

磁碟陣列的基本功能及優點和缺點

RAID技術主要有以下三個基本功能:

(1)通過對磁碟上的數據進行條帶化,實現對數據成塊存取,減少磁碟的機械尋道時間,提高了數據存取速度。

(2)通過對一個陣列中的幾塊磁碟同時讀取,減少了磁碟的機械尋道時間,提高數據存取速度。

(3)通過鏡像或者存儲奇偶校驗信息的方式,實現了對數據的冗餘保護。

優點

提高傳輸速率。RAID通過在多個磁碟上同時存儲和讀取數據來大幅提高存儲系統的數據吞吐量(Throughput)。在RAID中,可以讓很多磁碟驅動器同時傳輸數據,而這些磁碟驅動器在邏輯上又是一個磁碟驅動器,所以使用RAID可以達到單個磁碟驅動器幾倍、幾十倍甚至上百倍的速率。這也是RAID最初想要解決的問題。因為當時CPU的速度增長很快,而磁碟驅動器的數據傳輸速率無法大幅提高,所以需要有一種方案解決二者之間的矛盾。RAID最後成功了。

通過數據校驗提供容錯功能。普通磁碟驅動器無法提供容錯功能,如果不包括寫在磁碟上的CRC(循環冗餘校驗)碼的話。RAID容錯是建立在每個磁碟驅動器的硬體容錯功能之上的,所以它提供更高的安全性。在很多RAID模式中都有較為完備的相互校驗/恢復的措施,甚至是直接相互的鏡像備份,從而大大提高了RAID系統的容錯度,提高了系統的穩定冗餘性。

缺點

RAID0沒有冗餘功能,如果一個磁碟(物理)損壞,則所有的數據都無法使用。

RAID1磁碟的利用率最高只能達到50%(使用兩塊盤的情況下),是所有RAID級別中最低的。

RAID0+1以理解為是RAID 0和RAID 1的折中方案。RAID 0+1可以為系統提供數據安全保障,但保障程度要比 Mirror低而磁碟空間利用率要比Mirror高。

關於伺服器 更多你可以咨詢亞太網路 鄧

⑶ 做磁碟陣列有什麼好處

RendanArrayofInexpensiveDisk,簡稱RAID技術。

現在已基本得到公認的有下面八種系列。
1.RAID0(0級盤陣列)
RAID0又稱數據分塊,即把數據分布在多個盤上,沒有容錯措施。其容量和數據傳輸率是單機容量的N倍,N為構成盤陣列的磁碟機的總數,I/O傳輸速率高,但平均無故障時間MTTF(MeanTimeToFailure)只有單台磁碟機的N分之一,因此零級盤陣列的可靠性最差。
2.RAID1(1級盤陣列)
RAID1又稱鏡像(Mirror)盤,採用鏡像容錯來提高可靠性。即每一個工作盤都有一個鏡像盤,每次寫數據時必須同時寫入鏡像盤,讀數據時只從工作盤讀出。一旦工作盤發生故障立即轉入鏡像盤,從鏡像盤中讀出數據,然後由系統再恢復工作盤正確數據。因此這種方式數據可以重構,但工作盤和鏡像盤必須保持一一對應關系。這種盤陣列可靠性很高,但其有效容量減小到總容量一半以下。因此RAID1常用於對出錯率要求極嚴的應用場合,如財政、金融等領域。
3.RAID2(2級盤陣列)
RAID2又稱位交叉,它採用漢明碼作盤錯檢驗,無需在每個扇區之後進行CRC(CyclicReDundancycheck)檢驗。漢明碼是一種(n,k)線性分組碼,n為碼字的長度,k為數據的位數,r為用於檢驗的位數,故有:n=2r-1r=n-k
因此按位交叉存取最有利於作漢明碼檢驗。這種盤適於大數據的讀寫。但冗餘信息開銷還是太大,阻止了這類盤的廣泛應用。
4.RAID3(3級盤陣列)
RAID3為單盤容錯並行傳輸陣列盤。它的特點是將檢驗盤減小為一個(RAID2校驗盤為多個,DAID1檢驗盤為1比1),數據以位或位元組的方式存於各盤(分散記錄在組內相同扇區號的各個磁碟機上)。它的優點是整個陣列的帶寬可以充分利用,使批量數據傳輸時間減小;其缺點是每次讀寫要牽動整個組,每次只能完成一次I/O。
5.RAID4(4級盤陣列)
RAID4是一種可獨立地對組內各盤進行讀寫的陣列。其校驗盤也只有一個。
RAID4和RAID3的區別是:RAID3是按位或按位元組交叉存取,而RAID4是按塊(扇區)存取,可以單獨地對某個盤進行操作,它無需象RAID3那樣,那怕每一次小I/O操作也要涉及全組,只需涉及組中兩台磁碟機(一台數據盤,一台檢驗盤)即可。從而提高了小量數據的I/O速率。
6.RAID5(5級盤陣列)
RAID5是一種旋轉奇偶校驗獨立存取的陣列。它和RAID1、2、3、4各盤陣列的不同點,是它沒有固定的校驗盤,而是按某種規則把其冗餘的奇偶校驗信息均勻地分布在陣列所屬的所有磁碟上。於是在同一台磁碟機上既有數據信息也有校驗信息。這一改變解決了爭用校驗盤的問題,因此DAID5內允許在同一組內並發進行多個寫操作。所以RAID5即適於大數據量的操作,也適於各種事務處理。它是一種快速,大容量和容錯分布合理的磁碟陣列。
7.RAID6(6級盤陣列)
RAID6是一種雙維奇偶校驗獨立存取的磁碟陣列。它的冗餘的檢、糾錯信息均勻分布在所有磁碟上,而數據仍以大小可變的塊以交叉方式存於各盤。這類盤陣列可容許雙盤出錯。
8.RAID7(7級盤陣列)
RAID7是在RAID6的基礎上,採用了cache技術,它使得傳輸率和響應速度都有較大的提高。Cache是一種高速緩沖存儲器,即數據在寫入磁碟陣列以前,先寫入cache中。一般採用cache分塊大小和磁碟陣列中數據分塊大小相同,即一塊cache分塊對應一塊磁碟分塊。在寫入時將數據分別寫入兩個獨立的cache,這樣即使其中有一個cache出故障,數據也不會丟失。寫操作將直接在cache級響應,然後再轉到磁碟陣列。數據從cache寫到磁碟陣列時,同一磁軌的數據將在一次操作中完成,避免了不少塊數據多次寫的問題,提高了速度。在讀出時,主機也是直接從cache中讀出,而不是從陣列盤上讀取,減少與磁碟讀操作次數,這樣比較充分地利用了磁碟帶寬。
這樣cache和磁碟陣列技術的結合,彌補了磁碟陣列的不足(如分塊寫請求響應差等缺陷),從而使整個系統以高效、快速、大容量、高可靠以及靈活、方便的存儲系統提供給用戶,從而滿足了當前的技術發展的需要,尤其是多媒體系統的需要。

⑷ 簡述RAID的分類及其優缺點

RAID技術經過不斷的發展,現在已擁有了從 RAID 0 到 6 七種基本的RAID 級別。另外,還有一些基本RAID級別的組合形式,如RAID10(RAID 0與RAID 1的組合),RAID50(RAID 0與RAID 5的組合)等。

不同RAID 級別代表著不同的存儲性能、數據安全性和存儲成本。但我們最為常用的是下面的幾種RAID形式。

1.RAID 0:

RAID 0被稱為磁碟的條帶化。所有數據在RAID集合中的所有磁碟上以數據塊形式分布。RAID 0能夠達到出眾的性能水平,以為所存儲的數據負載會被分散到更多的物理驅動器上。RAID 0沒有產生奇偶校驗。這就意味著數據在寫入RAID 0磁碟時沒有任何性能損耗。

RAID 0隻適用於更好的性能,而非更高可用性的方面,因為RAID 0的磁碟上不會生產奇偶校驗。另外,RAID 0至少需要兩個物理磁碟。

2.RAID 1:

RAID 1被稱為磁碟鏡像,即所有的數據都會寫入至少兩塊獨立的物理磁碟。本質上說,兩塊磁碟彼此互為鏡像。假如一塊磁碟發生故障,另一塊磁碟仍可用於數據應用。

磁碟鏡像對要求快速的讀取操作非常有用。數據寫入磁碟時速度較慢,以為要兩次分別寫入。同樣,RAID 1亦至少需要兩塊物理磁碟。

3.RAID 1 + 0:

RAID 1 + 0(也稱為RAID 10)使用了磁碟鏡像與條帶化技術的組合。數據通常先進行鏡像,然後再完成條帶化。彼此鏡像的條帶化集合完成相同的任務,但比單獨的條帶化集合更具容錯性。

假如你在條帶化集合中丟失驅動器,那麼對數據的存取訪問必須源自另一條帶化集合,應該原來的集合不再具備奇偶校驗。 RAID 1 + 0至少需要四個物理磁碟。

4.RAID 2:

使用漢明碼,RAID 2在數位級別條帶化數據。近年以來,漢明碼已被用作用於磁碟驅動器的糾錯碼,故此RAID 2已不再有使用。

5.RAID 3:

RAID 3所使用的技術被稱為奇偶校驗磁碟,將RAID控制器生成的奇偶校驗信息存儲到與實際數據磁碟分開的磁碟上,而非像RAID 5那樣和數據在一起條帶化。

當有大量數據請求時,例如應用於資料庫,這種RAID類型的性能表現不佳。RAID 3對需要長時間持續傳輸數據的應用(如視頻伺服器)表現良好。另外,RAID 3至少需要三塊物理磁碟。

6.RAID 4:

RAID 4使用專用的奇偶校驗磁碟,並在磁碟間使用數據塊級的條帶化技術。 雖然這樣有利於順序數據訪問,但使用專用奇偶校驗磁碟可能會導致寫入操作過程出現性能瓶頸。 現在RAID 4沒有太多使用場合,更多使用諸如RAID 5等類型加以替代。

7.RAID 5:

RAID 5使用磁碟條帶化與奇偶校驗技術。數據分布在RAID集合的所有磁碟上,並且和在發生磁碟故障,進行數據重構時所用的奇偶校驗信息混合在一起。

RAID 5是最常見的RAID類型,因為它在性能和可用性之間取得了良好的平衡。 RAID 5至少需要三塊物理磁碟。

8.RAID 6:

RAID 6通過使用兩個奇偶校驗條來提高可靠性,在RAID集合丟失數據前可以兼容兩塊磁碟的故障。RAID 6通常應用在SATA環境,以及需要較長數據保留時間的解決方案中,例如數據歸檔或基於磁碟的備份中。

9.自適應RAID:

自適應RAID讓RAID控制器自己找到如何在磁碟上存儲奇偶校驗碼,可以在RAID 3和RAID 5之間選擇,這取決於所要寫入磁碟的數據類型適用哪一種RAID集合。

10.RAID 7:

RAID 7是一種非標准化的RAID類型——基於RAID 3和RAID 4的技術——需要用到專有硬體。 該RAID類型由現在已倒閉的Storage Computer公司注冊擁有。

(4)存儲陣列的優勢擴展閱讀

伺服器做raid需要注意的事項:

1、首先我們要看主板是否支持raid功能,如果不支持可以購買一個pci的raid磁碟陣列卡。

2、修改硬碟模式為RAID Mode 。

3、重啟電腦,創建一個磁碟陣列」RAID「。

4、調整自己需要的RAID Level,如調整為raid1(mirror),按Y完成創建raid。

5、回到bios設置,把boot啟動選項boot option #1選擇剛創建的raid,開機正常安裝系統即可。

注意,不同的raid卡創建略有不同。

⑸ 什麼是硬碟的磁碟陣列磁碟陣列有什麼好處

磁碟陣列(Rendant Arrays of Inexpensive Disks,RAID),有「價格便宜且多餘的磁碟陣列」之意。原理是利用數組方式來作磁碟組,配合數據分散排列的設計,提升數據的安全性。磁碟陣列是由很多便宜、容量較小、穩定性較高、速度較慢磁碟,組合成一個大型的磁碟組,利用個別磁碟提供數據所產生加成效果提升整個磁碟系統效能。同時利用這項技術,將數據切割成許多區段,分別存放在各個硬碟上。磁碟陣列還能利用同位檢查(Parity Check)的觀念,在數組中任一顆硬碟故障時,仍可讀出數據,在數據重構時,將數據經計算後重新置入新硬碟中。

磁碟陣列其樣式有三種,一是外接式磁碟陣列櫃、二是內接式磁碟陣列卡,三是利用軟體來模擬。 外接式磁碟陣列櫃最常被使用大型伺服器上,具可熱抽換(Hot Swap)的特性,不過這類產品的價格都很貴。 內接式磁碟陣列卡,因為價格便宜,但需要較高的安裝技術,適合技術人員使用操作。 利用軟體模擬的方式,由於會拖累機器的速度,不適合大數據流量的伺服器。

優點
提高傳輸速率。RAID通過在多個磁碟上同時存儲和讀取數據來大幅提高存儲系統的數據吞吐量(Throughput)。在RAID中,可以讓很多磁碟驅動器同時傳輸數據,而這些磁碟驅動器在邏輯上又是一個磁碟驅動器,所以使用RAID可以達到單個磁碟驅動器幾倍、幾十倍甚至上百倍的速率。這也是RAID最初想要解決的問題。因為當時CPU的速度增長很快,而磁碟驅動器的數據傳輸速率無法大幅提高,所以需要有一種方案解決二者之間的矛盾。RAID最後成功了。 通過數據校驗提供容錯功能。普通磁碟驅動器無法提供容錯功能,如果不包括寫在磁碟上的CRC(循環冗餘校驗)碼的話。RAID容錯是建立在每個磁碟驅動器的硬體容錯功能之上的,所以它提供更高的安全性。在很多RAID模式中都有較為完備的相互校驗/恢復的措施,甚至是直接相互的鏡像備份,從而大大提高了RAID系統的容錯度,提高了系統的穩定冗餘性。

⑹ 使用磁碟陣列的好處是什麼

速度更快,安全性更高,相互備份

⑺ 磁碟陣列分為哪幾種,各有什麼樣的優缺點

磁碟陣列就是Raid

RAID(Rendant Array of Independent Disk 獨立冗餘磁碟陣列)技術是加州大學伯克利分校1987年提出,最初是為了組合小的廉價磁碟來代替大的昂貴磁碟,同時希望磁碟失效時不會使對數據的訪問受損失而開發出一定水平的數據保護技術。RAID就是一種由多塊廉價磁碟構成的冗餘陣列,在操作系統下是作為一個獨立的大型存儲設備出現。RAID可以充分發揮出多塊硬碟的優勢,可以提升硬碟速度,增大容量,提供容錯功能夠確保數據安全性,易於管理的優點,在任何一塊硬碟出現問題的情況下都可以繼續工作,不會受到損壞硬碟的影響。

二、RAID的幾種工作模式

1、RAID0

即Data Stripping數據分條技術。RAID 0可以把多塊硬碟連成一個容量更大的硬碟群,可以提高磁碟的性能和吞吐量。RAID 0沒有冗餘或錯誤修復能力,成本低,要求至少兩個磁碟,一般只是在那些對數據安全性要求不高的情況下才被使用。

(1)、RAID 0最簡單方式

就是把x塊同樣的硬碟用硬體的形式通過智能磁碟控制器或用操作系統中的磁碟驅動程序以軟體的方式串聯在一起,形成一個獨立的邏輯驅動器,容量是單獨硬碟的x倍,在電腦數據寫時被依次寫入到各磁碟中,當一塊磁碟的空間用盡時,數據就會被自動寫入到下一塊磁碟中,它的好處是可以增加磁碟的容量。速度與其中任何一塊磁碟的速度相同,如果其中的任何一塊磁碟出現故障,整個系統將會受到破壞,可靠性是單獨使用一塊硬碟的1/n。

(2)、RAID 0的另一方式

是用n塊硬碟選擇合理的帶區大小創建帶區集,最好是為每一塊硬碟都配備一個專門的磁碟控制器,在電腦數據讀寫時同時向n塊磁碟讀寫數據,速度提升n倍。提高系統的性能。

2、RAID 1

RAID 1稱為磁碟鏡像:把一個磁碟的數據鏡像到另一個磁碟上,在不影響性能情況下最大限度的保證系統的可靠性和可修復性上,具有很高的數據冗餘能力,但磁碟利用率為50%,故成本最高,多用在保存關鍵性的重要數據的場合。RAID 1有以下特點:

(1)、RAID 1的每一個磁碟都具有一個對應的鏡像盤,任何時候數據都同步鏡像,系統可以從一組鏡像盤中的任何一個磁碟讀取數據。

(2)、磁碟所能使用的空間只有磁碟容量總和的一半,系統成本高。

(3)、只要系統中任何一對鏡像盤中至少有一塊磁碟可以使用,甚至可以在一半數量的硬碟出現問題時系統都可以正常運行。

(4)、出現硬碟故障的RAID系統不再可靠,應當及時的更換損壞的硬碟,否則剩餘的鏡像盤也出現問題,那麼整個系統就會崩潰。

(5)、更換新盤後原有數據會需要很長時間同步鏡像,外界對數據的訪問不會受到影響,只是這時整個系統的性能有所下降。

(6)、RAID 1磁碟控制器的負載相當大,用多個磁碟控制器可以提高數據的安全性和可用性。
3、RAID0+1

把RAID0和RAID1技術結合起來,數據除分布在多個盤上外,每個盤都有其物理鏡像盤,提供全冗餘能力,允許一個以下磁碟故障,而不影響數據可用性,並具有快速讀/寫能力。RAID0+1要在磁碟鏡像中建立帶區集至少4個硬碟。

4、RAID2

電腦在寫入數據時在一個磁碟上保存數據的各個位,同時把一個數據不同的位運算得到的海明校驗碼保存另一組磁碟上,由於海明碼可以在數據發生錯誤的情況下將錯誤校正,以保證輸出的正確。但海明碼使用數據冗餘技術,使得輸出數據的速率取決於驅動器組中速度最慢的磁碟。RAID2控制器的設計簡單。

5、RAID3:帶奇偶校驗碼的並行傳送

RAID 3使用一個專門的磁碟存放所有的校驗數據,而在剩餘的磁碟中創建帶區集分散數據的讀寫操作。當一個完好的RAID 3系統中讀取數據,只需要在數據存儲盤中找到相應的數據塊進行讀取操作即可。但當向RAID 3寫入數據時,必須計算與該數據塊同處一個帶區的所有數據塊的校驗值,並將新值重新寫入到校驗塊中,這樣無形雖增加系統開銷。當一塊磁碟失效時,該磁碟上的所有數據塊必須使用校驗信息重新建立,如果所要讀取的數據塊正好位於已經損壞的磁碟,則必須同時讀取同一帶區中的所有其它數據塊,並根據校驗值重建丟失的數據,這使系統減慢。當更換了損壞的磁碟後,系統必須一個數據塊一個數據塊的重建壞盤中的數據,整個系統的性能會受到嚴重的影響。RAID 3最大不足是校驗盤很容易成為整個系統的瓶頸,對於經常大量寫入操作的應用會導致整個RAID系統性能的下降。RAID 3適合用於資料庫和WEB伺服器等。

6、 RAID4

RAID4即帶奇偶校驗碼的獨立磁碟結構,RAID4和RAID3很象,它對數據的訪問是按數據塊進行的,也就是按磁碟進行的,每次是一個盤,RAID4的特點和RAID3也挺象,不過在失敗恢復時,它的難度可要比RAID3大得多了,控制器的設計難度也要大許多,而且訪問數據的效率不怎麼好。
7、 RAID5

RAID 5把校驗塊分散到所有的數據盤中。RAID 5使用了一種特殊的演算法,可以計算出任何一個帶區校驗塊的存放位置。這樣就可以確保任何對校驗塊進行的讀寫操作都會在所有的RAID磁碟中進行均衡,從而消除了產生瓶頸的可能。RAID5的讀出效率很高,寫入效率一般,塊式的集體訪問效率不錯。RAID 5提高了系統可靠性,但對數據傳輸的並行性解決不好,而且控制器的設計也相當困難。

8、RAID6

RAID6即帶有兩種分布存儲的奇偶校驗碼的獨立磁碟結構,它是對RAID5的擴展,主要是用於要求數據絕對不能出錯的場合,使用了二種奇偶校驗值,所以需要N+2個磁碟,同時對控制器的設計變得十分復雜,寫入速度也不好,用於計算奇偶校驗值和驗證數據正確性所花費的時間比較多,造成了不必須的負載,很少人用。

9、 RAID7

RAID7即優化的高速數據傳送磁碟結構,它所有的I/O傳送均是同步進行的,可以分別控制,這樣提高了系統的並行性和系統訪問數據的速度;每個磁碟都帶有高速緩沖存儲器,實時操作系統可以使用任何實時操作晶元,達到不同實時系統的需要。允許使用SNMP協議進行管理和監視,可以對校驗區指定獨立的傳送信道以提高效率。可以連接多台主機,當多用戶訪問系統時,訪問時間幾乎接近於0。但如果系統斷電,在高速緩沖存儲器內的數據就會全部丟失,因此需要和UPS一起工作,RAID7系統成本很高。

10、 RAID10

RAID10即高可靠性與高效磁碟結構它是一個帶區結構加一個鏡象結構,可以達到既高效又高速的目的。這種新結構的價格高,可擴充性不好。

11、 RAID53

RAID7即高效數據傳送磁碟結構,是RAID3和帶區結構的統一,因此它速度比較快,也有容錯功能。但價格十分高,不易於實現。

個人使用磁碟RAID主要是用RAID0、 RAID1或RAID0+1工作模式。

⑻ 比較各個存儲類型的優缺點

【塊存儲】

典型設備:磁碟陣列,硬碟

塊存儲主要是將裸磁碟空間整個映射給主機使用的,就是說例如磁碟陣列裡面有5塊硬碟(為方便說明,假設每個硬碟1G),然後可以通過劃邏輯盤、做Raid、或者LVM(邏輯卷)等種種方式邏輯劃分出N個邏輯的硬碟。(假設劃分完的邏輯盤也是5個,每個也是1G,但是這5個1G的邏輯盤已經於原來的5個物理硬碟意義完全不同了。例如第一個邏輯硬碟A裡面,可能第一個200M是來自物理硬碟1,第二個200M是來自物理硬碟2,所以邏輯硬碟A是由多個物理硬碟邏輯虛構出來的硬碟。)

接著塊存儲會採用映射的方式將這幾個邏輯盤映射給主機,主機上面的操作系統會識別到有5塊硬碟,但是操作系統是區分不出到底是邏輯還是物理的,它一概就認為只是5塊裸的物理硬碟而已,跟直接拿一塊物理硬碟掛載到操作系統沒有區別的,至少操作系統感知上沒有區別。

此種方式下,操作系統還需要對掛載的裸硬碟進行分區、格式化後,才能使用,與平常主機內置硬碟的方式完全無異。

優點:

1、 這種方式的好處當然是因為通過了Raid與LVM等手段,對數據提供了保護。

2、 另外也可以將多塊廉價的硬碟組合起來,成為一個大容量的邏輯盤對外提供服務,提高了容量。

3、 寫入數據的時候,由於是多塊磁碟組合出來的邏輯盤,所以幾塊磁碟可以並行寫入的,提升了讀寫效率。

4、 很多時候塊存儲採用SAN架構組網,傳輸速率以及封裝協議的原因,使得傳輸速度與讀寫速率得到提升。

缺點:

1、採用SAN架構組網時,需要額外為主機購買光纖通道卡,還要買光纖交換機,造價成本高。

2、主機之間的數據無法共享,在伺服器不做集群的情況下,塊存儲裸盤映射給主機,再格式化使用後,對於主機來說相當於本地盤,那麼主機A的本地盤根本不能給主機B去使用,無法共享數據。

3、不利於不同操作系統主機間的數據共享:另外一個原因是因為操作系統使用不同的文件系統,格式化完之後,不同文件系統間的數據是共享不了的。例如一台裝了WIN7/XP,文件系統是FAT32/NTFS,而Linux是EXT4,EXT4是無法識別NTFS的文件系統的。就像一隻NTFS格式的U盤,插進Linux的筆記本,根本無法識別出來。所以不利於文件共享。


【文件存儲】

典型設備:FTP、NFS伺服器

為了克服上述文件無法共享的問題,所以有了文件存儲。

文件存儲也有軟硬一體化的設備,但是其實普通拿一台伺服器/筆記本,只要裝上合適的操作系統與軟體,就可以架設FTP與NFS服務了,架上該類服務之後的伺服器,就是文件存儲的一種了。

主機A可以直接對文件存儲進行文件的上傳下載,與塊存儲不同,主機A是不需要再對文件存儲進行格式化的,因為文件管理功能已經由文件存儲自己搞定了。

優點:

1、造價交低:隨便一台機器就可以了,另外普通乙太網就可以,根本不需要專用的SAN網路,所以造價低。

2、方便文件共享:例如主機A(WIN7,NTFS文件系統),主機B(Linux,EXT4文件系統),想互拷一部電影,本來不行。加了個主機C(NFS伺服器),然後可以先A拷到C,再C拷到B就OK了。(例子比較膚淺,請見諒……)

缺點:

讀寫速率低,傳輸速率慢:乙太網,上傳下載速度較慢,另外所有讀寫都要1台伺服器裡面的硬碟來承擔,相比起磁碟陣列動不動就幾十上百塊硬碟同時讀寫,速率慢了許多。


【對象存儲】

典型設備:內置大容量硬碟的分布式伺服器

對象存儲最常用的方案,就是多台伺服器內置大容量硬碟,再裝上對象存儲軟體,然後再額外搞幾台服務作為管理節點,安裝上對象存儲管理軟體。管理節點可以管理其他伺服器對外提供讀寫訪問功能。

之所以出現了對象存儲這種東西,是為了克服塊存儲與文件存儲各自的缺點,發揚它倆各自的優點。簡單來說塊存儲讀寫快,不利於共享,文件存儲讀寫慢,利於共享。能否弄一個讀寫快,利 於共享的出來呢。於是就有了對象存儲。

首先,一個文件包含了了屬性(術語叫metadata,元數據,例如該文件的大小、修改時間、存儲路徑等)以及內容(以下簡稱數據)。

以往像FAT32這種文件系統,是直接將一份文件的數據與metadata一起存儲的,存儲過程先將文件按照文件系統的最小塊大小來打散(如4M的文件,假設文件系統要求一個塊4K,那麼就將文件打散成為1000個小塊),再寫進硬碟裡面,過程中沒有區分數據/metadata的。而每個塊最後會告知你下一個要讀取的塊的地址,然後一直這樣順序地按圖索驥,最後完成整份文件的所有塊的讀取。

這種情況下讀寫速率很慢,因為就算你有100個機械手臂在讀寫,但是由於你只有讀取到第一個塊,才能知道下一個塊在哪裡,其實相當於只能有1個機械手臂在實際工作。

而對象存儲則將元數據獨立了出來,控制節點叫元數據伺服器(伺服器+對象存儲管理軟體),裡面主要負責存儲對象的屬性(主要是對象的數據被打散存放到了那幾台分布式伺服器中的信息),而其他負責存儲數據的分布式伺服器叫做OSD,主要負責存儲文件的數據部分。當用戶訪問對象,會先訪問元數據伺服器,元數據伺服器只負責反饋對象存儲在哪些OSD,假設反饋文件A存儲在B、C、D三台OSD,那麼用戶就會再次直接訪問3台OSD伺服器去讀取數據。

這時候由於是3台OSD同時對外傳輸數據,所以傳輸的速度就加快了。當OSD伺服器數量越多,這種讀寫速度的提升就越大,通過此種方式,實現了讀寫快的目的。

另一方面,對象存儲軟體是有專門的文件系統的,所以OSD對外又相當於文件伺服器,那麼就不存在文件共享方面的困難了,也解決了文件共享方面的問題。

所以對象存儲的出現,很好地結合了塊存儲與文件存儲的優點。

最後為什麼對象存儲兼具塊存儲與文件存儲的好處,還要使用塊存儲或文件存儲呢?

1、有一類應用是需要存儲直接裸盤映射的,例如資料庫。因為資料庫需要存儲裸盤映射給自己後,再根據自己的資料庫文件系統來對裸盤進行格式化的,所以是不能夠採用其他已經被格式化為某種文件系統的存儲的。此類應用更適合使用塊存儲。

2、對象存儲的成本比起普通的文件存儲還是較高,需要購買專門的對象存儲軟體以及大容量硬碟。如果對數據量要求不是海量,只是為了做文件共享的時候,直接用文件存儲的形式好了,性價比高。

⑼ 陣列卡的優點

磁碟陣列有許多優點:首先,提高了存儲容量;其次,多台磁碟驅動器可並行工作,提高了數據傳輸率;提供校驗和冗餘,提高了數據的安全性...
RAID技術確實提供了比通常的磁碟存儲更高的性能指標、數據完整性和數據可用性,尤其是在當今面臨的I/O總是滯後於CPU性能的瓶頸問題越來越突出的情況下,RAID解決方案能夠有效地彌補這個缺口。