當前位置:首頁 » 服務存儲 » 常規存儲設備設計
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

常規存儲設備設計

發布時間: 2022-06-02 03:27:56

Ⅰ 關於存儲設備

硬碟分區多少,和計算機運行速度關系不大,系統盤的大小會對系統運行速度有影響,所以C盤如果條件允許還是盡可能大一些.在存儲數據的時候,並不是連續排列的,在硬碟中,頻繁地建立、刪除文件會產生許多碎片,碎片積累多了,日後在訪問某個文件時,硬碟可能會花費很長的時間,不但訪問效率下降,而且還有可能損壞磁軌。為此,我們應該經常使用Windows 9x系統中的磁碟碎片整理程序對硬碟進行整理,整理完後最好再使用硬碟修復程序來修補那些有問題的磁軌。

附:
硬碟知識大集合

你新買來的硬碟是不能直接使用的,必須對它進行分區並進行格式化的才能儲存數據。

硬碟分區是操作系統安裝過程中經常談到的話題。對於一些簡單的應用,硬碟分區並不成為一種障礙,但對於一些復雜的應用,就不能不深入理解硬碟分區機制的某些細節。

硬碟的崩潰經常會遇見,特別是病毒肆虐的時代,關於引導分區的恢復與備份的技巧,你一定要掌握。

在使用電腦時,你往往會使用幾個操作系統。如何在硬碟中安裝多個操作系統?

如果你需要了解這方面的知識或是要解決上述問題,這期的「硬碟分區」專題會告訴你答案!

硬碟是現在計算機上最常用的存儲器之一。我們都知道,計算機之所以神奇,是因為它具有高速分析處理數據的能力。而這些數據都以文件的形式存儲在硬碟里。不過,計算機可不像人那麼聰明。在讀取相應的文件時,你必須要給出相應的規則。這就是分區概念。分區從實質上說就是對硬碟的一種格式化。當我們創建分區時,就已經設置好了硬碟的各項物理參數,指定了硬碟主引導記錄(即Master Boot Record,一般簡稱為MBR)和引導記錄備份的存放位置。而對於文件系統以及其他操作系統管理硬碟所需要的信息則是通過以後的高級格式化,即Format命令來實現。

面、磁軌和扇區

硬碟分區後,將會被劃分為面(Side)、磁軌(Track)和扇區(Sector)。需要注意的是,這些只是個虛擬的概念,並不是真正在硬碟上劃軌道。先從面說起,硬碟一般是由一片或幾片圓形薄膜疊加而成。我們所說,每個圓形薄膜都有兩個「面」,這兩個面都是用來存儲數據的。按照面的多少,依次稱為0面、1面、2面……由於每個面都專有一個讀寫磁頭,也常用0頭(head)、1頭……稱之。按照硬碟容量和規格的不同,硬碟面數(或頭數)也不一定相同,少的只有2面,多的可達數十面。各面上磁軌號相同的磁軌合起來,稱為一個柱面(Cylinder)(如圖1)。(圖)

上面我們提到了磁軌的概念。那麼究竟何為磁軌呢?由於磁碟是旋轉的,則連續寫入的數據是排列在一個圓周上的。我們稱這樣的圓周為一個磁軌。(如圖2)如果讀寫磁頭沿著圓形薄膜的半徑方向移動一段距離,以後寫入的數據又排列在另外一個磁軌上。根據硬碟規格的不同,磁軌數可以從幾百到數千不等;一個磁軌上可以容納數KB的數據,而主機讀寫時往往並不需要一次讀寫那麼多,於是,磁軌又被劃分成若干段,每段稱為一個扇區。一個扇區一般存放512位元組的數據。扇區也需要編號,同一磁軌中的扇區,分別稱為1扇區,2扇區……

計算機對硬碟的讀寫,處於效率的考慮,是以扇區為基本單位的。即使計算機只需要硬碟上存儲的某個位元組,也必須一次把這個位元組所在的扇區中的512位元組全部讀入內存,再使用所需的那個位元組。不過,在上文中我們也提到,硬碟上面、磁軌、扇區的劃分表面上是看不到任何痕跡的,雖然磁頭可以根據某個磁軌的應有半徑來對准這個磁軌,但怎樣才能在首尾相連的一圈扇區中找出所需要的某一扇區呢?原來,每個扇區並不僅僅由512個位元組組成的,在這些由計算機存取的數據的前、後兩端,都另有一些特定的數據,這些數據構成了扇區的界限標志,標志中含有扇區的編號和其他信息。計算機就憑借著這些標志來識別扇區

硬碟的數據結構

在上文中,我們談了數據在硬碟中的存儲的一般原理。為了能更深入地了解硬碟,我們還必須對硬碟的數據結構有個簡單的了解。硬碟上的數據按照其不同的特點和作用大致可分為5部分:MBR區、DBR區、FAT區、DIR區和DATA區。我們來分別介紹一下:

1.MBR區

MBR(Main Boot Record 主引導記錄區)�位於整個硬碟的0磁軌0柱面1扇區。不過,在總共512位元組的主引導扇區中,MBR只佔用了其中的446個位元組,另外的64個位元組交給了DPT(Disk Partition Table硬碟分區表)(見表),最後兩個位元組「55,AA」是分區的結束標志。這個整體構成了硬碟的主引導扇區。(圖)

主引導記錄中包含了硬碟的一系列參數和一段引導程序。其中的硬碟引導程序的主要作用是檢查分區表是否正確並且在系統硬體完成自檢以後引導具有激活標志的分區上的操作系統,並將控制權交給啟動程序。MBR是由分區程序(如Fdisk.exe)所產生的,它不依賴任何操作系統,而且硬碟引導程序也是可以改變的,從而實現多系統共存。

下面,我們以一個實例讓大家更直觀地來了解主引導記錄:

例:80 01 01 00 0B FE BF FC 3F 00 00 00 7E 86 BB 00

在這里我們可以看到,最前面的「80」是一個分區的激活標志,表示系統可引導;「01 01 00」表示分區開始的磁頭號為01,開始的扇區號為01,開始的柱面號為00;「0B」表示分區的系統類型是FAT32,其他比較常用的有04(FAT16)、07(NTFS);「FE BF FC」表示分區結束的磁頭號為254,分區結束的扇區號為63、分區結束的柱面號為764;「3F 00 00 00」表示首扇區的相對扇區號為63;「7E 86 BB 00」表示總扇區數為12289622。

2.DBR區

DBR(Dos Boot Record)是操作系統引導記錄區的意思。它通常位於硬碟的0磁軌1柱面1扇區,是操作系統可以直接訪問的第一個扇區,它包括一個引導程序和一個被稱為BPB(Bios Parameter Block)的本分區參數記錄表。引導程序的主要任務是當MBR將系統控制權交給它時,判斷本分區跟目錄前兩個文件是不是操作系統的引導文件(以DOS為例,即是Io.sys和Msdos.sys)。如果確定存在,就把它讀入內存,並把控制權 交給該文件。BPB參數塊記錄著本分區的起始扇區、結束扇區、文件存儲格式、硬碟介質描述符、根目錄大小、FAT個數,分配單元的大小等重要參數。DBR是由高級格式化程序(即Format.com等程序)所產生的。

3.FAT區

在DBR之後的是我們比較熟悉的FAT(File Allocation Table文件分配表)區。在解釋文件分配表的概念之前,我們先來談談簇(Cluster)的概念。文件佔用磁碟空間時,基本單位不是位元組而是簇。一般情況下,軟盤每簇是1個扇區,硬碟每簇的扇區數與硬碟的總容量大小有關,可能是4、8、16、32、64……

同一個文件的數據並不一定完整地存放在磁碟的一個連續的區域內,而往往會分成若干段,像一條鏈子一樣存放。這種存儲方式稱為文件的鏈式存儲。由於硬碟上保存著段與段之間的連接信息(即FAT),操作系統在讀取文件時,總是能夠准確地找到各段的位置並正確讀出。

為了實現文件的鏈式存儲,硬碟上必須准確地記錄哪些簇已經被文件佔用,還必須為每個已經佔用的簇指明存儲後繼內容的下一個簇的簇號。對一個文件的最後一簇,則要指明本簇無後繼簇。這些都是由FAT表來保存的,表中有很多表項,每項記錄一個簇的信息。由於FAT對於文件管理的重要性,所以FAT有一個備份,即在原FAT的後面再建一個同樣的FAT。初形成的FAT中所有項都標明為「未佔用」,但如果磁碟有局部損壞,那麼格式化程序會檢測出損壞的簇,在相應的項中標為「壞簇」,以後存文件時就不會再使用這個簇了。FAT的項數與硬碟上的總簇數相當,每一項佔用的位元組數也要與總簇數相適應,因為其中需要存放簇號。FAT的格式有多種,最為常見的是FAT16和FAT32。

4.DIR區

DIR(Directory)是根目錄區,緊接著第二FAT表(即備份的FAT表)之後,記錄著根目錄下每個文件(目錄)的起始單元,文件的屬性等。定位文件位置時,操作系統根據DIR中的起始單元,結合FAT表就可以知道文件在硬碟中的具體位置和大小了。

5.數據(DATA)區

數據區是真正意義上的數據存儲的地方,位於DIR區之後,占據硬碟上的大部分數據空間。

磁碟的文件系統
經常聽高手們說到FAT16、FAT32、NTFS等名詞,朋友們可能隱約知道這是文件系統的意思。可是,究竟這么多文件系統分別代表什麼含義呢?今天,我們就一起來學習學習:

1.什麼是文件系統?
所謂文件系統,它是操作系統中藉以組織、存儲和命名文件的結構。磁碟或分區和它所包括的文件系統的不同是很重要的,大部分應用程序都基於文件系統進行操作,在不同種文件系統上是不能工作的。

2.文件系統大家族
常用的文件系統有很多,MS-DOS和Windows 3.x使用FAT16文件系統,默認情況下Windows 98也使用FAT16,Windows 98和Me可以同時支持FAT16、FAT32兩種文件系統,Windows NT則支持FAT16、NTFS兩種文件系統,Windows 2000可以支持FAT16、FAT32、NTFS三種文件系統,Linux則可以支持多種文件系統,如FAT16、FAT32、NTFS、Minix、ext、ext2、xiafs、HPFS、VFAT等,不過Linux一般都使用ext2文件系統。下面,筆者就簡要介紹這些文件系統的有關情況:

(1)FAT16
FAT的全稱是「File Allocation Table(文件分配表系統)」,最早於1982年開始應用於MS-DOS中。FAT文件系統主要的優點就是它可以允許多種操作系統訪問,如MS-DOS、Windows 3.x、Windows 9x、Windows NT和OS/2等。這一文件系統在使用時遵循8.3命名規則(即文件名最多為8個字元,擴展名為3個字元)。

(2)VFAT
VFAT是「擴展文件分配表系統」的意思,主要應用於在Windows 95中。它對FAT16文件系統進行擴展,並提供支持長文件名,文件名可長達255個字元,VFAT仍保留有擴展名,而且支持文件日期和時間屬性,為每個文件保留了文件創建日期/時間、文件最近被修改的日期/時間和文件最近被打開的日期/時間這三個日期/時間。

(3)FAT32
FAT32主要應用於Windows 98系統,它可以增強磁碟性能並增加可用磁碟空間。因為與FAT16相比,它的一個簇的大小要比FAT16小很多,所以可以節省磁碟空間。而且它支持2G以上的分區大小。朋友們從附表中可以看出FAT16與FAT32的一不同。

(4)HPFS
高性能文件系統。OS/2的高性能文件系統(HPFS)主要克服了FAT文件系統不適合於高檔操作系統這一缺點,HPFS支持長文件名,比FAT文件系統有更強的糾錯能力。Windows NT也支持HPFS,使得從OS/2到Windows NT的過渡更為容易。HPFS和NTFS有包括長文件名在內的許多相同特性,但使用可靠性較差。

(5)NTFS
NTFS是專用於Windows NT/2000操作系統的高級文件系統,它支持文件系統故障恢復,尤其是大存儲媒體、長文件名。NTFS的主要弱點是它只能被Windows NT/2000所識別,雖然它可以讀取FAT文件系統和HPFS文件系統的文件,但其文件卻不能被FAT文件系統和HPFS文件系統所存取,因此兼容性方面比較成問題。

ext2
這是Linux中使用最多的一種文件系統,因為它是專門為Linux設計,擁有最快的速度和最小的CPU佔用率。ext2既可以用於標準的塊設備(如硬碟),也被應用在軟盤等移動存儲設備上。現在已經有新一代的Linux文件系統如SGI公司的XFS、ReiserFS、ext3文件系統等出現。

小結:雖然上面筆者介紹了6種文件系統,但占統治地位的卻是FAT16/32、NTFS等少數幾種,使用最多的當然就是FAT32啦。只要在「我的電腦」中右擊某個驅動器的屬性,就可以在「常規」選項中(圖)看到所使用的文件系統。

明明白白識別硬碟編號
目前,電子市場上硬碟品牌最讓大家熟悉的無非是IBM、昆騰(Quantum)、希捷(Seagate),邁拓(Maxtor)等「老字型大小」。而這些硬碟型號的編號則各不相同,令人眼花繚亂。其實,這些編號均有一定的規律,表示一些特定?的含義。一般來說,我們可以從其編號來了解硬碟的性能指標,包括介面?類型、轉速、容量等。作為DIY朋友來說,只有自己真正掌握正確識別硬碟編號,在選購硬碟時,就方便得多(以致不被「黑」),至少不會被賣的人說啥是啥。以下舉例說明,供朋友們參考。

一、IBM
IBM是硬碟業的巨頭,其產品幾乎涵蓋了所有硬碟領域。而且IBM還是去年硬碟容量、價格戰的始作蛹者。我們今天能夠用得上經濟上既便宜,而且容量又大的硬碟可都得感謝IBM。
IBM的每一個產品又分為多個系列,它的命名方式為:產品名+系列代號+介面類型+碟片尺寸+轉速+容量。以Deskstar 22GXP的13.5GB硬碟為例,該硬碟的型號為:DJNA-371350,字母D代表Deskstar產品,JN代表Deskstar25GP與22GP系列,A代表ATA介面,3代表3寸碟片,7是7200轉產品,最後四位數字為硬碟容量13.5GB。IBM系列代號(IDE)含義如下:
TT=Deskstar 16GP或14GXP JN=Deskstar 25GP或22GXP RV=Ultrastar 18LZX或36ZX
介面類型含義如下:A=ATA
S與U=Ultra SCSI、Ultra SCSI Wide、Ultra SCSI SCA、增強型SCSI、
增強擴展型SCSI(SCA)
C=Serial Storage Architecture連續存儲體系SCSI L=光纖通道SCSI

二、MAXTOR(邁拓)
MAXTOR是韓國現代電子美國公司的一個獨立子公司,以前該公司的產品也覆蓋了IDE與SCSI兩個方面,但由於SCSI方面的產品缺乏竟爭力而最終放棄了這個高端市場從而主攻IDE硬碟,所以MAXTOR公司應該是如今硬碟廠商中最專一的了。
MAXTOR硬碟編號規則如下:首位+容量+介面類型+磁頭數,MAXTOR?從鑽石四代開始,其首位數字就為9,一直延續到現在,所以大家如今能在電子市場上見到的MAXTOR硬碟首位基本上都為9。另外比較特殊的是MAXTOR編號中有磁頭數這一概念,因為MAXTOR硬碟是大打單碟容量的發起人,所以其硬碟的型號中要將單碟容量從磁頭數中體現出來。單碟容量=2*硬碟總容量/磁頭數。
現以金鑽三代(DiamondMax Plus6800)10.2GB的硬碟為例說明:該硬碟?型號為91024U3,9是首位,1024是容量,U是介面類型UDMA66,3代表該硬碟有3個磁頭,也就是說其中的一個碟片是單面有數據。這個單碟容量就為2*10.2/3=6.8GB。MAXTOR硬碟介面類型字母含義如:
A=PIO模式 D=UDMA33模式 U=UDMA66模式

三、SEAGATE(希捷)
希捷科技公司(Seagate Technology)是世界上最大的磁碟驅動器、磁?盤和讀寫磁頭生產廠家,該公司是一直是IBM、COMPAQ、SONY等業界大戶的硬碟供應商。希捷還保持著業界第一款10000轉硬碟的記錄(捷豹Cheetah系列SCSI)與最大容量(捷豹三代73GB)的記錄,公司的實力由此可見一斑。但?由於希捷一直是以高端應用為主(例如SCSI硬碟),而並不是特別重視低端家用產品的開發,從而導致在DIY一族心目中的地位不如昆騰等硬碟供應商?。好在希捷公司及時注意到了這個問題,不久前投入市場的酷魚(Barracuda)系列就一掃希捷硬碟以往在單碟容量、轉速、噪音、非正常外頻下工作穩?定性、綜合性能上的劣勢。
希捷的硬碟系列從低端到高端的產品名稱分別為:U4系列、Medalist(金牌)系列、U8系列、Medalist Pro(金牌Pro)系列、Barracuda(酷魚)系列。其中Medalist Pro與Barracuda系列是7200轉的產品,其他的是5400轉的產品。硬碟的型號均以ST開頭,現以酷魚10.2GB硬碟為例來說明。該硬碟的型號是:ST310220A,在ST後第一位數字是代表硬碟的尺寸,3就是該硬碟採用3寸碟片,如今其他規格的硬碟已基本上沒有了,所以大家能夠見到?的絕大多數硬碟該位數字均不3,3後面的1022代表的是該硬碟的格式化容量是10.22GB,最後一位數字0是代表7200轉產品。這一點不要混淆與希捷以前的入門級產品Medalist ST38420A混淆。多數希捷的Medalist Pro系列開始,以結尾的產品均代表7200轉硬碟,其它數字結尾(包括1、2)代表5400轉的產品。位於型號最後的字母是硬碟的介面類型。希捷硬碟的介面類型字母含義如下:
A=ATA UDMA33或UDMA66 IDE介面 AG為筆記本電腦專用的ATA介面硬碟。
W為ULTRA Wide SCSI,
其數據傳輸率為40MB每秒 N為ULTRA Narrow SCSI,其數據傳輸率為20MB每秒。
而ST34501W/FC和ST19101N/FC中的FC(Fibre Channel)表示光纖通道,可提供高達每秒100MB的數據傳輸率,並且支持熱插拔。

硬碟及介面標準的發展歷史
一、硬碟的歷史
說起硬碟的歷史,我們不能不首先提到藍色巨人IBM所發揮的重要作用,正是IBM發明了硬碟,並且為硬碟的發展做出了一系列重大貢獻。在發明磁碟系統之前,計算機使用穿孔紙帶、磁帶等來存儲程序與數據,這些存儲方式不僅容量低、速度慢,而且有個大缺陷:它們都是順序存儲,為了讀取後面的數據,必須從頭開始讀,無法實現隨機存取數據。
在1956年9月,IBM向世界展示了第一台商用硬碟IBM 350 RAMAC(Random Access Method of Accounting and Control),這套系統的總容量只有5MB,卻是使用了50個直徑為24英寸的磁碟組成的龐然大物。而在1968年IBM公司又首次提出了「溫徹斯特」Winchester技術。「溫徹斯特」技術的精髓是:「使用密封、固定並高速旋轉的鍍磁碟片,磁頭沿碟片徑向移動,磁頭磁頭懸浮在高速轉動的碟片上方,而不與碟片直接接觸」,這便是現代硬碟的原型。在1973年IBM公司製造出第一台採用「溫徹期特」技術製造的硬碟,從此硬碟技術的發展有了正確的結構基礎。1979年,IBM再次發明了薄膜磁頭,為進一步減小硬碟體積、增大容量、提高讀寫速度提供了可能。70年代末與80年代初是微型計算機的萌芽時期,包括希捷、昆騰、邁拓在內的許多著名硬碟廠商都誕生於這一段時間。1979年,IBM的兩位員工Alan Shugart和Finis Conner決定要開發像5.25英寸軟碟機那樣大小的硬碟驅動器,他們離開IBM後組建了希捷公司,次年,希捷發布了第一款適合於微型計算機使用的硬碟,容量為5MB,體積與軟碟機相仿。
PC時代之前的硬碟系統都具有體積大、容量小、速度慢和價格昂貴的特點,這是因為當時計算機的應用范圍還太小,技術與市場之間是一種相互制約的關系,使得包括存儲業在內的整個計算機產業的發展都受到了限制。 80年代末期IBM對硬碟發展的又一項重大貢獻,即發明了MR(Magneto Resistive)磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度能夠比以往20MB每英寸提高了數十倍。1991年IBM生產的3.5英寸的硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此硬碟容量開始進入了GB數量級的時代 。1999年9月7日,邁拓公司(Maxtor)_宣布了首塊單碟容量高達10.2GB的ATA硬碟,從而把硬碟的容量引入了一個新里程碑。

二、介面標準的發展
(1)IDE和EIDE的由來
最早的IBM PC並不帶有硬碟,它的BIOS及DOS 1.0操作系統也不支持任何硬碟,因為系統的內存只有16KB,就連軟碟機和DOS都是可選件。後來DOS 2引入了子目錄系統,並添加了對「大容量」存儲設備的支持,於是一些公司開始出售供IBM PC使用的硬碟系統,這些硬碟與一塊控制卡、一個獨立的電源被一起裝在一個外置的盒子里,並通過一條電纜與插在擴展槽中的一塊適配器相連,為了使用這樣的硬碟,必須從軟碟機啟動,並載入一個專用設備驅動程序。
1983年IBM公司推出了PC/XT,雖然XT仍然使用8088 CPU,但配置卻要高得多,加上了一個10MB的內置硬碟,IBM把控制卡的功能集成到一塊介面控制卡上,構成了我們常說的硬碟控制器。其介面控制卡上有一塊ROM晶元,其中存有硬碟讀寫程序,直到基於80286處理器的PC/AT的推出,硬碟介面控製程序才被加入到了主板的BIOS中。
PC/XT和PC/AT機器使用的硬碟被稱為MFM硬碟或ST-506/412硬碟,MFM(Modified Frequency Molation)是指一種編碼方案,而ST-506/412則是希捷開發的一種硬碟介面,ST-506介面不需要任何特殊的電纜及接頭,但是它支持的傳輸速度很低,因此到了1987年左右這種介面就基本上被淘汰了。
邁拓於1983年開發了ESDI(Enhanced Small Drive Interface)介面。這種介面把編解碼器放在了硬碟本身之中,它的理論傳輸速度是ST-506的2~4倍。但由於成本比較高,九十年代後就逐步被淘汰掉了。
IDE(Integrated Drive Electronics)實際上是指把控制器與盤體集成在一起的硬碟驅動器,這樣減少了硬碟介面的電纜數目與長度,數據傳輸的可靠性得到了增強,硬碟製造起來變得更容易,對用戶而言,硬碟安裝起來也更為方便。IDE介面也叫ATA(Advanced Technology Attachment)介面。
ATA介面最初是在1986年由CDC、康柏和西部數據共同開發的,他們決定使用40芯的電纜,最早的IDE硬碟大小為5英寸,容量為40MB。ATA介面從80年代末期開始逐漸取代了其它老式介面。
80年代末期IBM發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度能夠比以往的20MB/in2提高數十上百倍。1991年,IBM生產的3.5英寸硬碟0663-E12使用了MR磁頭,容量首次達到了1GB,從此硬碟容量開始進入了GB數量級,直到今天,大多數硬碟仍然採用MR磁頭。
人們在談論硬碟時經常講到PIO模式和DMA模式,它們是什麼呢?目前硬碟與主機進行數據交換的方式有兩種,一種是通過CPU執行I/O埠指令來進行數據的讀寫;另外,一種是不經過CPU的DMA方式。
PIO模式即Programming Input/Output Model。這種模式使用PC I/O埠指令來傳送所有的命令、狀態和數據。由於驅動器中有多個緩沖區,對硬碟的讀寫一般採用I/O串操作指令,這種指令只需一次取指令就可以重復多次地完成I/O操作,因此,達到高的數據傳輸率是可能的。
DMA即Direct Memory Access。它表示數據不經過CPU,而直接在硬碟和內存之間傳送。在多任務操作系統內,如OS/2、Linux、Windows NT等,當磁碟傳輸數據時,CPU可騰出時間來做其它事情,而在DOS/Windows3.X環境里,CPU不得不等待數據傳輸完畢,所以在這種情況下,DMA方式的意義並不大。
DMA方式有兩種類型:第三方DMA(third-party DMA)和第一方DMA(first-party DMA)(或稱匯流排主控DMA,Busmastering DMA)。第三方DMA通過系統主板上的DMA控制器的仲裁來獲得匯流排和傳輸數據。而第一方DMA,則完全由介面卡上的邏輯電路來完成,當然這樣就增加了匯流排主控介面的復雜性和成本。現在,所有較新的晶元組均支持匯流排主控DMA。
(2)SCSI介面
(Small Computer System Interface小型計算機系統介面)是一種與ATA完全不同的介面,它不是專門為硬碟設計的,而是一種匯流排型的系統介面,每個SCSI匯流排上可以連接包括SCSI控制卡在內的8個SCSI設備。SCSI的優勢在於它支持多種設備,傳輸速率比ATA介面快得多但價格也很高,獨立的匯流排使得它對CPU的佔用率很低。 最早的SCSI是於1979年由美國的Shugart公司(Seagate希捷公司的前身)制訂的,90年代初,SCSI發展到了SCSI-2,1995年推出了SCSI-3,其俗稱Ultra SCSI, 1997年推出了Ultra 2 SCSI(Fast-40),其採用了LVD(Low Voltage Differential,低電平微分)傳輸模式,16位的Ultra2SCSI(LVD)介面的最高傳輸速率可達80MB/S,允許介面電纜的最長為12米,大大增加了設備的靈活性。1998年,更高數據傳輸率的Ultra160/m SCSI(Wide下的Fast-80)規格正式公布,其最高數據傳輸率為160MB/s,昆騰推出的Atlas10K和Atlas四代等產品支持Ultra3 SCSI的Ultra160/m傳輸模式。
SCSI硬碟具備有非常優秀的傳輸性能。但由於大多數的主板並不內置SCSI介面,這就使得連接SCSI硬碟必須安裝相應的SCSI卡,目前關於SCSI卡有三個正式標准,SCSI-1,SCSI-2和SCSI-3,以及一些中間版本,要使SCSI硬碟獲得最佳性能就必須保證SCSI卡與SCSI硬碟版本一致(目前較新生產的SCSI硬碟和SCSI卡都是向前兼容的,不一定必須版本一致)。
(3)IEEE1394:IEEE1394又稱為Firewire(火線)或P1394,它是一種高速串列匯流排,現有的IEEE1394標准支持100Mbps、200Mbps和400Mbps的傳輸速率,將來會達到800Mbps、1600Mbps、3200Mbps甚至更高,如此高的速率使得它可以作為硬碟、DVD、CD-ROM等大容量存儲設備的介面。IEEE1394將來有望取代現有的SCSI匯流排和IDE介面,但是由於成本較高和技術上還不夠成熟等原因,目前仍然只有少量使用IEEE1394介面的產品,硬碟就更少了。

Ⅱ 電腦美術設計常用的存儲設備有哪些

1、硬碟:目前常用主流硬碟設備有兩種:1.機械硬碟、2.固態硬碟。
2、內存:內存的主要作用是為CPU提供一個高速的緩存存儲空間。
3、顯存:顯存是顯卡用來處理圖文數據的。
另外還有我們常用到的外設存儲設備,如:U盤,盈動硬碟等。

Ⅲ 選用2764 EPROM 存儲晶元,設計一個64KB的程序存儲器,寫出設計步驟…

4.2參見p.106-107
匯流排操作指的是發生在匯流排上的某些特定操作,匯流排周期指的是完成一次特定匯流排操作所需的時間。對8088而言其典型的匯流排周期由 4個T狀態組成。PC/XT所採用的時鍾頻率為4.77MHz,每個T狀態的持續時間為210ns。如果CLK引腳接5MHz的時鍾信號,那麼每個T狀態的持續時間為200ns。

4.4解答:
當8088進行讀寫存儲器或I/O介面時,如果存儲器或I/O介面無法滿足CPU的讀寫時序(來不及提供或讀取數據時),需要CPU插入等待狀態TW。(在T3前沿檢測Ready信號,若無效則插入TW 。)
具體在讀寫匯流排周期的T3和T4之間插入TW。

4.6參見p.99,p.110
8088的某些輸出線有三種狀態:高電平、低電平、懸空(高阻態),稱為三態能力。在高阻狀態,CPU放棄其了對該引腳的控制權,由連接它的設備接管。
具有三態能力的引腳有:AD7~AD0,A15~A8,A19/S6~A16/S3,ALE,IO/M*,WR*,RD*,DEN*,DT/R*。

4.11
匯流排周期 IO/M* WR* RD*
存儲器讀 低 高 低
存儲器寫 低 低 高
I/O讀 高 高 低
I/O寫 高 低 高

4.12 答:
取該指令時引發存儲器讀匯流排操作。執行該指令時引發I/O讀匯流排操作。(時序圖略)

4.13 8088系統最小組態下,對指令ADD [2000H],AX (長度3B)。
答:取該指令時需要3個匯流排周期,均為存儲器讀周期。
執行該指令時需要4個匯流排周期,2個為存儲器讀匯流排周期(讀出字操作數參與運算),2個為存儲器寫匯流排周期(保存16位運算結果)。

4.15 參見p.106圖
74LS373 的G為電平鎖存引腳,控制選通且轉為無效時鎖存數據。
OE* 輸出允許引腳,信號來自ALE。

4.16 參見p.106圖
數據收發器74LS245 是8位雙向緩沖器,G*控制端為低電平有效,可傳輸數據;DIR控制導通方向:DIR=1,A→B;DIR=0,A←B。

4.17 參見p.111-112
歸納為:1、8086數據匯流排變為16位,數據地址線復用為AD15~AD0。
2、8086指令隊列程度變為6位元組長,當有2個位元組空才取下一指令。
3、8088引腳IO/M* ,8086變為M/IO*;
4、引腳SS0* 變為BHE*/S7,BHE* 的作用是使D15~D8有效。
5、8086存儲器組織為奇偶分塊,偶地址取字只要讀1次,奇地址取字需要讀兩次。
6、I/O埠大都採用偶地址,目的是引導8位數據到低8位匯流排AD7~AD0上,以提高效率。

=========================
5.1
Cache、主存和輔存的作用——參見 p.120~121
虛擬存儲器——參見p.121
在CPU看來,訪問主存和訪問輔存有什麼不同?
訪問主存:通過存儲器訪問機器指令,按字隨機訪問。
訪問輔存:通過操作系統,按塊順序訪問。

5.2 在半導體存儲器中,RAM指的是 隨機存取存儲器 ,它可讀可寫,但斷電後信息一般會 丟失 ;而ROM指的是 只讀存儲器 ,正常工作時只能從中 讀取 信息,但斷電後信息 不會丟失 。以EPROM晶元2764為例,其存儲容量為8K×8位,共有 8 條數據線和 13 條地址線。用它組成64KB的ROM存儲區共需 8 片2764晶元。

5.4 一個容量為4K×4位的假想RAM存儲晶元,他應該有多少根地址線引腳和多少根數據線引腳?如果讓你來進行設計,那麼它還需要哪些控制引腳?這些引腳分別起什麼樣的控製作用?
解答:
4K×4的晶元應該有12根地址線引腳和4根數據線引腳。
控制引腳應該有:
讀取信號OE*:有效時,表示讀取存儲單元的數據
寫入信號WE*:有效時,表示將數據寫入存儲單元
片選信號CS*:有效時,表示選中該晶元,可以進行讀寫操作。

5.7 什麼是存儲晶元的位擴充和地址擴充?採用靜態RAM的晶元2114(1K*4位)或動態RAM的晶元4116(16K*1位)來組成32KB的RAM存儲區,請問各需要多少晶元?在位方向和地址方向各需要進行什麼樣的擴充?
解答:(參見p.140) 使用多個晶元來擴充存儲數據位的寬度,稱為位擴充。
採用多個晶元在地址方向上進行擴充,稱為地址擴充或字擴充。
用SRAM 2114組成32KBRAM存儲區:2片為一組,得1KB,所以組成32KB就要32組,共需要64片SRAM 2114。
用DRAM 4116組成32KBRAM存儲區:8片為一組,得16KB,所以組成32KB只要2組,共需要16片DRAM 4116。
機床作為機械製造業的重要基礎裝備,它的發展一直引起人們的關注,由於計算機技術的興起,促使機床的控制信息出現了質的突破,導致了應用數字化技術進行柔性自動化控制的新一代機床-數控機床的誕生和發展。計算機的出現和應用,為人類提供了實現機械加工工藝過程自動化的理想手段。隨著計算機的發展,數控機床也得到迅速的發展和廣泛的應用,同時使人們對傳統的機床傳動及結構的概念發生了根本的轉變。數控機床以其優異的性能和精度、靈捷而多樣化的功能引起世人矚目,並開創機械產品向機電一體化發展的先河。 數控機床是以數字化的信息實現機床控制的機電一體化產品,它把刀具和工件之間的相對位置,機床電機的啟動和停止,主軸變速,工件松開和夾緊,刀具的選擇,冷卻泵的起停等各種操作和順序動作等信息用代碼化的數字記錄在控制介質上,然後將數字信息送入數控裝置或計算機,經過解碼,運算,發出各種指令控制機床伺服系統或其它的執行元件,加工出所需的工件。 數控機床與普通機床相比,其主要有以下的優點: 1. 適應性強,適合加工單件或小批量的復雜工件; 在數控機床上改變加工工件時,只需重新編制新工件的加工程序,就能實現新工件加工。 2. 加工精度高; 3. 生產效率高; 4. 減輕勞動強度,改善勞動條件; 5. 良好的經濟效益; 6. 有利於生產管理的現代化。 數控機床已成為我國市場需求的主流產品,需求量逐年激增。我國數控機機床近幾年在產業化和產品開發上取得了明顯的進步,特別是在機床的高速化、多軸化、復合化、精密化方面進步很大。但是,國產數控機床與先進國家的同類產品相比,還存在差距,還不能滿足國家建設的需要。 我國是一個機床大國,有三百多萬台普通機床。但機床的素質差,性能落後,單台機床的平均產值只有先進工業國家的1/10左右,差距太大,急待改造。 舊機床的數控化改造,顧名思義就是在普通機床上增加微機控制裝置,使其具有一定的自動化能力,以實現預定的加工工藝目標。 隨著數控機床越來越多的普及應用,數控機床的技術經濟效益為大家所理解。在國內工廠的技術改造中,機床的微機數控化改造已成為重要方面。許多工廠一面購置數控機床一面利用數控、數顯、PC技術改造普通機床,並取得了良好的經濟效益。我國經濟資源有限,國家大,機床需要量大,因此不可能拿出相當大的資金去購買新型的數控機床,而我國的舊機床很多,用經濟型數控系統改造普通機床,在投資少的情況下,使其既能滿足加工的需要,又能提高機床的自動化程度,比較符合我國的國情。 1984年,我國開始生產經濟型數控系統,並用於改造舊機床。到目前為止,已有很多廠家生產經濟型數控系統。可以預料,今後,機床的經濟型數控化改造將迅速發展和普及。所以說,本畢業設計實例具有典型性和實用性。 第二章 總體方案的設計 2.1 設計任務 本設計任務是對CA6140普通車床進行數控改造。利用微機對縱、橫向進給系統進行開環控制,縱向(Z向)脈沖當量為0.01mm/脈沖,橫向(X向)脈沖當量為0.005mm/脈沖,驅動元件採用步進電機,傳動系統採用滾珠絲杠副,刀架採用自動轉位刀架。 2.2 總體方案的論證 對於普通機床的經濟型數控改造,在確定總體設計方案時,應考慮在滿足設計要求的前提下,對機床的改動應盡可能少,以降低成本。 (1)數控系統運動方式的確定 數控系統按運動方式可分為點位控制系統、點位直線控制系統、連續控制系統。由於要求CA6140車床加工復雜輪廓零件,所以本微機數控系統採用兩軸聯動連續控制系統。 (2)伺服進給系統的改造設計 數控機床的伺服進給系統有開環、半閉環和閉環之分。 因為開環控制具有結構簡單、設計製造容易、控制精度較好、容易調試、價格便宜、使用維修方便等優點。所以,本設計決定採用開環控制系統。 (3)數控系統的硬體電路設計 任何一個數控系統都由硬體和軟體兩部分組成。硬體是數控系統的基礎,性能的好壞直接影響整體數控系統的工作性能。有了硬體,軟體才能有效地運行。 在設計的數控裝置中,CPU的選擇是關鍵,選擇CPU應考慮以下要素: 1. 時鍾頻率和字長與被控對象的運動速度和精度密切相關; 2. 可擴展存儲器的容量與數控功能的強弱相關; 3. I/O口擴展的能力與對外設控制的能力相關。 除此之外,還應根據數控系統的應用場合、控制對象以及各種性能、參數要求等,綜合起來考慮以確定CPU。在我國,普通機床數控改造方面應用較普遍的是Z80CPU和MCS-51系列單片機,主要是因為它們的配套晶元便宜,普及性、通用性強,製造和維修方便,完全能滿足經濟型數控機床的改造需要。本設計中是以MCS-51系列單片機,51系列相對48系列指令更豐富,相對96系列價格更便宜,51系列中,是無ROM的8051,8751是用EPROM代替ROM的8051。目前,工控機中應用最多的是8031單片機。本設計以8031晶元為核心,增加存儲器擴展電路、介面和面板操作開關組成的控制系統。 2.3 總體方案的確定 經總體設計方案的論證後,確定的CA6140車床經濟型數控改造示意圖如圖所示。CA6140車床的主軸轉速部分保留原機床的功能,即手動變速。車床的縱向(Z軸)和橫向(X軸)進給運動採用步進電機驅動。由8031單片機組成微機作為數控裝置的核心,由I/O介面、環形分配器與功率放大器一起控制步進電機轉動,經齒輪減速後帶動滾珠絲杠轉動,從而實現車床的縱向、橫向進給運動。刀架改成由微機控制的經電機驅動的自動控制的自動轉位刀架。為保持切削螺紋的功能,必須安裝主軸脈沖發生器,為此採用主軸靠同步齒形帶使脈沖發生器同步旋轉,發出兩路信號:每轉發出的脈沖個數和一個同步信號,經隔離電路以及I/O介面送給微機。如圖2-1所示: 第三章 微機數控系統硬體電路設計 3.1微機數控系統硬體電路總體方案設計 本系統選用8031CPU作為數控系統的中央處理機。外接一片2764EPROM,作為監控程序的程序存儲器和存放常用零件的加工程序。再選用一片6264RAM用於存放需要隨機修改的零件程序、工作參數。採用解碼法對擴展晶元進行定址,採用74LS138解碼器完成此功能。8279作為系統的輸入輸出口擴展,分別接鍵盤的輸入、輸出顯示,8255接步進電機的環形分配器,分別並行控制X軸和Z軸的步進電機。另外,還要考慮機床與單片機之間的光電隔離,功率放大電路等。其硬體框圖如圖3-1所示: 圖3-2 8031晶元內部結構圖 各引腳功能簡要介紹如下: ⒈ 源引腳 VSS:電源接地端。 VCC:+5V電源端。 ⒉ 輸入/輸出(I/O)口線 8031單片機有P0、P1、P2、P3 4個埠,每個埠8根I/O線。當系統擴展外部存儲器時,P0口用來輸出低8位並行數據,P2口用來輸出高8位地址,P3口除可作為一個8位準雙向並行口外,還具有第二功能,各引腳第二功能定義如下: P3.0 RXD:串列數據輸入端。 P3.1 TXD:串列數據輸出端 P3.2 INT0:外部中斷0請求信號輸入端。 P3.3 INT1:外部中斷1請求信號輸入端。 P3.4 T0:定時器/計數器0外部輸入端 P3.5 T1:定時器/計數器1外部輸入端 P3.6 WR:外部數據存儲器寫選通。 P3.7 RD:外部數據存儲器讀選通。 在進行第二功能操作前,對第二功能的輸出鎖存器必須由程序置1。 ⒊ 信號控制線 RST/VPD:RST為復位信號線輸入引腳,在時鍾電路工作以後,該引腳上出現兩個機器周期以上的高電平,完成一次復位操作。 8031單片機採用兩種復位方式:一種是加電自動復位,另一種為開關復位。 ALE/PROG:ALE是地址鎖存允許信號。它的作用是把CPU從P0口分時送出的低8位地址鎖存在一個外加的鎖存器中。 :外部程序存儲器讀選通信號。當其為低電平時有效。

VPP:當EA為高電平且PC值小於0FFFH時CPU執行內部程序存儲器中的程序。當EA為低電平時,CPU僅執行外部程序存儲器中的程序。 XTAL1:震盪器的反相放大器輸入,使用外部震盪器時必須接地; XTAL2:震盪器的反相放大器輸出,使用外部震盪器時,接收外圍震盪信號; (2)片外三匯流排結構 單片機在實際應用中,常常要擴展外部存儲器、I/O口等。單片機的引腳,除了電源、復位、時鍾輸入以及用戶I/O口外,其餘的引腳都是為了實現系統擴展而設置的,這些引腳構成了三匯流排形式: ⒈ 地址匯流排AB 地址匯流排寬度為16位。因此,外部存儲器直接定址范圍為64KB。由P0口經地址鎖存器提供16位地址匯流排的低8位地址(A7~A0),P2口直接提供高8位地址(A15~A8)。 ⒉ 數據匯流排DB 數據匯流排寬度為8位,由P0口提供。 ⒊ 控制匯流排CB 控制匯流排由第二功能狀態下的P3口和4根獨立的控制線RST、EA、ALE和PSEN組成。其引腳圖如圖3-3所示: 3.1.2 8255A可編程並行I/O口擴展晶元 8255A可編程並行I/O口擴展晶元可以直接與MCS系列單片機系統匯流排連接,它具有三個8位的並行I/O口,具有三種工作方式,通過編程能夠方便地採用無條件傳送、查詢傳送或中斷傳送方式完成CPU與外圍設備之間的信息交換。8255A的結構及引腳功能: 1、 8255A的結構 8255A的內部結構如圖3-4所示。其中包括三個8位並行數據I/O埠,二個工作方式控制電路,一個讀/寫控制邏輯電路和一個8位數據匯流排緩沖器。各部分功能介紹如下: (1) 三個8位並行I/O埠A、B、C A口:具有一個8位數據輸出鎖存/緩沖器和一個8位數據輸入鎖存器。可編程為8位輸入、或8位輸出、或8位雙向寄存器。B口:具有一個8位數據輸出鎖存/緩沖器和一個8位輸入或輸出寄存器,但不能雙向輸入/輸出。C口:具有一個8位數據輸出鎖存/緩沖器和一個8位數據輸入緩沖器,C口可分作兩個4位口,用於輸入或輸出,也可作為A口和B口選通方式工作時的狀態控制信號。 (2) 工作方式控制電路 A、B兩組控制電路把三個埠分成A、B兩組,A組控制A口各位和C口高四位,B組控制B口各位和C口低四位。兩組控制電路各有一個控制命令寄存器,用來接收由CPU寫入的控制字,以決定兩組埠的工作方式。也可根據控制字的要求對C口按位清「0」或置「1」。 (3) 讀/寫控制邏輯電路 它接收來自CPU的地址信號及一些控制信號,控制各個口的工作狀態。 (4) 數據匯流排緩沖器 它是一個三態雙向緩沖器,用於和系統的數據匯流排直接相連,以實現CPU和8255A之間信息的傳送。

Ⅳ 計算機中常用的存儲設備有哪些呢

存儲設備有內存儲器和外存儲器,軟盤、硬碟、光碟、U盤、移動硬碟等是外存儲器,內存儲器又分為RAM和ROM,RAM為只讀存儲器,ROM是隨機存儲器,內存條是RAM ,ROM指的是主板上的存儲BIOS的晶元

Ⅳ 常用的存儲器種類

ROM:只讀存儲器。ROM所存數據,一般是裝入整機前事先寫好的,整機工作過程中只能讀出,而不像隨機存儲器那樣能快速地、方便地加以改寫。ROM所存數據穩定,斷電後所存數據也不會改變。

RAM可以分為SRAM(靜態隨機存儲器)和DRAM(動態隨機存儲器)。

SRAM它是一種具有靜止存取功能的內存,不需要刷新電路即能保存它內部存儲的數據。優點是速度快,不必配合內存刷新電路,可提高整體的工作效率。缺點是集成度低,功耗較大,相同的容量體積較大,而且價格較高,少量用於關鍵性系統以提高效率。

DRAM是最為常見的系統內存。DRAM只能將數據保持很短的時間。為了保持數據,DRAM使用電容存儲,所以必須隔一段時間刷新(refresh)一次,如果存儲單元沒有被刷新,存儲的信息就會丟失。

SDRAM(同步動態隨機存取存儲器),是在DRAM的基礎上發展而來,為DRAM的一種,同步是指Memory工作需要同步時鍾,內部命令的發送與數據的傳輸都以時鍾為基準;動態是指存儲陣列需要不斷的刷新來保證數據不丟失;隨機是指數據不是線性依次存儲,而是由指定地址進行數據讀寫。

DDR SDRAM又是在SDRAM的基礎上發展而來,這種改進型的DRAM和SDRAM是基本一樣的,不同之處在於它可以在一個時鍾讀寫兩次數據,這樣就使得數據傳輸速度加倍了。這是目前電腦中用得最多的內存,而且它有著成本優勢。

年終總結不出彩
登錄

NETSOL

NET
存儲器的主要功能是存儲程序和各種數據,並能在計算機運行過程中高速、自動地完成程序或數據的存取。存儲器單元實際上是時序邏輯電路的一種。按存儲器的使用類型可分為只讀存儲器(ROM)和隨機存取存儲器(RAM),兩者的功能有較大的區別,因此在描述上也有所不同。存儲的基礎部分分為ROM和RAM。
在這里插入圖片描述

常見存儲器分類圖示

RAM:隨機存取存儲器是與CPU直接交換數據的內部存儲器。它可以隨時讀寫,而且速度很快,通常作為操作系統或其他正在運行中的程序的臨時數據存儲媒介。當電源關閉時RAM不能保留數據。如果需要保存數據,就必須把它們寫入一個長期的存儲設備中(例如硬碟)。RAM和ROM相比,兩者的最大區別是RAM在斷電以後保存在上面的數據會自動消失,而ROM不會自動消失,可以長時間斷電保存。

ROM:只讀存儲器。ROM所存數據,一般是裝入整機前事先寫好的,整機工作過程中只能讀出,而不像隨機存儲器那樣能快速地、方便地加以改寫。ROM所存數據穩定,斷電後所存數據也不會改變。

RAM可以分為SRAM(靜態隨機存儲器)和DRAM(動態隨機存儲器)。

SRAM它是一種具有靜止存取功能的內存,不需要刷新電路即能保存它內部存儲的數據。優點是速度快,不必配合內存刷新電路,可提高整體的工作效率。缺點是集成度低,功耗較

Ⅵ 常見的外部存儲設備有哪些

常見的外部存儲設備有以下幾種:

一、硬碟

硬碟是電腦主要的存儲媒介之一,由一個或者多個鋁制或者玻璃制的碟片組成。碟片外覆蓋有鐵磁性材料。

硬碟有固態硬碟(SSD 盤,新式硬碟內有sata固態、m.2固態、pci-e固態,而m.2固態又有nvme的m.2和sata的m.2)、機械硬碟(HDD 傳統硬碟內有3.5寸、2.5寸的,還有5400轉和7200轉)、混合硬碟(HHD 一塊基於傳統機械硬碟誕生出來的新硬碟)。

二、軟盤

軟盤(Floppy Disk)是個人計算機(PC)中最早使用的可移介質。軟盤的讀寫是通過軟盤驅動器完成的。軟盤驅動器設計能接收可移動式軟盤,目前常用的就是容量為1.44MB的3.5英寸軟盤。

軟盤存取速度慢,容量也小,但可裝可卸、攜帶方便。作為一種可移貯存方法,它是用於那些需要被物理移動的小文件的理想選擇。

三、移動硬碟

移動硬碟(Mobile Hard disk)顧名思義是以硬碟為存儲介質,計算機之間交換大容量數據,強調便攜性的存儲產品。移動硬碟多採用USB、IEEE1394等傳輸速度較快的介面,可以較高的速度與系統進行數據傳輸。

因為採用硬碟為存儲介質,因此移動硬碟在數據的讀寫模式與標准IDE硬碟是相同的。截至2015年,主流2.5英寸品牌移動硬碟的讀取速度約為50-100MB/s,寫入速度約為30-80MB/s。

四、光碟

光碟是以光信息做為存儲的載體並用來存儲數據的一種物品。分不可擦寫光碟,如CD-ROM、DVD-ROM等;和可擦寫光碟,如CD-RW、DVD-RAM等。

光碟是利用激光原理進行讀、寫的設備,是迅速發展的一種輔助存儲器,可以存放各種文字、聲音、圖形、圖像和動畫等多媒體數字信息。

五、U盤

U盤,全稱USB快閃記憶體檔,英文名「USB flash disk」。它是一種使用USB介面的無需物理驅動器的微型高容量移動存儲產品,通過USB介面與電腦連接,實現即插即用。

U盤的稱呼最早來源於朗科科技生產的一種新型存儲設備,名曰「優盤」,使用USB介面進行連接。U盤連接到電腦的USB介面後,U盤的資料可與電腦交換。而之後生產的類似技術的設備由於朗科已進行專利注冊,而不能再稱之為「優盤」,而改稱諧音的「U盤」。

Ⅶ 計算機中常用的存儲設備有哪些各有什麼作用各自的特點是什麼

計算機中的存儲器,可分為內存和外存。內存,又稱為主存儲器,可分為隨機存儲器RAM和只讀存儲器ROM。隨機存儲器用於存放正在運行的程序和數據,它的特點是具有可讀寫性和易丟失性,即其中保存的信息,一旦掉電就會全部丟失。隨機存儲器又可分為靜態隨機存儲器SRAM和動態隨機存儲器DRAM,前者因為製作工藝復雜,價格高昂,只有少量用於高速緩存Cache;後者則是在微機中被稱為內存條的東東。只讀存儲器用於固化一些基本程序,如微機主板中的BIOS(基本輸入/輸出程序),它的特點是只能讀出信息,不能寫入信息,即具有隻讀不寫性。外存,又稱為輔助存儲器。目前微機中標配的硬碟、光碟,以及常用的U盤等,都是常見的外存儲器。外存因為存儲容量大(內存的存儲容量比較有限,且相對外存小得多),而被廣泛用於各種程序和數據的存放。但外存中的信息,必須先讀入內存後,才能被CPU調用或處理。硬碟和軟盤都屬於磁碟存儲設備,是通過磁性分布來記錄信息的,硬碟的存儲容量、存取速度均遠大於軟盤。U盤屬於一種快閃記憶體設備,因為存儲容量大、存取速度快已取代了軟盤而被廣泛使用。

Ⅷ 常用的計算機儲存設備有哪些

1、內儲存器(內存) 內儲存器直接與源CPU相連接,儲存容量較小,但速度快,用來存放當前運行程序的指令和數據,並直接與CPU交換信息。

2、 外儲存器(外存) 外儲存器是內儲存器的擴充。它儲存容量大,價格低,但儲存速度慢,一般用來存放大量暫時不用的程序,數據和中間結果,需要時,可成批的與內存進行信息交換。

(8)常規存儲設備設計擴展閱讀:

內存儲器從功能上可以分為:讀寫存儲器 RAM、只讀存儲器ROM兩大類。

計算機存儲容量以位元組為單位,它們是:位元組B( 1Byte=8bit)、千位元組(1KB=1024B)、兆位元組(1MB=1024KB)、千兆位元組(1GB=1024MB)、1TB=1024GB。

計算機的外存儲器一般有:軟盤和軟碟機、硬碟、CD-ROM、可擦寫光碟機即CD-RW光碟機還有USB介面的移動硬碟、光碟機、或可擦寫電子硬碟(優盤)等。

Ⅸ 存儲設備主要有哪幾種

硬碟:

硬碟是用來存儲數據的倉庫。看到「硬碟」這個名字,有的同學可能會問,硬碟外面看起明明是個盒子為什麼叫個「盤」呢?這是因為傳統的機械硬碟(HDD)盒子般的外表下藏著一張(或者幾張)盤子的「心」。我們存在電腦上的數據都在這些盤子里,這些盤子的學名叫「磁碟」。磁碟上方有一個名叫「磁頭」的部件,當電腦從磁碟上存讀數據的時候,「磁頭」就會與「磁碟」摩擦摩擦,魔鬼般的步伐…當然不是真的「摩擦」,它們之間是通過「心靈(電磁)感應」實現交流的。傳統的機械硬碟容量已經從G時代步入了T時代,它的量價比(存儲容量/價格)是最大的(嗯,給日本大姐姐們安家很合適)。

固態硬碟(SSD)是近幾年漸漸被普及的新產品,相比HDD來說,固態硬碟的這個「盤」字就有點名不副實了。SSD用快閃記憶體替代了HDD的「磁碟」來作為存儲介質,直接通過電流來寫入、讀取數據,摒棄了HDD中的機械操作過程,並且SSD的讀和寫可以將一個完整數據拆成多份,在主控的控制下並行操作,這樣就大大提高了讀寫的吞吐量。一般來說固態硬碟的隨機存取速度(讀取大量小文件)比HDD快幾十倍甚至上百倍,持續存取速度(一次讀取一個大文件)也比HDD快一倍以上。不過相對HDD來說,SSD還是硬碟界的高富帥,相同容量的SSD的售價可以買十幾塊同容量的HDD。

U盤、SD卡、MiniSD卡和各種卡:

這幾類產品都是用快閃記憶體作為存儲介質的常用存儲設備,不過相比SSD而言,存儲容量較小(人家身材好嘛),也沒有復雜的主控電路實現數據的並行寫入,所以存取速度上比SSD慢不少。 U盤的英文名是「USB flash disk」,名字中有個「USB」,顧名思義,這種「盤」經常與電腦上的USB介面插來插去,一般用來做數據中轉站。

Ⅹ 計算機的存儲器系統設計是如何實現容量大、速度快和成本低的要求

存儲器(memory)是計算機系統中的記憶設備,用來存放程序和數據。計算機中的全部信息,包括輸入的原始數據、計算機程序、中間運行結果和最終運行結果都保存在存儲器中。它根據控制器指定的位置存入和取出信息。
詳情:
http://ke..com/view/87697.htm