『壹』 世界上第一台電子計算機的名字是
世界上第一台電子計算機是ENIAC。
20世紀70年代以後,微處理機的出現,使電子計算機的應用越來越廣泛。 電腦不僅在傳統的科學計算領域發揮著越來越大的作用,而且在其他領域的應用也相當廣泛,它已經遍及人類生活的各個領域,能幫助人們處理辦公室事情,能幫助各級領導制定並實施科學的決策。
它是1946年2月14日,在美國賓夕法尼亞大學誕生的。
(1)第一台使用外存儲器擴展閱讀
1965年中科院計算所研製成功了中國第一台大型晶體管計算機:109乙機;對109乙機加以改進,兩年後又推出109丙機,在中國兩彈試制中發揮了重要作用,被用戶譽為「功勛機」。
自第一代計算機誕生,計算機技術和工業一直處於高速發展的階段。計算機科學已成為一門發展快、滲透性強、影響深遠的學科,計算機產業已在世界范圍內發展成為具有戰略意義的產業。
電腦能幫助各級領導制定並實施科學的決策,能幫助各行各業的專家工作。許多需要人類大腦思維的工作都可以用計算機代替,電腦已經成為人腦的重要幫手。
『貳』 公認的第一台使用了存儲器的電子計算機是哪一台
公認的第一台使用了存儲器的電子計算機是
EDVAC
『叄』 第一,二代計算機的主存儲器採用的是什麼
第一代:主存儲器採用磁鼓和磁心存儲器。
第二代:主存儲器採用磁芯,外存儲器已開始使用更先進的磁碟。
第一代是從 1946 年到 50 年代末,其主要特徵是:主機採用電子管器件,主存儲器主要採用磁鼓和磁心存儲器,應用以科學計算為主,軟體技術採用機器語言和符號語言編程,所研製的都是單機系統。
第二代計算機是晶體管數字計算機,大約是1957-1964年,邏輯元件採用晶體管,計算機的體積大大縮小,耗電減少,可靠性提高,性能比第一代計算機有很大的提高。第二代計算機主存儲器採用磁芯,外存儲器已開始使用更先進的磁碟。
(3)第一台使用外存儲器擴展閱讀:
計算機中的主存儲器主要由存儲體、控制線路、地址寄存器、數據寄存器和地址解碼電路五部分組成。從70年代起,主存儲器已逐步採用大規模集成電路構成。用得最普遍的也是最經濟的動態隨機存儲器晶元(DRAM)。
1995年集成度為64Mb(可存儲400萬個漢字)的DRAM晶元已經開始商業性生產,16MbDRAM晶元已成為市場主流產品。DRAM晶元的存取速度適中,一般為50~70ns。有一些改進型的DRAM,如EDO DRAM(即擴充數據輸出的DRAM),其性能可較普通DRAM提高10%以上。
又如SDRAM(即同步DRAM),其性能又可較EDO DRAM提高10%左右。1998年SDRAM的後繼產品為SDRAMⅡ(或稱DDR,即雙倍數據速率)的品種已上市。在追求速度和可靠性的場合,通常採用價格較貴的靜態隨機存儲器晶元(SRAM),其存取速度可以達到了1~15ns。
『肆』 世界上第一台電子計算機
世界第一台電子計算機問世是1946年2月15日,世界上第一台通用電子數字計算機「埃尼阿克」(ENIAC)在美國研製成功。
美國國防部用它來進行彈道計算。世界上第一台電子計算機用了18000個電子管,佔地150平方米,重達30噸,耗電功率約150千瓦,每秒鍾可進行5000次運算。
ENIAC以電子管作為元器件,電子管計算機由於使用的電子管體積很大,耗電量大,易發熱,因而工作的時間不能太長。
(4)第一台使用外存儲器擴展閱讀:
電子計算機已經部分地替代了人類大腦的功能。特別是20世紀70年代以後,微處理機的出現,使電子計算機的應用越來越廣泛。
電腦不僅在傳統的科學計算領域發揮著越來越大的作用,而且在其他領域的應用也相當廣泛,它已經遍及人類生活的各個領域。
電子計算機能幫助人們處理辦公室事情,能幫助各級領導制定並實施科學的決策,能幫助各行各業的專家工作。
『伍』 世界上第一台計算機的名字叫什麼
叫阿塔納索夫-貝瑞計算機。
阿塔納索夫-貝瑞計算機(Atanasoff-Berry Computer,簡稱ABC)是法定的世界上第一台電子計算機,是愛荷華州立大學的約翰·文特森·阿塔納索夫(John Vincent Atanasoff)和他的研究生克利福特·貝瑞(Clifford Berry)在1937年設計,不可編程,僅僅設計用於求解線性方程組,並在1942年成功進行了測試。
性能特點
第一,採用電能與電子元件,在當時就是電子真空管;
第二,採用二進位制,而非通常的十進位制;
第三,採用電容器作為存儲器,可再生而且避免錯誤;
第四,進行直接的邏輯運算,而非通常的數字算術。
(5)第一台使用外存儲器擴展閱讀:
製造背景
上個世紀30年代,保加利亞裔的阿塔納索夫在愛荷華州立大學物理系任副教授,為學生講授如何求解線性偏微分方程組時,不得不面對繁雜的計算,那是要消耗大量時間的枯燥工作…… 阿塔納索夫於是開拓新的思路,從1935年開始探索運用數字電子技術進行計算工作的可能性。
經過兩年反復研究試驗,思路越來越清晰,設計也大體上想清楚了。但他還需要一位聰明並且懂得機械、又有動手能力的人共同完成這項發明,於是他找到當時正在物理系讀碩士學位的研究生克利福德·貝里。
兩個人終於在1939年造出來了一台完整的樣機,證明了他們的概念是正確的並且是可以實現的。人們把這台樣機稱為ABC,代表的是包含他們兩人名字的計算機 (Atanasoff-Berry Computer)。
這台計算機是電子與電器的結合,電路系統中裝有300個電子真空管執行數字計算與邏輯運算,機器使用電容器來進行數值存儲,數據輸入採用打孔讀卡方法,還採用了二進位制。
因此,ABC的設計中已經包含了現代計算機中四個最重要的基本概念,從這個角度來說它是一台真正現代意義上的電子計算機。
參考資料:網路----阿塔納索夫-貝瑞計算機
『陸』 世界第一台電腦工作原理
世界上的第一台計算機.
第一台計算機的誕生 第二次世界大戰期間,美國軍方為了解決計算大量軍用數據的難題,成立了由賓夕法尼亞大學莫奇利和埃克特領導的研究小組,開始研製世界上第一台電子計算機。
經過三年緊張的工作,第一台電子計算機終於在1946年2 月14日問世了。它由17468個電子管、6萬個電阻器、1萬個電容器和6千個開關組成,重達30噸,佔地160平方米,耗電174千 瓦,耗資45萬美元。這台計算機每秒只能運行5千次加法運算,僅相當於一個電子數字積分計算機(ENIAC即"埃尼阿克")。
計算機通過 電子信號表示信息的 低電平表示0 高電平1
計算機的基本原理
計算機的基本原理是存貯程序和程序控制。預先要把指揮計算機如何進行操作的指令序列(稱為程序)和原始數據通過輸入設備輸送到計算機內存貯器中。每一條指令中明確規定了計算機從哪個地址取數,進行什麼操作,然後送到什麼地址去等步驟。
計算機在運行時,先從內存中取出第一條指令,通過控制器的解碼,按指令的要求,從存貯器中取出數據進行指定的運算和邏輯操作等加工,然後再按地址把結果送到內存中去。接下來,再取出第二條指令,在控制器的指揮下完成規定操作。依此進行下去,直至遇到停止指令。
程序與數據一樣存貯,按程序編排的順序,一步一步地取出指令,自動地完成指令規定的操作是計算機最基本的工作原理。這一原理最初是由美籍匈牙利數學家馮.諾依曼於1945年提出來的,故稱為馮.諾依曼原理。
**計算機的存儲程序工作原理和硬體系統
馮·諾依曼結構
計算機系統由硬體系統和軟體系統兩大部分組成。美藉匈牙利科學家馮·諾依曼結構(John von Neumann)奠定了現代計算機的基本結構,其特點是:
1)使用單一的處理部件來完成計算、存儲以及通信的工作。
2)存儲單元是定長的線性組織。
3)存儲空間的單元是直接定址的。
4)使用低級機器語言,指令通過操作碼來完成簡單的操作。
5)對計算進行集中的順序控制。
6)計算機硬體系統由運算器、存儲器、控制器、輸入設備、輸出設備五大部件組成並規定了它們的基本功能。
7)採用二進制形式表示數據和指令。
8)在執行程序和處理數據時必須將程序和數據道德從外存儲器裝入主存儲器中,然後才能使計算機在工作時能夠自動調整地從存儲器中取出指令並加以執行。
這就是存儲程序概念的基本原理。
計算機指令
計算機根據人們預定的安排,自動地進行數據的快速計算和加工處理。人們預定的安排是通過一連串指令(操作者的命令)來表達的,這個指令序列就稱為程序。一個指令規定計算機執行一個基本操作。一個程序規定計算機完成一個完整的任務。一種計算機所能識別的一組不同指令的集合,管為該種計算機的指令集合或指令系統。在微機的指令系統中,主要使用了單地址和二地址指令。其中,第1個位元組是操作碼,規定計算機要執行的基本操作,第2個位元組是操作數。計算機指令包括以下類型:數據處理指令(加、減、乘、除等)、數據傳送指令、程序控制指令、狀態管理指令。整個內存被分成若干個存儲單元,每個存儲單元一般可存放8位二進制數(位元組編址)。每個在位單元可以存放數據或程序代碼。為了能有效地存取該單元內存儲的內容,每個單元都給出了一個唯一的編號來標識,即地址。
計算機的工作原理
按照馮·諾依曼存儲程序的原理,計算機在執行程序時須先將要執行的相關程序和數據放入內存儲器中,在執行程序時CPU根據當前程序指針寄存器的內容取出指令並執行指令,然後再取出下一條指令並執行,如此循環下去直到程序結束指令時才停止執行。其工作過程就是不斷地取指令和執行指令的過程,最後將計算的結果放入指令指定的存儲器地址中。計算機工作過程中所要涉及的計算機硬體部件有內存儲器、指令寄存器、指令解碼器、計算器、控制器、運算器和輸入/輸出設備等,在以後的內容中將會著重介紹。
(一)計算機硬體系統
硬體通常是指構成計算機的設備實體。一台計算機的硬體系統應由五個基本部分組成:運算器、控制器、存儲器、輸入和輸出設備。這五大部分通過系統匯流排完成指令所傳達的操作,當計算機在接受指令後,由控制器指揮,將數據眾輸入設備傳送到存儲器存放,再由控制器將需要參加運算的數據傳送到運算器,由運算器進行處理,處理後的結果由輸出設備輸出。
中央處理器
CPU(central processing unit)意為中央處理單元,又稱中央處理器。CPU由控制器、運算器和寄存器組成,通常集中在一塊晶元上,是計算機系統的核心設備。計算機以CPU為中心,輸入和輸出設備與存儲器之間的數據傳輸和處理都通過CPU來控制執行。微型計算機的中央處理器又稱為微處理器。
控制器
控制器是對輸入的指令進行分析,並統一控制計算機的各個部件完成一定任務的部件。它一般由指令寄存器、狀態寄存器、指令解碼器、時序電路和控制電路組成。計算機的工作方式是執行程序,程序就是為完成某一任務所編制的特定指令序列,各種指令操作按一定的時間關系有序安排,控制器產生各種最基本的不可再分的微操作的命令信號,即微命令,以指揮整個計算機有條不紊地工作。當計算機執行程序時,控制器首先從指令指針寄存器中取得指令的地址,並將下一條指令的地址存入指令寄存器中,然後從存儲器中取出指令,由指令解碼器對指令進行解碼後產生控制信號,用以驅動相應的硬體完成指紋操作。簡言之,控制器就是協調指揮計算機各部件工作的元件,它的基本任務就是根據種類指紋的需要綜合有關的邏輯條件與時間條件產生相應的微命令。
運算器
運算器又稱積極態度邏輯單元ALU(Arithmetic Logic Unit)。運算器的主要任務是執行各種算術運算和邏輯運算。算術運算是指各種數值運算,比如:加、減、乘、除等。邏輯運算是進行邏輯判斷的非數值運算,比如:與、或、非、比較、移位等。計算機所完成的全部運算都是在運算器中進行的,根據指令規定的定址方式,運算器從存儲或寄存器中取得操作數,進行計算後,送回到指令所指定的寄存器中。運算器的核心部件是加法器和若干個寄存器,加法器用於運算,寄存器用於存儲參加運算的各種數據以及運算後的結果。
(二)存儲器
存儲器分為內存儲器(簡稱內存或主存)、外存儲器(簡稱外存或輔存)。外存儲器一般也可作為輸入/輸出設備。計算機把要執行的程序和數據存入內存中,內存一般由半導體器構成。半導體存儲器可分為三大類:隨機存儲器、只讀存儲器、特殊存儲器。
RAM
RAM是隨機存取存儲器(Random Access Memory),其特點是可以讀寫,存取任一單元所需的時間相同,通電是存儲器內的內容可以保持,斷電後,存儲的內容立即消失。RAM可分為動態(Dynamic RAM)和靜態(Static RAM)兩大類。所謂動態隨機存儲器DRAM是用MOS電路和電容來作存儲元件的。由於電容會放電,所以需要定時充電以維持存儲內容的正確,例如互隔2ms刷新一次,因此稱這為動態存儲器。所謂靜態隨機存儲器SRAM是用雙極型電路或MOS電路的觸發器來作存儲元件的,它沒有電容放電造成的刷新問題。只要有電源正常供電,觸發器就能穩定地存儲數據。DRAM的特點是集成密度高,主要用於大容量存儲器。SRAM的特點是存取速度快,主要用於調整緩沖存儲器。
ROM
ROM是只讀存儲器(Read Only Memory),它只能讀出原有的內容,不能由用戶再寫入新內容。原來存儲的內容是由廠家一次性寫放的,並永久保存下來。ROM可分為可編程(Programmable)ROM、可擦除可編程(Erasable Programmable)ROM、電擦除可編程(Electrically Erasable Programmable)ROM。如,EPROM存儲的內容可以通過紫外光照射來擦除,這使它的內可以反復更改。
特殊固態存儲器
包括電荷耦合存儲器、磁泡存儲器、電子束存儲器等,它們多用於特殊領域內的信息存儲。
此外,描述內、外存儲容量的常用單位有:
①位/比特(bit):這是內存中最小的單位,二進制數序列中的一個0或一個1就是一比比特,在電腦中,一個比特對應著一個晶體管。
②位元組(B、Byte):是計算機中最常用、最基本的存在單位。一個位元組等於8個比特,即1 Byte=8bit。
③千位元組(KB、Kilo Byte):電腦的內存容量都很大,一般都是以千位元組作單位來表示。1KB=1024Byte。
④兆位元組(MB Mega Byte):90年代流行微機的硬碟和內存等一般都是以兆位元組(MB)為單位。1 MB=1024KB。
⑤吉位元組(GB、Giga Byte):目前市場流行的微機的硬碟已經達到430GB、640GB、810GB、1TB等規格。1GB=1024MB。
⑥太位元組(TB、Tera byte):1TB=1024GB。
(三)輸入/輸出設備
輸入設備是用來接受用戶輸入的原始數據和程序,並將它們變為計算機能識別的二進制存入到內存中。常用的輸入設備有鍵盤、滑鼠、掃描儀、光筆等。
輸出設備用於將存入在內存中的由計算機處理的結果轉變為人們能接受的形式輸出。常用的輸出設備有顯示器、列印機、繪圖儀等。
(四)匯流排
匯流排是一組為系統部件之間數據傳送的公用信號線。具有匯集與分配數據信號、選擇發送信號的部件與接收信號的部件、匯流排控制權的建立與轉移等功能。典型的微機計算機系統的結構如圖2-3所示,通常多採用單匯流排結構,一般按信號類型將匯流排分為三組,其中AB(Address Bus)為地址匯流排;DB(Data Bus)為數據匯流排;CB(Control Bus)控制匯流排。
(五)微型計算機主要技術指標
①CPU類型:是指微機系統所採用的CPU晶元型號,它決定了微機系統的檔次。
②字長:是指CPU一次最多可同時傳送和處理的二進制位數,安長直接影響到計算機的功能、用途和應用范圍。如Pentium是64位字長的微處理器,即數據位數是64位,而它的定址位數是32位。
③時鍾頻率和機器周期:時鍾頻率又稱主頻,它是指CPU內部晶振的頻率,常用單位為兆(MHz),它反映了CPU的基本工作節拍。一個機器周期由若干個時鍾周期組成,在機器語言中,使用執行一條指令所需要的機器周期數來說明指令執行的速度。一般使用CPU類型和時鍾頻率來說明計算機的檔次。如Pentium III 500等。
④運算速度:是指計算機每秒能執行的指令數。單位有MIPS(每秒百萬條指令)、MFLOPS(秒百萬條浮點指令)
⑤存取速度:是指存儲器完成一次讀取或寫存操作所需的時間,稱為存儲器的存取時間或訪問時間。而邊連續兩次或寫所需要的最短時間,稱為存儲周期。對於半導體存儲器來說,存取周期大約為幾十到幾百毫秒之間。它的快慢會影響到計算機的速度。
⑥內、外存儲器容量:是指內存存儲容量,即內容儲存器能夠存儲信息的位元組數。外儲器是可將程序和數據永久保存的存儲介質,可以說其容量是無限的。如硬碟、軟盤已是微機系統中不可缺少的外部設備。迄今為止,所有的計算機系統都是基於馮·諾依曼存儲程序的原理。內、外存容量越大,所能運行的軟體功能就越豐富。CPU的高速度和外存儲器的低速度是微機系統工作過程中的主要瓶頸現象,不過由於硬碟的存取速度不斷提高,目前這種現象已有所改善。
我們先從最早的計算機講起,人們在最初設計計算機時採用這樣一個模型:
人們通過輸入設備把需要處理的信息輸入計算機,計算機通過中央處理器把信息加工後,再通過輸出設備把處理後的結果告訴人們。
其實這個模型很簡單,舉個簡單的例子,你要處理的信息是1+1,你把這個信息輸入到計算機中後,計算機的內部進行處理,再把處理後的結果告訴你。
早期計算機的輸入設備十分落後,根本沒有現在的鍵盤和滑鼠,那時候計算機還是一個大傢伙,最早的計算機有兩層樓那麼高。人們只能通過扳動計算機龐大的面板上無數的開頭來向計算機輸入信息,而計算機把這些信息處理之後,輸出設備也相當簡陋,就是計算機面板上無數的信號燈。所以那時的計算機根本無法處理像現在這樣各種各樣的信息,它實際上只能進行數字運算。
當時人們使用計算機也真是夠累的。但在當時,就算是這種計算機也是極為先進的了,因為它把人們從繁重的手工計算中解脫出來,而且極大地提高了計算速度。
隨著人們對計算機的使用,人們發現上述模型的計算機能力有限,在處理大量數據時就越發顯得力不從心。為些人們對計算機模型進行了改進,提出了這種模型:
就是在中央處理器旁邊加了一個內部存儲器。這個模型的好處在於。先打個比方說,如果老師讓你心算一道簡單題,你肯定毫不費勁就算出來了,可是如果老師讓你算20個三位數相乘,你心算起來肯定很費力,但如果給你一張草稿紙的話,你也能很快算出來。
可能你會問這和計算機有什麼關系?其實計算機也是一樣,一個沒有內部存儲器的計算機如果讓它進行一個很復雜的計算,它可能根本就沒有辦法算出來,因為它的存儲能力有限,無法記住很多的中間的結果,但如果給它一些內部存儲器當「草稿紙」的話,計算機就可以把一些中間結果臨時存儲到內部存儲器上,然後在需要的時候再把它取出來,進行下一步的運算,如此往復,計算機就可以完成很多很復雜的計算。
隨著時代的發展,人們越來越感到計算機輸入和輸出方式的落後,改進這兩方面勢在必行。在輸入方面,為了不再每次扳動成百上千的開頭,人們發明了紙帶機。紙帶機的工作原理是這樣的,紙帶的每一行都標明了26個字母、10個數字和一些運算符號,如果這行的字母A上面打了一個孔,說明這里要輸入的是字母A,同理,下面的行由此類推。這樣一個長長的紙帶就可以代表很多的信息,人們把這個紙帶放入紙帶機,紙帶機還要把紙帶上的信息翻譯給計算機,因為計算機是看不懂這個紙帶的。
這樣雖然比較麻煩,但這個進步確實在很大程度上促進了計算機的發展。在發明紙帶的同時,人們也對輸出系統進行了改進,用列印機代替了計算機面板上無數的信號燈。列印機的作用正好和紙帶機相反,它負責把計算機輸出的信息翻譯成人能看懂的語言,列印在紙上,這樣人們就能很方便地看到輸出的信息,再也不用看那成百上千的信號燈了。
不過人們沒有滿足,他們繼續對輸入和輸出系統進行改進。後來人們發明了鍵盤和顯示器。這兩項發明使得當時的計算機和我們現在使用的計算機有些類似了,而且在些之前經過長時間的改進,計算機的體積也大大地縮小了。鍵盤和顯示器的好處在於人們可以直接向計算機輸入信息,而計算機也可以及時把處理結果顯示在屏幕上。
可是隨著人們的使用,逐漸又發現了不如意之處。因為人們要向計算機輸入的信息越來越多,往往要輸入很長時間後,才讓計算機開始處理,而在輸入過程中,如果停電,那前面輸入的內容就白費了,等來電後,還要全部重新輸入。就算不停電,如果人們上次輸入了一部分信息,計算機處理理了,也輸出了結果;人們下一次再需要計算機處理這部分信息的時候,還要重新輸入。對這種重復勞動的厭倦導致了計算機新的模型的產生。
這回的模型是這樣的:
這回增加了一個外部存儲器。外部存儲器的「外部」是相對於內部存儲器來說的,在中央處理器處理信息時,它並不直接和外部存儲器打交道,處理過程中的信息都臨時存放在內部存儲器中,在信息處理結束後,處理的結果也存放在內部存儲器中。可是如果這時突然停電,那些結果還會丟失的。內部存儲器(或簡稱內存)中的信息是靠電力來維持的,一旦電力消失,內存中的數據就會全部消失。也正因為如此,人們才在計算機模型中加入了外部存儲器,把內存中的處理結果再存儲到外部存儲器中,這樣停電後數據也不會丟失了。
外部存儲器與內存的區別在於:它們的存儲機制是不一樣的,外部存儲器是把數據存儲到磁性介質上,所以不依賴於是否有電。這個磁性介質就好比家裡的歌曲磁帶,磁帶上的歌曲不管有沒有電都是存在的。當時人們也是考慮到了磁帶這種好處,所以在計算機的外部存儲器中也採用了類似磁帶的裝置,比較常用的一種叫磁碟。
磁碟本來是圓的,不過裝在一個方的盒子里,這樣做的目的是為了防止磁碟表面劃傷,導致數據丟失。
有了磁碟之後,人們使用計算機就方便多了,不但可以把數據處理結果存放在磁碟中,還可以把很多輸入到計算機中的數據存儲到磁碟中,這樣這些數據可以反復使用,避免了重復勞動。
可是不久之後,人們又發現了另一個問題,人們要存儲到磁碟上的內容越來越多,眾多的信息存儲在一起,很不方便。這樣就導致了文件的產生。
這和我們日常生活中的文件有些相似。我們日常生活中的文件是由一些相關信息組成,計算機的文件也是一樣。人們把信息分類整理成文件存儲到磁碟上,這樣,磁碟上就有了文件1、文件2……。
可是在使用過程中,人們又漸漸發現,由人工來管理越來越多的文件是一件很痛苦的事情。為了解決這個問題,人們就開發了一種軟體叫操作系統。
其實操作系統就是替我們管理計算機的一種軟體,在操作系統出現之前,只有專業人士才懂得怎樣使用計算機,而在操作系統出現之後,不管你是否是計算機專業畢業,只要經過簡單的培訓,你都能很容易地掌握計算機。
有了操作系統之後,我們就不直接和計算機的硬體打交道,不直接對這些硬體發號施令,我們把要的事情告訴操作系統,操作系統再把要作的事情安排給計算機去作,等計算機做完之後,操作系統再把結果告訴我們,這樣就省事多了。
在操作系統出現之前,人們通過鍵盤給計算機下達的命令都是特別專業的術語,而有了操作系統之後,人們和計算機之間的對話就可以使用一些很容易懂的語言,而不用去死記硬背那些專業術語了。
操作系統不但能在計算機和人之間傳遞信息,而且字還負責管理計算機的內部設備和外部設備。它替人們管理日益增多的文件,使人們能很方便地找到和使用這些文件;它替人們管理磁碟,隨時報告磁碟的使用情況;它替計算機管理內存,使計算機能更高效而安全地工作;它還負責管理各種外部設備,如列印機等,有了它的管理,這些外設就能有效地為用戶服務了。
也正因為操作系統這么重要,所以人們也在不斷地改進它,使它的使用更加方面,功能更加強大。對於咱們現在使用的微機來說,操作系統主要經歷了DOS、Windows 3.X、Windows95和Windows98這幾個發展階段。
在DOS階段,人們和計算機打交道,還是主要靠輸入命令,「你輸入什麼命令,計算機就做什麼,如果你不輸入,計算機就什麼也不做」。在這一階段,人們還是需要記住很多命令和它們的用法,如果忘記了或不知道,那就沒有辦法了。所以說,這時的計算機還是大太好用,操作系統也處於發展的初級階段。Windows的出現在很大程度上彌補了這個不足,人們在使用Windows時,不必記住什麼命令,只需要用滑鼠指指點點就能完成很多工作。而當操作系統發展到Windows95之後,使用計算機就變得更加簡單。
現在我們來簡單總結一下上面我們講的一些內容。經過人們幾十年的努力,計算機的組成結構已經基本定型,現在我們日常使用的微機在硬體方面可以用下圖表示:這里CPU就是我們以前談到的中央處理器的英文縮寫,它和其它輔助電路構成了計算機的核心。我們通過鍵盤和其它輸入設備輸入的信息經過它的處理之後顯示在顯示器上。在信息處理過程中,CPU要和內存頻繁地交換信息,在工作結束之後,還要把內存中的數據保存在磁碟上。
上面說的是硬體的工作原理,那麼在軟體上,我們又是如何使用計算機的呢?
在前面我們講過,我們可以通過操作系統給計算機布置工作,操作系統也可以把計算機的工作結果告訴我們。可是操作系統的功能也不是無限的,實際上計算機的很多功能是靠多種應用軟體來實現的。操作系統一般只負責管理好計算機,使它能正常工作。而眾多的應用軟體才充分發揮了計算機的作用。但這些應用軟體都是建立在操作系統上的,一般情況下,某一種軟體都是為特定的操作系統而設計的,因為這些軟體不能直接和計算機交換信息,需要通過操作系統來傳遞信息。
這就是所謂的「硬」、「軟」結合。硬體就是我們能看見的這些東西:主機、顯示器、鍵盤、滑鼠等,而軟體是我們看不見的,存在於計算機內部的。打個比方,硬體就好比人類軀體,而軟體就好比人類的思想,沒有軀體,思想是無法存在的,但沒有思想的軀體也只是一個植物人。一個正常人要完成一項工作,都是軀體在思想的支配下完成的。電腦和這相類似,沒有主機等硬體,軟體是無法存在的;而一個沒有軟體的計算機也只是一堆廢鐵。
還有一個重要的概念沒有講,就是操作系統是如何管理文件的呢?其實也很簡單,文件都有自己的名字,叫文件名,用來區分不同的文件的。計算機中的文件有很多,成千上萬,光用名字來區分也不利於查找,所以計算機中又有了文件夾的概念,把不同類型的文件存儲在不同的文件夾中,查找起來就快多了,也不會太亂。文件多了,可以分別存儲在不同的文件夾中,而當文件夾多了之後,再把一些相關的文件夾存儲在更在的文件夾中,這樣管理文件是比較科學的。
『柒』 存儲器的發展史
存儲器設備發展
1.存儲器設備發展之汞延遲線
汞延遲線是基於汞在室溫時是液體,同時又是導體,每比特數據用機械波的波峰(1)和波谷(0)表示。機械波從汞柱的一端開始,一定厚度的熔融態金屬汞通過一振動膜片沿著縱向從一端傳到另一端,這樣就得名「汞延遲線」。在管的另一端,一感測器得到每一比特的信息,並反饋到起點。設想是汞獲取並延遲這些數據,這樣它們便能存儲了。這個過程是機械和電子的奇妙結合。缺點是由於環境條件的限制,這種存儲器方式會受各種環境因素影響而不精確。
1950年,世界上第一台具有存儲程序功能的計算機EDVAC由馮.諾依曼博士領導設計。它的主要特點是採用二進制,使用汞延遲線作存儲器,指令和程序可存入計算機中。
1951年3月,由ENIAC的主要設計者莫克利和埃克特設計的第一台通用自動計算機UNIVAC-I交付使用。它不僅能作科學計算,而且能作數據處理。
2.存儲器設備發展之磁帶
UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。
磁帶是所有存儲器設備發展中單位存儲信息成本最低、容量最大、標准化程度最高的常用存儲介質之一。它互換性好、易於保存,近年來,由於採用了具有高糾錯能力的編碼技術和即寫即讀的通道技術,大大提高了磁帶存儲的可靠性和讀寫速度。根據讀寫磁帶的工作原理可分為螺旋掃描技術、線性記錄(數據流)技術、DLT技術以及比較先進的LTO技術。
根據讀寫磁帶的工作原理,磁帶機可以分為六種規格。其中兩種採用螺旋掃描讀寫方式的是面向工作組級的DAT(4mm)磁帶機和面向部門級的8mm磁帶機,另外四種則是選用數據流存儲技術設計的設備,它們分別是採用單磁頭讀寫方式、磁帶寬度為1/4英寸、面向低端應用的Travan和DC系列,以及採用多磁頭讀寫方式、磁帶寬度均為1/2英寸、面向高端應用的DLT和IBM的3480/3490/3590系列等。
磁帶庫是基於磁帶的備份系統,它能夠提供同樣的基本自動備份和數據恢復功能,但同時具有更先進的技術特點。它的存儲容量可達到數百PB,可以實現連續備份、自動搜索磁帶,也可以在驅動管理軟體控制下實現智能恢復、實時監控和統計,整個數據存儲備份過程完全擺脫了人工干涉。
磁帶庫不僅數據存儲量大得多,而且在備份效率和人工佔用方面擁有無可比擬的優勢。在網路系統中,磁帶庫通過SAN(Storage Area Network,存儲區域網路)系統可形成網路存儲系統,為企業存儲提供有力保障,很容易完成遠程數據訪問、數據存儲備份或通過磁帶鏡像技術實現多磁帶庫備份,無疑是數據倉庫、ERP等大型網路應用的良好存儲設備。
3.存儲器設備發展之磁鼓
1953年,隨著存儲器設備發展,第一台磁鼓應用於IBM 701,它是作為內存儲器使用的。磁鼓是利用鋁鼓筒表面塗覆的磁性材料來存儲數據的。鼓筒旋轉速度很高,因此存取速度快。它採用飽和磁記錄,從固定式磁頭發展到浮動式磁頭,從採用磁膠發展到採用電鍍的連續磁介質。這些都為後來的磁碟存儲器打下了基礎。
磁鼓最大的缺點是利用率不高, 一個大圓柱體只有表面一層用於存儲,而磁碟的兩面都利用來存儲,顯然利用率要高得多。 因此,當磁碟出現後,磁鼓就被淘汰了。
4.存儲器設備發展之磁芯
美國物理學家王安1950年提出了利用磁性材料製造存儲器的思想。福雷斯特則將這一思想變成了現實。
為了實現磁芯存儲,福雷斯特需要一種物質,這種物質應該有一個非常明確的磁化閾值。他找到在新澤西生產電視機用鐵氧體變換器的一家公司的德國老陶瓷專家,利用熔化鐵礦和氧化物獲取了特定的磁性質。
對磁化有明確閾值是設計的關鍵。這種電線的網格和芯子織在電線網上,被人稱為芯子存儲,它的有關專利對發展計算機非常關鍵。這個方案可靠並且穩定。磁化相對來說是永久的,所以在系統的電源關閉後,存儲的數據仍然保留著。既然磁場能以電子的速度來閱讀,這使互動式計算有了可能。更進一步,因為是電線網格,存儲陣列的任何部分都能訪問,也就是說,不同的數據可以存儲在電線網的不同位置,並且閱讀所在位置的一束比特就能立即存取。這稱為隨機存取存儲器(RAM),在存儲器設備發展歷程中它是互動式計算的革新概念。福雷斯特把這些專利轉讓給麻省理工學院,學院每年靠這些專利收到1500萬~2000萬美元。
最先獲得這些專利許可證的是IBM,IBM最終獲得了在北美防衛軍事基地安裝「旋風」的商業合同。更重要的是,自20世紀50年代以來,所有大型和中型計算機也採用了這一系統。磁芯存儲從20世紀50年代、60年代,直至70年代初,一直是計算機主存的標准方式。
5.存儲器設備發展之磁碟
世界第一台硬碟存儲器是由IBM公司在1956年發明的,其型號為IBM 350 RAMAC(Random Access Method of Accounting and Control)。這套系統的總容量只有5MB,共使用了50個直徑為24英寸的磁碟。1968年,IBM公司提出「溫徹斯特/Winchester」技術,其要點是將高速旋轉的磁碟、磁頭及其尋道機構等全部密封在一個無塵的封閉體中,形成一個頭盤組合件(HDA),與外界環境隔絕,避免了灰塵的污染,並採用小型化輕浮力的磁頭浮動塊,碟片表面塗潤滑劑,實行接觸起停,這是現代絕大多數硬碟的原型。1979年,IBM發明了薄膜磁頭,進一步減輕了磁頭重量,使更快的存取速度、更高的存儲密度成為可能。20世紀80年代末期,IBM公司又對存儲器設備發展作出一項重大貢獻,發明了MR(Magneto Resistive)磁阻磁頭,這種磁頭在讀取數據時對信號變化相當敏感,使得碟片的存儲密度比以往提高了數十倍。1991年,IBM生產的3.5英寸硬碟使用了MR磁頭,使硬碟的容量首次達到了1GB,從此,硬碟容量開始進入了GB數量級。IBM還發明了PRML(Partial Response Maximum Likelihood)的信號讀取技術,使信號檢測的靈敏度大幅度提高,從而可以大幅度提高記錄密度。
目前,硬碟的面密度已經達到每平方英寸100Gb以上,是容量、性價比最大的一種存儲設備。因而,在計算機的外存儲設備中,還沒有一種其他的存儲設備能夠在最近幾年中對其統治地位產生挑戰。硬碟不僅用於各種計算機和伺服器中,在磁碟陣列和各種網路存儲系統中,它也是基本的存儲單元。值得注意的是,近年來微硬碟的出現和快速發展為移動存儲提供了一種較為理想的存儲介質。在快閃記憶體晶元難以承擔的大容量移動存儲領域,微硬碟可大顯身手。目前尺寸為1英寸的硬碟,存儲容量已達4GB,10GB容量的1英寸硬碟不久也會面世。微硬碟廣泛應用於數碼相機、MP3設備和各種手持電子類設備。
另一種磁碟存儲設備是軟盤,從早期的8英寸軟盤、5.25英寸軟盤到3.5英寸軟盤,主要為數據交換和小容量備份之用。其中,3.5英寸1.44MB軟盤占據計算機的標准配置地位近20年之久,之後出現過24MB、100MB、200MB的高密度過渡性軟盤和軟碟機產品。然而,由於USB介面的快閃記憶體出現,軟盤作為數據交換和小容量備份的統治地位已經動搖,不久會退出存儲器設備發展歷史舞台。
6. 存儲器設備發展之光碟
光碟主要分為只讀型光碟和讀寫型光碟。只讀型指光碟上的內容是固定的,不能寫入、修改,只能讀取其中的內容。讀寫型則允許人們對光碟內容進行修改,可以抹去原來的內容,寫入新的內容。用於微型計算機的光碟主要有CD-ROM、CD-R/W和DVD-ROM等幾種。
上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。
從LD的誕生至計算機用的CD-ROM,經歷了三個階段,即LD-激光視盤、CD-DA激光唱盤、CD-ROM。下面簡單介紹這三個存儲器設備發展階段性的產品特點。
LD-激光視盤,就是通常所說的LCD,直徑較大,為12英寸,兩面都可以記錄信息,但是它記錄的信號是模擬信號。模擬信號的處理機制是指,模擬的電視圖像信號和模擬的聲音信號都要經過FM(Frequency Molation)頻率調制、線性疊加,然後進行限幅放大。限幅後的信號以0.5微米寬的凹坑長短來表示。
CD-DA激光唱盤 LD雖然取得了成功,但由於事先沒有制定統一的標准,使它的開發和製作一開始就陷入昂貴的資金投入中。1982年,由飛利浦公司和索尼公司制定了CD-DA激光唱盤的紅皮書(Red Book)標准。由此,一種新型的激光唱盤誕生了。CD-DA激光唱盤記錄音響的方法與LD系統不同,CD-DA激光唱盤系統首先把模擬的音響信號進行PCM(脈沖編碼調制)數字化處理,再經過EMF(8~14位調制)編碼之後記錄到盤上。數字記錄代替模擬記錄的好處是,對干擾和雜訊不敏感,由於盤本身的缺陷、劃傷或沾污而引起的錯誤可以校正。
CD-DA系統取得成功以後,使飛利浦公司和索尼公司很自然地想到利用CD-DA作為計算機的大容量只讀存儲器。但要把CD-DA作為計算機的存儲器,還必須解決兩個重要問題,即建立適合於計算機讀寫的盤的數據結構,以及CD-DA誤碼率必須從現有的10-9降低到10-12以下,由此就產生了CD-ROM的黃皮書(Yellow Book)標准。這個標準的核心思想是,盤上的數據以數據塊的形式來組織,每塊都要有地址,這樣一來,盤上的數據就能從幾百兆位元組的存儲空間上被迅速找到。為了降低誤碼率,採用增加一種錯誤檢測和錯誤校正的方案。錯誤檢測採用了循環冗餘檢測碼,即所謂CRC,錯誤校正採用里德-索洛蒙(Reed Solomon)碼。黃皮書確立了CD-ROM的物理結構,而為了使其能在計算機上完全兼容,後來又制定了CD-ROM的文件系統標准,即ISO 9660。
在上世紀80年代中期,光碟存儲器設備發展速度非常快,先後推出了WORM光碟、磁光碟(MO)、相變光碟(Phase Change Disk,PCD)等新品種。20世紀90年代,DVD-ROM、CD-R、CD-R/W等開始出現和普及,目前已成為計算機的標准存儲設備。
光碟技術進一步向高密度發展,藍光光碟是不久將推出的下一代高密度光碟。多層多階光碟和全息存儲光碟正在實驗室研究之中,可望在5年之內推向市場。
7.存儲器設備發展之納米存儲
納米是一種長度單位,符號為nm。1納米=1毫微米,約為10個原子的長度。假設一根頭發的直徑為0.05毫米,把它徑向平均剖成5萬根,每根的厚度即約為1納米。與納米存儲有關的主要進展有如下內容。
1998年,美國明尼蘇達大學和普林斯頓大學制備成功量子磁碟,這種磁碟是由磁性納米棒組成的納米陣列體系。一個量子磁碟相當於我們現在的10萬~100萬個磁碟,而能源消耗卻降低了1萬倍。
1988年,法國人首先發現了巨磁電阻效應,到1997年,採用巨磁電阻原理的納米結構器件已在美國問世,它在磁存儲、磁記憶和計算機讀寫磁頭等方面均有廣闊的應用前景。
2002年9月,美國威斯康星州大學的科研小組宣布,他們在室溫條件下通過操縱單個原子,研製出原子級的硅記憶材料,其存儲信息的密度是目前光碟的100萬倍。這是納米存儲材料技術研究的一大進展。該小組發表在《納米技術》雜志上的研究報告稱,新的記憶材料構建在硅材料表面上。研究人員首先使金元素在硅材料表面升華,形成精確的原子軌道;然後再使硅元素升華,使其按上述原子軌道進行排列;最後,藉助於掃瞄隧道顯微鏡的探針,從這些排列整齊的硅原子中間隔抽出硅原子,被抽空的部分代表「0」,餘下的硅原子則代表「1」,這就形成了相當於計算機晶體管功能的原子級記憶材料。整個試驗研究在室溫條件下進行。研究小組負責人赫姆薩爾教授說,在室溫條件下,一次操縱一批原子進行排列並不容易。更為重要的是,記憶材料中硅原子排列線內的間隔是一個原子大小。這保證了記憶材料的原子級水平。赫姆薩爾教授說,新的硅記憶材料與目前硅存儲材料存儲功能相同,而不同之處在於,前者為原子級體積,利用其製造的計算機存儲材料體積更小、密度更大。這可使未來計算機微型化,且存儲信息的功能更為強大。
以上就是本文向大家介紹的存儲器設備發展歷程的7個關鍵時期
『捌』 第一台計算機採用的存儲設備是什麼
主存儲器採用汞延遲線、陰極射線示波管靜電存儲器、磁鼓、磁芯;外存儲器採用磁帶。
1946年2月,在美國賓夕法尼亞大學誕生了世界上第一台計算機ENIAC(Electronic Numerical Integrator and Computer)。
這台計算機由電子管組成,每秒可進行5000次的加法運算,而且採用了著名的數學家馮·諾依曼(Von.Neumann,美籍匈牙利人) 的存儲程序的設計思想, 即採用二進制計算、存儲程序並在程序控制下自動執行的思想。
以後,這種模式的計算機被稱為馮 · 諾依曼機。計算機發展至今, 一直沿用存儲程序的思想。這是計算機科學發展史上的一個重要里程碑,它奠定了計算機發展的科學基礎。
(8)第一台使用外存儲器擴展閱讀
世界上第一台電子計算機是個龐然大物:重30餘噸,佔地約170平方米,肚子里裝有18000隻電子管。它是1946年2月14日,在美國賓夕法尼亞大學誕生的。
在第二次世界大戰中,敵對雙方都使用了飛機和火炮,猛烈轟炸對方軍事目標。要想打得准,必須精確計算並繪制出射擊圖表。經查表確定炮口的角度,才能使射出去的炮彈正中飛行目標。但是,每一個數都要做幾千次的四則運算才能得出來,十幾個人用手搖機械計算機算幾個月,才能完成一份圖表。
針對這種情況,人們開始研究把電子管作為電子開關來提高計算機的運算速度。許多科學家都參加了實驗和研究,終於製成了世界上第一台電子計算機,起名為埃尼阿克。
『玖』 計算機外存儲器誕生
一、第一代(1946~1958):電子管數字計算機計算機的邏輯元件採用電子管,主存儲器採用汞延遲線、磁鼓、磁芯;外存儲器採用磁帶;軟體主要採用機器語言、匯編語言;應用以科學計算為主。其特點是體積大、耗電大、可靠性差、價格昂貴、維修復雜,但它奠定了以後計算機技術的基礎。二、第二代(1958~1964):晶體管數字計算機晶體管的發明推動了計算機的發展,邏輯元件採用了晶體管以後,計算機的體積大大縮小,耗電減少,可靠性提高,性能比第一代計算機有很大的提高。主存儲器採用磁芯,外存儲器已開始使用更先進的磁碟;軟體有了很大發展,出現了各種各樣的高級語言及其編譯程序,還出現了以批處理為主的操作系統,應用以科學計算和各種事務處理為主,並開始用於工業控制。三、第三代(1964~1971):集成電路數字計算機20世紀60年代,計算機的邏輯元件採用小、中規模集成電路(SSI、MSI),計算機的體積更小型化、耗電量更少、可靠性更高,性能比第十代計算機又有了很大的提高,這時,小型機也蓬勃發展起來,應用領域日益擴大。主存儲器仍採用磁芯,軟體逐漸完善,分時操作系統、會話式語言等多種高級語言都有新的發展。四、第四代(1971年以後):大規模集成電路數字計算機計算機的邏輯元件和主存儲器都採用了大規模集成電路(LSI)。所謂大規模集成電路是指在單片矽片上集成1000~2000個以上晶體管的集成電路,其集成度比中、小規模的集成電路提高了1~2個以上數量級。這時計算機發展到了微型化、耗電極少、可靠性很高的階段。大規模集成電路使軍事工業、空間技術、原子能技術得到發展,這些領域的蓬勃發展對計算機提出了更高的要求,有力地促進了計算機工業的空前大發展。隨著大規模集成電路技術的迅速發展,計算機除了向巨型機方向發展外,還朝著超小型機和微型機方向飛越前進。1971年末,世界上第一台微處理器和微型計算機在美國舊金山南部的矽谷應運而生,它開創了微型計算機的新時代。此後各種各樣的微處理器和微型計算機如雨後春筍般地研製出來,潮水般地湧向市場,成為當時首屈一指的暢銷品。這種勢頭直至今天仍然方興未艾。特別是IBM-PC系列機誕生以後,幾乎一統世界微型機市場,各種各樣的兼容機也相繼問世。