❶ 數字圖像處理主要包括哪些技術
數字圖像處理主要研究的內容有以下幾個方面:
1)
圖像變換由於圖像陣列很大,直接在空間域中進行處理,涉及計算量很大.因此,往往採用各種圖像變換的方法,如傅立葉變換、沃爾什變換、離散餘弦變換等間接處理技術,將空間域的處理轉換為變換域處理,不僅可減少計算量,而且可獲得更有效的處理(如傅立葉變換可在頻域中進行數字濾波處理).目前新興研究的小波變換在時域和頻域中都具有良好的局部化特性,它在圖像處理中也有著廣泛而有效的應用.
2)
圖像編碼壓縮圖像編碼壓縮技術可減少描述圖像的數據量(即比特數),以便節省圖像傳輸、處理時間和減少所佔用的存儲器容量.壓縮可以在不失真的前提下獲得,也可以在允許的失真條件下進行.編碼是壓縮技術中最重要的方法,它在圖像處理技術中是發展最早且比較成熟的技術.
3)
圖像增強和復原圖像增強和復原的目的是為了提高圖像的質量,如去除雜訊,提高圖像的清晰度等.圖像增強不考慮圖像降質的原因,突出圖像中所感興趣的部分.如強化圖像高頻分量,可使圖像中物體輪廓清晰,細節明顯;如強化低頻分量可減少圖像中雜訊影響.圖像復原要求對圖像降質的原因有一定的了解,一般講應根據降質過程建立"降質模型",再採用某種濾波方法,恢復或重建原來的圖像.
4)
圖像分割圖像分割是數字圖像處理中的關鍵技術之一.圖像分割是將圖像中有意義的特徵部分提取出來,其有意義的特徵有圖像中的邊緣、區域等,這是進一步進行圖像識別、分析和理解的基礎.雖然目前已研究出不少邊緣提取、區域分割的方法,但還沒有一種普遍適用於各種圖像的有效方法.因此,對圖像分割的研究還在不斷深入之中,是目前圖像處理中研究的熱點之一.
5)
圖像描述是圖像識別和理解的必要前提.作為最簡單的二值圖像可採用其幾何特性描述物體的特性,一般圖像的描述方法採用二維形狀描述,它有邊界描述和區域描述兩類方法.對於特殊的紋理圖像可採用二維紋理特徵描述.隨著圖像處理研究的深入發展,已經開始進行三維物體描述的研究,提出了體積描述、表面描述、廣義圓柱體描述等方法.
6)
圖像分類(識別)圖像分類(識別)屬於模式識別的范疇,其主要內容是圖像經過某些預處理(增強、復原、壓縮)後,進行圖像分割和特徵提取,從而進行判決分類.圖像分類常採用經典的模式識別方法,有統計模式分類和句法(結構)模式分類,近年來新發展起來的模糊模式識別和人工神經網路模式分類在圖像識別中也越來越受到重視.
❷ pacs是什麼意思
PACS是英文PictureArchiving&CommunicationSystem的縮寫,譯為「醫學影像存檔與通信系統」,其組成主要有計算機、網路設備、存儲器及軟體。它是一個涉及放射醫學、影像醫學、數字圖像技術(採集和處理)、計算機與通訊、C/S體系結構的多媒體DBMS系統,涉及軟體工程、圖形圖像的綜合及後處理等多種技術,是一個技術含量高、實踐性強的高技術復雜系
pacs - 簡要介紹
網路1PACS用於醫院的影像科室,最初主要用於放射科,經過近幾年的發展,PACS已經從簡單的幾台放射影像設備之間的圖像存儲與通信,擴展至醫院所有影像設備乃至不同醫院影像之間的相互操作,因此出現諸多分類叫法,如幾台放射設備的聯網稱為Mini PACS(微型PACS);放射科內所有影像設備的聯網Radiology PACS(放射科PACS);全院整體化PACS,實現全院影像資源的共享,稱為Hospital PACS。PACS與RIS和HIS的融合程度已成為衡量功能強大與否的重要標准。PACS的未來將是區域PACS的形成,組建本地區、跨地區廣域網的PACS網路,實現全社會醫學影像的網路化。
由於PACS需要與醫院所有的影像設備連接,所以必須有統一的通訊標准來保證不同廠家的影像設備能夠互連,為此,1983年,在北美放射學會(ACR)的倡議下,成立了ACR-NEMA數字成像及通信標准委員會。眾多廠商響應其倡議,同意在所生產的醫學放射設備中採用通用介面標准,以便不同廠商的影像設備相互之間可以進行圖像數據交流。1985年,ACR/NEMA1.0標准版本發布;1988年,該標准再次修訂;1992年,ACR/NEMA第三版本正式更名為DICOM3.0(Digital lmaging and Communication in Medicine),中文可譯為"醫學數字圖像及通信標准"。DICOM3.0已為國際醫療影像設備廠商普遍遵循,所生產的影像設備均提供DICOM3.0標准通訊協議。符合該標準的影像設備可以相互通信,並可與其他網路通信設備互連。
在系統的輸出和輸入上必須支持DICOM3.0標准,已成為PACS的國際規范。只有在DICOM3.0標准下建立的PACS才能為用戶提供最好的系統連接和擴展功能。
pacs - 通信技術
網路2信息技術是現代文明的基礎,是開展科學研究和技術開發的重要支撐手段,是高技術中的關鍵技術。信息技術的發展,直接影響著社會生產力和綜合國力的變化。
近50年來,由於半導體、計算機和通信技術的迅猛發展,數字化的信息已經滲透到了與人們生活密切相關的各個領域。在醫學圖像處理領域,隨著放射學(Radiology)的迅速發展,為醫療診斷提供了多種人體成像技術,例如:CT、MRI、DSA(數字減影)、NM(核醫學成像)、US(超聲掃描顯像裝置)、CR(計算機投影射線照像術)、PET(正電子發射斷層X線照相術)等。這些新的醫學成像技術為臨床診斷提供了豐富的影像學資料,在相當程度上提高了醫療機構的診斷和治療水平,但同時也使得如何有效地管理、處理和利用大量繁雜的醫學圖像資料的問題日益突出,急待解決。
計算機技術日新月異的發展,尤其是高速計算設備、網路通訊及圖像採集、處理的軟、硬體技術的一系列突破性進展,為醫學圖像的數字化採集、存儲、管理、處理、傳輸及有效利用提供了現實的數字技術基礎。
PACS系統(Picture Archiving & Communication System),即醫學影像的存儲和傳輸系統,它是放射學、影像醫學、數字化圖像技術、計算機技術及通信技術的結合,它將醫學圖像資料轉化為計算機數字形式,通過高速計算設備及通訊網路,完成對圖像信息的採集、存儲、管理、處理及傳輸等功能,使得圖像資料得以有效管理和充分利用。
PACS其主要應用方向為:設備集群使用:從多種影像設備或數字化設備中採集圖像;拍照與列印等多種輸出設備的 共享與選擇;影像傳輸與分送:在醫院內各科室之間快速傳輸圖像數據;遠程傳輸圖像及診斷報告等;輔助醫療功能:醫學圖像資料的管理、處理、變換等。
pacs - 系統介紹
PACS系統(圖像歸檔和通訊系統)原意為醫學影像計算機存檔與傳輸(醫學影像的採集和數字化,圖像的存儲和管理,數字化醫學圖像的高速傳輸,圖像的數字化處理和重現,圖像信息與其它信息的集成五個方面)。而在第二代PACS系統中,已經擴大為HIS-PACS的無縫連接,將病人流變為信息流,關注的核心是醫院臨床業務的流程再造。通過第二代PACS系統,可以輕松的實現.無紙化、無膠片化,降低醫院的運營成本,提高醫院整體效率,提高臨床診斷質量,實現遠程醫療。
通俗的講法,PACS系統出現類似於數碼相機取代膠片相機。過去病人進行影像檢查(如骨折拍片),需要等待膠片沖洗出來醫生才能診斷。而現在直接從檢查設備上讀出圖像到計算機上觀察診斷,大大提高了效率。PACS系統延伸到醫院其他的工作也進行數字化管理(如病歷本不再手寫,檢查單不再手寫,統計醫生工作量不再依靠護士手工統計)
pacs - 系統構成
系統依照規模的大小,圖像存檔與傳輸系統(PACS)可分為四大類:科室內;院內圖像發布系統;整個醫院的PACS系統;基於全院PACS的遠程放射醫學系統。
依據需要解決的問題不同,存在各種各樣的PACS系統設計方案,但概括來看,PACS系統由成像採集設備、遠近程顯示設備、儲存設備和遠近程通信設備等四部分組成。成像採集設備包括各類斷層掃描成像系統和各種射線照相技術形成的膠片等硬拷貝數字化掃描採集設備;圖像顯示設備包括各種圖像終端、圖像工作站;圖像存儲設備包括軟硬磁碟、磁帶和光碟等存儲設備;通訊設備包括數據機、網卡、電話交換系統、計算機局部網、廣域網、公用數據網等有關硬體通信模塊和設備。PACS在醫學信息領域主要提供四方面的功能:在診斷、報告、會診和遠程工作站上觀察醫學圖像;根據圖像的性質,把圖像儲存在適於短期或長期保存的存儲介質中;利用區域網、廣域網和公共通訊設施進行通訊;向用戶提供一個集成信息系統。PACS目的在於促進數字化醫院環境的形成,提高診斷效率,降低成本。相對於傳統的基於膠片的醫學圖像系統,無膠片的PACS具有眾多的優勢:數字圖像代替膠片減少了製造和購買膠片及相應的化學製品的費用;無膠片化存檔,可節省原來的硬拷貝和相關的管理費用、人力和場地,減少了管理膠片的工作人員,將不再有膠片的丟失、錯放、老化等問題,大大降低了醫院成本,可以更有效地使用龐大的醫學圖像資源為患者提供更好的服務,又達到了更高效、低價地觀察、存儲和傳送醫學圖像的目的。同時,利用計算機先進的存儲方式和強大的圖像壓縮功能以及網路傳輸能力,對已存儲的圖像進行多份拷貝變的簡單又直接,快速獲取圖像,根據診斷的需要,可以靈活地處理圖像,可以實現醫院內部甚至遠程的醫院之間的醫學圖像信息的共享,便於提供遠程醫療服務。
pacs - 關鍵技術
關鍵技術PACS涉及多項技術,它們包括:計算機、通訊、文件存儲、數據獲取、顯示、圖像數據壓縮、人工智慧、光電子設備、軟體、標准化和系統集成。PACS涉及的關鍵技術問題標准化技術:標准化技術應用在建立PACS中是非常重要的。由於各廠家生產的影像設備的圖像格式各異,網路介面標准不一致,阻礙了醫學數字影像的交換和通訊;數字化圖像信息的採集:首先要實現圖像的數字化。CT、MRI、DSA、CR、DR以及一些超聲成像等已是數字成像,通過採集介面模塊或設備就可將數字化圖像信息從主機中取出,並構成數據文件到存儲設備中去,供顯示或傳輸。而大量X射線成相系統仍處於非數字化圖像階段,通常購置數字化儀將它們數字化。由於各廠家生產的各種影像設備的圖像格式各異,網路介面標准不一致,阻礙了醫學數字影像的交換和通訊;圖像壓縮技術:醫學圖像數據量大,建立PACS中許多技術困難都與圖像的壓縮、傳輸、顯示等有關。如何能對圖像進行壓縮,是多年圖像處理技術研究重點之一,由於醫學影像對醫學診斷的可靠性影響非常大。
常用的也只有無損壓縮演算法;醫用圖像的歸檔管理:圖像實現數字化以後,可將其分門別類存儲於計算機介質中,如磁碟、光碟內,尤其是光碟存儲器,以其經濟實惠被廣泛應用。一片光碟上可以存儲幾百幅圖像;醫用圖像顯示和通信技術:計算機技術為醫學圖像的觀察提供了「數字信息監視器」組合模式,極大地方便和加速了醫學圖像資源的形成、周轉和調閱。計算機軟硬體技術和多媒體技術,使醫學圖像的顯示圖像監視器和圖像工作站幾乎可瞬時顯示整幅圖像。醫學圖像通信,首先是通過區域網在醫院內部實現患者影像信息的調閱,其次是通過專線網或互聯網實現影像的遠程調用和異地診斷。
pacs - 發展情況
系統構成PACS是現代影像診斷的模式和潮流,是一項具有燦爛前景的高新技術,它的發展與普及將對醫學發展起到重大的推動作用。把傳統的醫學圖像拷貝方式改成電子式的軟拷貝方式,推廣應用PACS在醫院是非常必要的,隨著數字成像技術、計算機技術和網路技術的進步,國內眾多醫院其影像設備逐漸更新為數字化,PACS的應用和普及已成為現代化醫療不可阻擋的潮流。進入90年代,為了提高醫院的現代化管理水平和工作效率,各級醫療機構對醫院信息系統的建設給予了極大的關注,許多醫院已經建立了不同規模的醫院信息系統。就醫院信息系統發展而言,醫院信息系統大多數屬於醫院管理系統(HIS)的范疇,主要針對醫院人員的財務管理;而同樣是數字化醫院環境重要組成部分的PACS卻發展相對遲慢。
中國PACS系統發展還存在如下一些問題:研究和開發經費少;多數醫院的醫療圖像設備較為陳舊,很少有標准數字介面,尤其是能夠利用網路傳輸醫學圖像的設備更為少見;醫院的信息基礎機構建設落後,多數醫務人員對計算機應用環境不熟悉;以往開發的HIS/RIS系統往往忽略了標准化問題,難以進行與PACS系統的集成;多數影像設備是從國外引進的,在這樣的環境下,PACS開發和應用過程中需要考慮中文化的問題。PACS發展應關注於:對醫院信息基礎結構的改進;對老舊圖像設備的改造;對現有醫院信息系統的標准化。國內由於對PACS的研究還處於初級階段,在構建PACS時會遇到各種各樣的技術問題。
在設計PACS系統時應該充分考慮系統所要實現的功能在選擇規模時應該充分考慮醫院的實際條件不要一哄而上。資金雄厚的大型醫院由於在這一方面的工作開展較早,並且已經構成了小型或者部分PACS,這時可以考慮建立比較完整的PACS。而中小型醫院由於資金和技術方面的原因,最好首先構建小型或部分PACS在一方面積累經驗,而不是一味趕時髦。醫院可以根據自身的條件和需求建立不同規模的PACS系統,逐步向數字化醫院過度。尤為重要的是,醫學圖像領域的發展與技術的進步緊密相關,醫學圖像領域的進步是醫院實際要求、大學和其他研究機構技術開發以及企業商業目標相互推動的結果,PACS系統開發和應用同樣需要醫院、研究機構及企業界的大力支持和良好的合作。
pacs - 前景展望
系統構成PACS 最初是從處理放射科的數字圖像發展起來的。然而隨著 PACS 標准化的進程,尤其是 ACR-NEMA(American College of Radiology & National Electrical Manufactures ′ Association ,美國放射學會和美國電器製造商學會 )DICOM(digital imaging and communications in medicine ,醫學數字成像和通信標准 )3.0 標準的普遍接受,目前的 PACS 已擴展到所有的醫學圖像領域,如心臟病學、病理學、眼科學、皮膚病學、核醫學、超聲學以及牙科學等。
21世紀的醫院管理系統中,PACS系統將占據醫學診斷分析得據主導地位。
PCAS系統在應用中涉及到數字化存儲圖像,無膠片管理,節省用於沖洗、保存膠片和記錄的大量人力物力;如:化學葯品費用,處理和保養費用 、存儲費用、擺放費用 、人工費用 、查閱費用 、送片費用;可提供更多醫生網路化的協同工作;提供遠程會診功能,節省人力物力,同時能夠提高醫院會診能力,擴大知名度。可以實現資料統計的自動化,對於科研分析有重大意義,同時可以對科室人員的工作量 和狀態進行統計,能夠發現管理薄弱環節,更好評價員工,激勵員工,為科室創造更大的效益。可以規范診斷報告,列印出圖文並茂的病歷,同時生成電子病歷,形成社區電子病歷中心,為病人提供電子病歷存放查詢服務,增加對用戶的影響力。 共享輸出設備,節省設備投資,比如激光相機, DICOM相機等。減少、消除重復工作。更高的生產力 , 更低的運行成本和更多收入。不再丟失檢查資料和膠片。
對於臨床:提供更快、更有效獲取病人信息的途徑。通過與周圍醫院聯合提供更多的醫療服。 方便臨床醫生隨時調閱病人的信息。
對於放射醫生:方便。在家或辦公室即可讀片,不用擠在集中讀片的地方 快速得到病人的以往膠片。幾秒鍾便獲得檢查數據。多種圖像,如超聲,核磁, CT,DSA等圖像可以直接參考對比,並進行相應圖像處理,方便診斷。減小工作量和提高工作效率。影像可以永久利用。直接得到無失真的原始圖像用於學術交流。
對於病人:減少住院時間。更快的診斷和治療。同時參考多次檢查結果。更快的報告時間。能夠得到專家的服務 。
輔助醫療功能:醫學圖像資料的管理、處理、變換等。
❸ 在多媒體計算機中存儲圖像的關鍵技術是什麼……
數據壓縮技術,老師給的資料有
❹ 圖像處理的常用方法有哪幾個
1、圖像變換:
由於圖像陣列比較大,如果直接在空間域中進行圖像處理,這樣涉及的計算量會比較大。因此,我們一般採用各種圖像變換的方法,如沃爾什變換、傅立葉變換、離散餘弦變換等一些間接處理技術,將空間域的處理轉變為變換域處理,不僅可減少計算量,而且可獲得更有效的處理(如傅立葉變換可在頻域中進行數字濾波處理)。
2、圖像編碼壓縮:
圖像編碼壓縮技術能夠減少描述圖像的數據量,從而可以節省圖像傳輸、處理時間和減少所佔用的存儲器容量。圖像編碼壓縮能夠在不失真的基礎上獲得,同時也可以在允許的失真條件下開始。編碼是壓縮技術中最重要的方法,它在圖像處理技術中是發展最早且比較成熟的技術。
3、圖像增強和復原:
圖像增強和復原的目的是為了提高圖像的質量,如去除雜訊,提高圖像的清晰度等。圖像增強不考慮圖像降質的原因,突出圖像中所感興趣的部分。如強化圖像高頻分量,可使圖像中物體輪廓清晰,細節明顯;如強化低頻分量可減少圖像中雜訊影響。圖像復原要求對圖像降質的原因有一定的了解,一般講應根據降質過程建立“降質模型”,再採用某種濾波方法,恢復或重建原來的圖像。
4、圖像分割:
圖像分割是數字圖像處理中的關鍵技術之一。圖像分割是將圖像中有意義的特徵部分提取出來,其有意義的特徵有圖像中的邊緣、區域等,這是進一步進行圖像識別、分析和理解的基礎。雖然目前已研究出不少邊緣提取、區域分割的方法,但還沒有一種普遍適用於各種圖像的有效方法。
關於圖像處理的常用方法,青藤小編就和您分享到這里了。如果您對圖片處理、網站設計等有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於平面設計的技巧及素材等內容,可以點擊本站的其他文章進行學習。
❺ 名詞解釋:存儲技術
卡片式存儲設備
卡片式存儲設備算來算去只有幾種,而且都是利用半導體技術來儲存資料。存儲卡的原理和RAM一樣,區別只在於是否使用「Volatile"或「Non-volatile"(後者在沒有電源時,存儲設備內的資料也能永久保存)技術。
卡片式存儲器的應用領域有:
1.數字相機 要算使用存儲卡最多的IT產品,數字相機絕對是頭一個。由於數字相機需要有一定的容量來儲存相片,而且質量越高的相片要求越大的容量,所以數字相機足以保障存儲卡有一定的市場。
2.MP3隨身聽網際網路使MP3音樂垂手可得,也使MP3隨身聽有可能取代MD或CD隨身聽。而MP3隨身聽想要保存MP3歌曲文件,辦法就是使用存儲卡。通常,一部MP3隨身聽內置的是32MB的存儲卡(只能存放約10首歌曲),消費者往往會多買一張64MB的存儲卡來保存歌曲。這樣就會增大存儲卡的銷售。
8mm磁帶
8mm磁帶:是一種由Exabyte公司開發、適合於大中型網路和多用戶系統的大容量磁帶。8mm磁帶驅動器也採用螺旋掃描技術,而且磁帶較寬,因而存儲容量極高,一盒磁帶的最高容量可達150GB
存儲卡
這里說的存儲卡是用來儲存數據資料並且可以在電腦上使用的數據存儲卡!
1.CF卡CF卡是最早推出的存儲卡,也是大家都比較青睞的存儲卡。CF卡得以普及的原因很多,其中比較重要的一點就是物美價廉。比起其他數碼存儲卡,CF卡單位容量的存儲成本差不多是最低的,速度也比較快,而且大容量的CF卡比較容易買到。
我們可以接觸的到CF卡分為CFType I/CF Type II兩種類型。由於CF存儲卡的插槽可以向下兼容,因此TypeII插槽既可以使CF TypeII卡又可以使用CFType I卡;而Type I插槽則只能使用CFType I卡,而不能使用CFType II卡,朋友們在選購和使用的時候一定要注意。
2.SD卡 SD卡體積小巧,廣泛應用在數碼相機上,是由日本的松下公司、東芝公司和SanDisk公司共同開發的一種全新的存儲卡產品,最大的特點就是通過加密功能,保證數據資料的安全保密。SD卡在外形上同MultiMedia Card卡保持一致,並且兼容MMC卡介面規范。不過注意的是,在某些產品例如手機上,SD卡和MMS卡是不能兼容的。SD 卡在售價方面要高於同容量的MultiMedia Card卡。
3.MS卡在5年前,索尼公司生產了它自己的快閃記憶體記憶卡,就是記憶棒—MemoryStick。其應用於索尼公司出的數碼產品,掌上電腦、MP3、數碼相機、數碼攝像機等等數碼設備。由Memory Stick所衍生出來的Memory Stick PRO和Memory Stick DUO也是索尼記憶棒向高容量和小體積發展的產物。
4.SM卡SM卡最早是由東芝公司推出的,它僅僅是將存儲晶元封裝起來,自身不包含控制電路,所有的讀寫操作安全依賴於使用它的設備。盡管由於結構簡單可以做得很薄,在便攜性方面優於CF卡,但兼容性差是其致命之傷,一張SM卡一旦在MP3播放器上使用過,數碼相機就可能不能再讀寫。其市場表現已呈龍鍾之態,不會再有更多新的設備支持它。
5.MMC卡MMC卡是由Sandisk和西門子於1997年聯手推出的,它普及還沾了點SD卡的光。後來推出的SD卡標准中保留了設備對MMC卡的兼容,就是說雖然使用MMC卡的設備無法使用SD卡,而使用SD卡的設備卻可以毫無障礙地使用MMC卡,在某些時候使得MMC順利成為SD卡的代替品。MMC卡的大小和SD基本一樣,比SD卡要薄一點,不過在讀取速度上還是SD強。因此價格也是MMC比較便宜。
6.xD圖像卡xD圖像卡是繼上面幾種存儲卡而後生的存儲卡產品,是由富士膠卷和奧林巴斯光學工業為SM卡的後續產品成功開發的產品。它的特點是集體積更小、容量更大於一身,xD圖像卡設計只有一張郵票那麼大,未來圖像存儲能力高達令人驚嘆的8GB。
數字線性磁帶
DLT(Digital Linear Tape,數字線性磁帶)源於1/2英寸磁帶機,它出現很早,主要用於數據的實時採集。DLT每盒容量高達40GB以上,成本較低,主要定位於中、高級的伺服器市場與磁帶庫系統。
先進的智能型磁帶
AIT(先進的智能型磁帶)是SONY公司在快速訪問高密度磁帶錄制技術方面的最新創新,現已成為磁帶機工業標准。AIT使用一種磁帶盒上含有記憶體晶片的磁帶,通過在微型晶片上記錄磁帶上文件的位置,大大減少了存取時間。
數字音頻磁帶
ST(Digital Audio Tape:數字音頻磁帶)磁帶:該磁帶寬為0.15英寸(4mm),又叫4毫米磁帶。ST磁帶盒較小,體積僅為73mm×54mm×10.5mm,比一般錄音機磁帶盒還小。但由於該磁帶存儲系統採用了螺旋掃描技術,使得該磁帶具有很高的存儲容量。
差分備份
差分備份(Differential Backup) 就是每次備份的數據是相對於上一次全備份之後新增加的和修改過的數據。差分備份無需每天都做系統完全備份,因此備份所需時間短,並節省磁帶空間,它的災難恢復也很方便,系統管理員只需兩盤磁帶,即系統全備份的磁帶與發生災難前一天的備份磁帶,就可以將系統完全恢復。
映像備份
映像備份(Image copies)不壓縮、不打包、直接COPY獨立文件(數據文件、歸檔日誌、控制文件),類似操作系統級的文件備份。而且只能COPY到磁碟,不能到磁帶。
差異備份
復制自上一次普通備份或增量備份以來被創建或更改的文件的備份。它不將文件標記為已經備份(換句話說,沒有清除存檔屬性)。如果您要執行普通備份和差異備份的組合,則還原文件和文件夾將需要上次已執行過普通備份和差異備份。
SAN
SAN(Storage Area Network―存儲區域網路)一類專門用於提供企業商務數據或運營商數據的存儲和備份管理的網路。因為是基於網路化的存儲,SAN比傳統的存儲和備份技術擁有更大的容量和更強的性能。通過專門的存儲管理軟體,可以直接在SAN里的大型主機、伺服器或其它服務端電腦上添加硬碟和磁帶設備。現在大多數的SAN是基於光纖信道交換機和集線器的。通常SAN被配置成網路的後端部分,存在於數據中心或者伺服器場之後
Failover(故障恢復
Failover(故障恢復):功能相當的系統組件替代故障組件的一種自動替代系統。經常使用於連接到相同存儲設備和主機計算機的智能控制器。如果其中之一的控制器故障,故障恢復開始啟用,其他正常的控制器將負擔其I/O工作。
備份記錄
備份記錄(plicated record)文件記錄的復製品。保存在文件庫中,與原文件分開存放,是為了防止關鍵性文件或數據丟失而備制的。也稱復制記錄。
備份集
備份集(Backup sets)顧名思義就是一次備份的集合,它包含本次備份的所有備份片。一個備份集根據備份的類型不同,可能構成一個完全備份或增量備份。
Backup(備份)
Backup(備份):存儲在非易失性存儲介質上的數據集合,這些數據用來進行原始數據丟失或者不可訪問條件下的數據恢復。為了保證恢復時備份的可用性,備份必須一致性狀態下通過拷貝原始數據來實現。
容錯
容錯:系統在其某一組件故障時仍繼續正常工作的功能。容錯功能一般通過冗餘組件設計來實現。
iSCSI
iSCSI:連接到一個TCP/IP網路的直接定址的存儲庫,通過塊I/O SCSI指令對其進行訪問。ISCSI是一種基於開放的工業標准,通過它可以用TCP/IP對SCSI(小型計算機系統介面--一種數據傳輸的公共協議)指令進行封裝,這樣就可以使這些指令能夠通過基於IP(乙太網或千兆位乙太網)「網路」進行傳輸。這一標準的目的是允許使用現有的乙太網網路傳輸SCSI指令和數據,而這一過程完全不依賴於地點。對這一產品的另外一種描述是,它是連接到TCP/IP網路的存儲,但可以使用與DAS和SAN存儲一樣的I/O指令對其進行訪問。
❻ 在圖像處理中有哪些演算法
1、圖像變換:
由於圖像陣列很大,直接在空間域中進行處理,涉及計算量很大。採用各種圖像變換的方法,如傅立葉變換、沃爾什變換、離散餘弦變換等間接處理技術,將空間域的處理轉換為變換域處理,可減少計算量,獲得更有效的處理。它在圖像處理中也有著廣泛而有效的應用。
2、圖像編碼壓縮:
圖像編碼壓縮技術可減少描述圖像的數據量,以便節省圖像傳輸、處理時間和減少所佔用的存儲器容量。
壓縮可以在不失真的前提下獲得,也可以在允許的失真條件下進行。
編碼是壓縮技術中最重要的方法,它在圖像處理技術中是發展最早且比較成熟的技術。
3、圖像增強和復原:
圖像增強和復原的目的是為了提高圖像的質量,如去除雜訊,提高圖像的清晰度等。
圖像增強不考慮圖像降質的原因,突出圖像中所感興趣的部分。如強化圖像高頻分量,可使圖像中物體輪廓清晰,細節明顯;如強化低頻分量可減少圖像中雜訊影響。
4、圖像分割:
圖像分割是數字圖像處理中的關鍵技術之一。
圖像分割是將圖像中有意義的特徵部分提取出來,其有意義的特徵有圖像中的邊緣、區域等,這是進一步進行圖像識別、分析和理解的基礎。
5、圖像描述:
圖像描述是圖像識別和理解的必要前提。
一般圖像的描述方法採用二維形狀描述,它有邊界描述和區域描述兩類方法。對於特殊的紋理圖像可採用二維紋理特徵描述。
6、圖像分類:
圖像分類屬於模式識別的范疇,其主要內容是圖像經過某些預處理(增強、復原、壓縮)後,進行圖像分割和特徵提取,從而進行判決分類。
圖像分類常採用經典的模式識別方法,有統計模式分類和句法模式分類。
(6)存儲圖像關鍵技術是擴展閱讀:
圖像處理主要應用在攝影及印刷、衛星圖像處理、醫學圖像處理、面孔識別、特徵識別、顯微圖像處理和汽車障礙識別等。
數字圖像處理技術源於20世紀20年代,當時通過海底電纜從英國倫敦到美國紐約傳輸了一幅照片,採用了數字壓縮技術。
數字圖像處理技術可以幫助人們更客觀、准確地認識世界,人的視覺系統可以幫助人類從外界獲取3/4以上的信息,而圖像、圖形又是所有視覺信息的載體,盡管人眼的鑒別力很高,可以識別上千種顏色,
但很多情況下,圖像對於人眼來說是模糊的甚至是不可見的,通過圖象增強技術,可以使模糊甚至不可見的圖像變得清晰明亮。
❼ 什麼是計算機圖像處理,數字圖像處理技術
什麼是數字圖像處理 ?
數字圖像處理(Digital Image Processing)是通過計算機對圖像進行去除雜訊、增強、復原、分割、提取特徵等處理的方法和技術。數字圖像處理的產生和迅速發展主要受三個因素的影響:一是計算機的發展;二是數學的發展(特別是離散數學理論的創立和完善);三是廣泛的農牧業、林業、環境、軍事、工業和醫學等方面的應用需求的增長。
數字圖像處理(Digital Image Processing)又稱為計算機圖像處理,它是指將圖像信號轉換成數字信號並利用計算機對其進行處理的過程。
數字圖像處理的主要目的
一般來講,對圖像進行處理(或加工、分析)的主要目的有三個方面
(1)提高圖像的視感質量,如進行圖像的亮度、彩色變換,增強、抑制某些成分,對圖像進行幾何變換等,以改善圖像的質量。
(2)提取圖像中所包含的某些特徵或特殊信息,這些被提取的特徵或信息往往為計算機分析圖像提供便利。提取特徵或信息的過程是模式識別或計算機視覺的預處理。提取的特徵可以包括很多方面,如頻域特徵、灰度或顏色特徵、邊界特徵、區域特徵、紋理特徵、形狀特徵、拓撲特徵和關系結構等。
(3)圖像數據的變換、編碼和壓縮,以便於圖像的存儲和傳輸。不管是何種目的的圖像處理,都需要由計算機和圖像專用設備組成的圖像處理系統對圖像數據進行輸入、加工和輸出。
數字圖像處理的常用方法
數字圖像處理常用方法有以下幾個方面:
1)圖像變換:由於圖像陣列很大,直接在空間域中進行處理,涉及計算量很大。因此,往往採用各種圖像變換的方法,如傅立葉變換、沃爾什變換、離散餘弦變換等間接處理技術,將空間域的處理轉換為變換域處理,不僅可減少計算量,而且可獲得更有效的處理(如傅立葉變換可在頻域中進行數字濾波處理)。新興研究的小波變換在時域和頻域中都具有良好的局部化特性,它在圖像處理中也有著廣泛而有效的應用。
2 )圖像編碼壓縮:圖像編碼壓縮技術可減少描述圖像的數據量(即比特數),以便節省圖像傳輸、處理時間和減少所佔用的存儲器容量。壓縮可以在不失真的前提下獲得,也可以在允許的失真條件下進行。編碼是壓縮技術中最重要的方法,它在圖像處理技術中是發展最早且比較成熟的技術。
3 )圖像增強和復原:圖像增強和復原的目的是為了提高圖像的質量,如去除雜訊,提高圖像的清晰度等。圖像增強不考慮圖像降質的原因,突出圖像中所感興趣的部分。如強化圖像高頻分量,可使圖像中物體輪廓清晰,細節明顯;如強化低頻分量可減少圖像中雜訊影響。圖像復原要求對圖像降質的原因有一定的了解,一般講應根據降質過程建立「降質模型」,再採用某種濾波方法,恢復或重建原來的圖像。
4 )圖像分割:圖像分割是數字圖像處理中的關鍵技術之一。圖像分割是將圖像中有意義的特徵部分提取出來,其有意義的特徵有圖像中的邊緣、區域等,這是進一步進行圖像識別、分析和理解的基礎。雖然已研究出不少邊緣提取、區域分割的方法,但還沒有一種普遍適用於各種圖像的有效方法。因此,對圖像分割的研究還在不斷深入之中,是圖像處理中研究的熱點之一。
5 )圖像描述:圖像描述是圖像識別和理解的必要前提。作為最簡單的二值圖像可採用其幾何特性描述物體的特性,一般圖像的描述方法採用二維形狀描述,它有邊界描述和區域描述兩類方法。對於特殊的紋理圖像可採用二維紋理特徵描述。隨著圖像處理研究的深入發展,已經開始進行三維物體描述的研究,提出了體積描述、表面描述、廣義圓柱體描述等方法。
6 )圖像分類(識別):圖像分類(識別)屬於模式識別的范疇,其主要內容是圖像經過某些預處理(增強、復原、壓縮)後,進行圖像分割和特徵提取,從而進行判決分類。圖像分類常採用經典的模式識別方法,有統計模式分類和句法(結構)模式分類,近年來新發展起來的模糊模式識別和人工神經網路模式分類在圖像識別中也越來越受到重視。
數字圖像處理的應用工具
數字圖像處理的工具可分為三大類:
第一類包括各種正交變換和圖像濾波等方法,其共同點是將圖像變換到其它域(如頻域)中進行處理(如濾波)後,再變換到原來的空間(域)中。
第二類方法是直接在空間域中處理圖像,它包括各種統計方法、微分方法及其它數學方法。
第三類是數學形態學運算,它不同於常用的頻域和空域的方法,是建立在積分幾何和隨機集合論的基礎上的運算。
由於被處理圖像的數據量非常大且許多運算在本質上是並行的,所以圖像並行處理結構和圖像並行處理演算法也是圖像處理中的主要研究方向。
❽ DVR的關鍵技術是什麼
DVR即是Digital Video Recorder(也叫: Personal video recorder 即PVR)——數字視頻錄像機或數字硬碟錄像機,我們習慣上稱為硬碟錄像機。
它是一套進行圖像存儲處理的計算機系統,具有對圖像/語音進行長時間錄像、錄音、遠程監視和控制的功能,DVR集合了錄像機、畫面分割器、雲台鏡頭控制、報警控制、網路傳輸等五種功能於一身,用一台設備就能取代模擬監控系統一大堆設備的功能,而且在價格上也逐漸佔有優勢。
DVR採用的是數字記錄技術,在圖像處理、圖像儲存、檢索、備份、以及網路傳遞、遠程式控制制等方面也遠遠優於模擬監控設備,DVR代表了電視監控系統的發展方向,是目前市面上電視監控系統的首選產品。
市面上流行的產品有PC平台DVR和嵌入式DVR,嵌入式DVR在穩定性、可靠性、易用性等方面有「專業化」的優勢,嵌入式DVR會逐步侵佔PC平台DVR的市場。PC平台DVR在通用性、可擴張性方面佔有優勢,在網路視頻監控系統中仍可負擔管理主機的角色,仍然有其自身的市場份額。
由於價格、性能等原因,在國內市場上的DVR產品主要是包括台灣在內的大中華地區及韓國的產品佔主導地位,大陸地區企業具有「中國製造」的優勢,但在技術上幾乎完全依賴國外的技術發展,沒有掌握核心晶元和嵌入式主板開發的關鍵技術,企業的技術創新能力較差,台灣和鄰國韓國在這方面強於大陸地區企業。
目前國外已有很多公司投入資金開發多路的MPEG-II、MPEG-4壓縮晶元,和小波的圖像壓縮晶元,新型壓縮晶元的出現和應用,將使數字化網路視頻監控邁向新的時代。
同時隨著存儲設備容量的不斷增大,價格不斷地降低,新的存儲技術的發展,攝像機的全數字、高清晰度不斷完善,高畫質圖像標準的產品將投入市場,成為數字化網路視頻監控的新寵。
另外,企業在開發新產品過程中還應該注意通過行業協會建立統一標准,使不同企業的產品能夠通過網路真正實現數據共享,並且應盡可能與樓宇智能系統中其它各子系統實現無縫連接,實現樓宇系統的統一管理和控制。
DVR系統的硬體主要由CPU,內存,主板,顯卡,視頻採集卡,機箱,電源,硬碟,連接線纜等構成,讓我們從系統學的觀點出發,來分析這些部件的穩定性和可靠性。
DVR系統的軟體是由個人公司進行開發完成的,建立在硬體系統之上的,著名的DVR軟體包括花生殼,DVR-CPS等
❾ 多媒體信息處理的四中關鍵技術有哪些
多媒體信息處理的四中關鍵技術:
1、數據壓縮和編碼技術:數據壓縮和編碼技術是多媒體技術的關鍵技術之一。在處理音頻和視頻信號時,如果每一幅圖像都不經過任何壓縮直接進行數字化編碼,那麼其容量是非常巨大的,現有計算機的存儲空間和匯流排的傳輸速度都很難適應。
2、數字圖像技術:在圖像、文字和聲音這三種形式的媒體中,圖像包含的信息量是最大的。人們的知識絕大部分是通過視覺獲得的。圖像的特點是只能通過人的視覺感受,並且非常依賴於人的視覺器官。數字圖像技術就是對圖像進行計算機處理,使其更適合於人眼或儀器分辨,並獲取其中的信息。
5、多媒體通信技術:多媒體通信技術突破了計算機、通信、廣播和出版的界限,使它們融為一體,利用通信網路綜合性地完成文本、圖片、動畫、音頻、視頻等多媒體信息的傳輸和交換。
❿ 多媒體技術中,最關鍵的技術是() A表現技術 B傳輸技術 C存儲技術 D壓縮技術
多媒體技術中,最關鍵的技術是壓縮技術。
多媒體的關鍵技術主要包括數據壓縮與解壓縮、媒體同步、多媒體網路、超媒體等。其中以視頻和音頻數據的壓縮與解壓縮技術最為重要。
視頻和音頻信號的數據量大,同時要求傳輸速度要高,目前的微機還不能完全滿足要求,因此,對多媒體數據必須進行實時的壓縮與解壓縮。
(10)存儲圖像關鍵技術是擴展閱讀
多媒體技術應用的意義在於:
1·使計算機可以處理人類生活中最直接、最普遍的信息,從而使得計算機應用領域及功能得到了極大的擴展。
2·使計算機系統的人機交互界面和手段更加友好和方便,非專業人員可以方便地使用和操作計算機。
3·多媒體技術使音像技術、計算機技術和通信技術三大信息處理技術緊密地結合起來,為信息處理技術發展奠定了新的基石。多媒體技術發展已經有多年的歷史了,聲音、視頻、圖像壓縮方面的基礎技術已逐步成熟,並形成了產品進入市場,熱門的技術如模式識別、MPEG壓縮技術、虛擬現實技術逐步走向成熟,相信不久也會進入市場。