① 磁碟的存儲大小是什麼決定的
好專業的問題呀,簡單點說,磁碟的存儲大小是由磁碟的碟片數量,單位存儲密度,磁頭數量,磁軌數量,柱面,扇區共同決定的.硬碟的容量=柱面數*磁頭數*扇區數*512B
硬碟最基本的組成部分是由堅硬金屬材料製成的塗以磁性介質的碟片,不同容量硬碟的碟片數不等。每個碟片有兩面,都可記錄信息。碟片被分成許多扇形的區域,每個區域叫一個扇區,每個扇區可存儲128×2的N次方(N=0.1.2.3)位元組信息。在DOS中每扇區是128×2的2次方=512位元組,碟片表面上以碟片中心為圓心,不同半徑的同心圓稱為磁軌。硬碟通常由重疊的一組碟片構成,每個盤面都被劃分為數目相等的磁軌,並從外緣的「0」開始編號,具有相同編號的磁軌形成一個圓柱,稱之為磁碟的柱面。磁碟的柱面數與一個盤面上的磁軌數是相等的。由於每個盤面都有自己的磁頭,因此,盤面數等於總的磁頭數。所謂硬碟的CHS,即Cylinder(柱面)、Head(磁頭)、Sector(扇區),只要知道了硬碟的CHS的數目,即可確定硬碟的容量,硬碟的容量=柱面數*磁頭數*扇區數*512B。
文件當然是以數字0或1數據形態存儲的,在讀取這些數據後,CPU會通過處理還原解析這些數據.並確定該如何操作這些文件.
② 磁碟存儲器是什麼設備
磁碟存儲器
magnetic disk storage
以磁碟為存儲介質的存儲器。它是利用磁記錄技術在塗有磁記錄介質的旋轉圓盤上進行數據存儲的輔助存儲器。具有存儲容量大、數據傳輸率高、存儲數據可長期保存等特點。在計算機系統中,常用於存放操作系統、程序和數據,是主存儲器的擴充。發展趨勢是提高存儲容量,提高數據傳輸率,減少存取時間,並力求輕、薄、短、小。磁碟存儲器通常由磁碟、磁碟驅動器(或稱磁碟機)和磁碟控制器構成。
磁碟 兩面塗有可磁化介質的平面圓片,數據按閉合同心圓軌道記錄在磁性介質上,這種同心圓軌道稱磁軌。磁碟的主要技術參數記錄密度包括位密度、道密度和面密度。位密度指碟片同心圓軌道上單位長度上記錄多少位單元,用位/毫米(bpmm)表示;道密度是指記錄面徑向每單位長度上所能容納的磁軌數,常用道/毫米(tpmm)表示 ;面密度是指記錄面上單位面積所記錄的位單元,常用位/毫米2表示。磁碟的存儲容量是磁碟上所能記錄二進制數碼的總量 ,常用千位元組(KB)或兆位元組(MB)來表示。存取時間包括磁頭從一道移到另一道所需的時間、磁頭移動後的穩時間、碟片旋轉等待時間、磁頭載入時間常用毫秒(ms)表示。誤碼率指在向設備寫入一批數據並回讀後,所檢出的錯誤位數與這一批數據總位數的比值。
因盤基不同,磁碟可分為硬碟和軟盤。硬碟盤基通常用鋁合金材料製成,軟盤盤基用撓性塑料製成,硬磁碟有固定和可互換(可裝卸)兩類安裝方式。軟磁碟只有可互換安裝方式。
磁碟驅動器 驅動磁碟轉動並在盤面上通過磁頭進行寫入讀出動作的裝置。磁碟裝在驅動器上,以恆速旋轉。磁頭浮動在碟片表面。在磁碟控制器的控制下,經磁頭的電磁轉換在盤面磁層上進行讀寫數據操作。硬磁碟驅動器分頭臂固定型和頭臂移動型兩類。頭臂移動型硬磁碟驅動器又可分為可互換式與固定式兩類。新型固定式磁碟由於採用了溫徹斯特技術,因此又稱溫徹斯特磁碟驅動器,簡稱溫式磁碟機。磁碟機每秒向計算機傳輸的最多數據位數稱為數據傳輸率,用千位元組/秒(KB/s)或兆位元組/秒(MB/s)表示。
磁碟控制器 即磁碟驅動器適配器。是計算機與磁碟驅動器的介面設備。它接收並解釋計算機來的命令,向磁碟驅動器發出各種控制信號。檢測磁碟驅動器狀態,按照規定的磁碟數據格式,把數據寫入磁碟和從磁碟讀出數據。磁碟控制器類型很多,但它的基本組成和工作原理大體上是相同的。它主要由與計算機系統匯流排相連的控制邏輯電路,微處理器,完成讀出數據分離和寫入數據補償的讀寫數據解碼和編碼電路,數據檢錯和糾錯電路,根據計算機發來的命令對數據傳遞、串並轉換以及格式化等進行控制的邏輯電路,存放磁碟基本輸入輸出程序的只讀存儲器和用以數據交換的緩沖區等部分組成。
溫徹斯特磁碟存儲器 簡稱溫盤。因採用溫徹斯特技術而得名。溫徹斯特技術主要包括:①密封的頭盤組件。即將磁頭、盤組和定位機構等密封在一個盤腔內,後來發展到連主軸電機等全部都裝入盤腔,可進行整體更換。②採用小尺寸和小浮力的接觸起停式浮動磁頭。藉以得到超小的頭盤間隙(亞微米級),以提高記錄密度。③採用具有潤滑性能的薄膜磁記錄介質。④採用磁性流體密封技術。可防止塵埃、油、氣侵入盤腔,從而保持盤腔的高度凈化。⑤採用集成度高的前置放大器等。目前硬碟驅動器均採用了溫徹斯特技術。它與可換式磁碟比,大幅度提高了記錄密度,提高了磁碟機的可靠性,使其進一步小型化。
軟磁碟存儲器 簡稱軟盤,是一種封裝在方形保護套內的、在軟質基片上塗有氧化鐵磁層的記錄介質。軟盤驅動器的磁頭與盤面是在接觸狀態下工作,因而轉速很低,其他工作原理與硬碟相類似。早期軟盤盤徑為8英寸(1英寸=2.54厘米),後來發展成5.25英寸,現在又廣泛採用3.5英寸軟盤。驅動器厚度也逐年減小。特別是薄型3.5英寸和5.25英寸軟盤機發展很快,在微機和終端設備中得到了廣泛應用。
③ 硬碟存儲信息的格式由什麼構成
為了便於管理,磁碟被劃分為若干級別的管理單位,它們分別是記錄面,
柱面
和
扇區
。
硬碟一般由多個碟片組成,碟片的上下兩面都能記錄信息。通常把磁碟片表面稱為記錄面。因為磁碟上存儲的信息必須由磁頭讀出,所以磁碟面的面數與磁頭數量是一樣的。一般就用磁頭號(Head)來代替記錄面號。
記錄面上一系列
同心圓
稱為
磁軌
。每個碟片表面通常有幾十到幾百個磁軌,每個磁軌又分為若干個扇區。磁軌的編址是從外向內依次編號,最外一個同心圓叫0磁軌,最裡面的一個同心圓叫n磁軌。所有記錄面上同一編號的磁軌就構成了柱面(Cylinder),所以柱面數就等同於每個盤面上的磁軌數。
每一個磁軌被劃分為若干個扇區(Sector)。扇區的編號有多種方法,可以連續編號,也可以間隔編號。磁碟記錄
面經
這樣編址後,就可用n磁軌m扇區的磁碟地址找到實際磁碟上與之相對應的記錄區。除了磁軌號和扇區號之外,還有磁頭號,以說明本次處理是在哪一個記錄面上。對活動頭磁碟組來說,磁碟地址是由磁頭號、磁軌號和扇區號三部分組成。
在磁軌上,信息是按扇區存放的,每個扇區中存放一定數量的位元組(一般為512個位元組),各個扇區存放的位元組數是相同的。因為磁軌是一個閉合的同心圓,為進行讀/寫操作,就必須定出磁軌的起始位置,這個起始位置稱為「索引」。索引標志在感測器檢索下可產生
脈沖信號
,再通過磁碟控制器處理,便可定出磁軌起始位置。
磁碟存儲器
的每個扇區記錄
定長
的數據,因此讀/寫操作是以扇區為單位逐位串列讀出或寫入的。每一個扇區記錄一個記錄塊。
④ 計算機題目
假設某硬碟存儲器由2碟組成,每個盤面有2000個通道,每個磁軌有1000個扇區,
每個扇區的容量為512位元組,則該磁碟的存儲容量大約為(B).
A. 1GBB 2GBC. 3GBD. 4GB
存儲容量=2×2000×1000×512=2048000000 Byte
即:2GB
⑤ 存放在磁碟上的信息,一般是以什麼形式存放的
碟片的上下兩面都能記錄信息,通常把磁碟片表面稱為記錄面。記錄面上一系列同心圓稱為磁軌。每個碟片表面通常有幾十到幾百個磁軌,每個磁軌又分為若干個扇區。
磁軌的編址是從外向內依次編號,最外一個同心圓叫0磁軌,最裡面的一個同心圓叫n磁軌,n磁軌裡面的圓面積並不用來記錄信息。扇區的編號有多種方法,可以連續編號,也可間隔編號。磁碟記錄面經這樣編址後,就可用n磁軌m扇區的磁碟地址找到實際磁碟上與之相對應的記錄區。除了磁軌號和扇區號之外,還有記錄面的面號,以說明本次處理是在哪一個記錄面上。例如對活動頭磁碟組來說,磁碟地址是由記錄面號(也稱磁頭號)、磁軌號和扇區號三部分組成。
在磁軌上,信息是按區存放的,每個區中存放一定數量的字或位元組,各個區存放的字或位元組數是相同的。為進行讀/寫操作,要求定出磁軌的起始位置,這個起始位置稱為索引。索引標志在感測器檢索下可產生脈沖信號,再通過磁碟控制器處理,便可定出磁軌起始位置。
磁碟存儲器的每個扇區記錄定長的數據,因此讀/寫操作是以扇區為單位一位一位串列進行的。每一個扇區記錄一個記錄塊。數據在磁碟上的記錄格式如下:
每個扇區開始時由磁碟控制器產生一個扇標脈沖。扇標脈沖的出現即標志一個扇區的開始。兩個扇標脈沖之間的一段磁軌區域即為一個扇區(一記錄塊)。每個記錄塊由頭部空白段、序標段、數據段、校驗欄位及尾部空白段組成。其中空白段用來留出一定的時間作為磁碟控制器的讀寫准備時間,序標被用來作為磁碟控制器的同步定時信號。序標之後即為本扇區所記錄的數據。數據之後是校驗字,它用來校驗磁碟讀出的數據是否正確。
⑥ 電腦硬碟的構造
結構
硬碟(hard disk)是計算機中最重要的存儲器之一。計算機需要正常運行所需的大部分軟體都存儲在硬碟上。因為硬碟存儲的容量較大,區別於內存、光碟。硬碟是電腦上使用使用堅硬的旋轉碟片為基礎的存儲設備。它在平整的磁性表面存儲和檢索數字數據。
物理結構
磁頭是硬碟中最昂貴的部件,也是硬碟技術中最重要和最關鍵的一環。傳統的磁頭是讀寫合一的電磁感應式磁頭,但是,硬碟的讀、寫卻是兩種截然不同的操作,為此,這種二合一磁頭在設計時必須要同時兼顧到讀/寫兩種特性,從而造成了硬碟設計上的局限。
硬碟
而MR磁頭(Magnetoresistive heads),即磁阻磁頭,採用的是分離式的磁頭結構:寫入磁頭仍採用傳統的磁感應磁頭(MR磁頭不能進行寫操作),讀取磁頭則採用新型的MR磁頭,即所謂的感應寫、磁阻讀。這樣,在設計時就可以針對兩者的不同特性分別進行優化,以得到最好的讀/寫性能。另外,MR磁頭是通過阻值變化而不是電流變化去感應信號幅度,因而對信號變化相當敏感,讀取數據的准確性也相應提高。而且由於讀取的信號幅度與磁軌寬度無關,故磁軌可以做得很窄,從而提高了碟片密度,達到200MB/英寸2,而使用傳統的磁頭只能達到20MB/英寸2,這也是MR磁頭被廣泛應用的最主要原因。MR磁頭已得到廣泛應用,而採用多層結構和磁阻效應更好的材料製作的GMR磁頭(Giant Magnetoresistive heads)也逐漸普及。
磁軌
當磁碟旋轉時,磁頭若保持在一個位置上,則每個磁頭都會在磁碟表面劃出一個圓形軌跡,這些圓形軌跡就叫做磁軌。這些磁軌用肉眼是根本看不到的,因為它們僅是盤面上以特殊方式磁化了的一些磁化區,
垂直記錄時磁顆粒狀態表示
磁碟上的信息便是沿著這樣的軌道存放的。相鄰磁軌之間並不是緊挨著的,這是因為磁化單元相隔太近時磁性會相互產生影響,同時也為磁頭的讀寫帶來困難。一張1.44MB的3.5英寸軟盤,一面有80個磁軌,而硬碟上的磁軌密度則遠遠大於此值,通常一面有成千上萬個磁軌。
磁碟表面塗有做為紀錄使用的磁性介質,其在顯微鏡下呈現出來的便是一個個磁顆粒。微小的磁顆粒極性可以被磁頭快速的改變,並且在改變之後可以穩定的保持,系統通過磁通量以及磁阻的變化來分辨二進制中的0或者1。也正是因為所有的操作均是在微觀情況下進行,所以如果硬碟在高速運行的同時受到外力的震盪,將會有可能因為磁頭拍擊磁碟表面而造成不可挽回的數據損失。除此之外,磁顆粒的單軸異向性和體積會明顯的磁顆粒的熱穩定性,而熱穩定性的高低則決定了磁顆粒狀態的穩定性,也就是決定了所儲存數據的正確性和穩定性。但是,磁顆粒的單軸異向性和體積也不能一味地提高,它們受限於磁頭能提供的寫入場以及介質信噪比的限制。
扇區
磁碟上的每個磁軌被等分為若干個弧段,這些弧段便是磁碟的扇區,每個扇區可以存放512個位元組的信息,磁碟驅動器在向磁碟讀取和寫入數據時,要以扇區為單位。1.44MB3.5英寸的軟盤,每個磁軌分為18個扇區。
柱面
硬碟通常由重疊的一組碟片構成,每個盤面都被劃分為數目相等的磁軌,並從外緣的「0」開始編號,具有相同編號的磁軌形成一個圓柱,稱之為磁碟的柱面。磁碟的柱面數與一個盤面上的磁軌數是相等的。由於每個盤面都有自己的磁頭,因此,盤面數等於總的磁頭數。所謂硬碟的CHS,即Cylinder(柱面)、Head(磁頭)、Sector(扇區),只要知道了硬碟的CHS的數目,即可確定硬碟的容量,硬碟的容量=柱面數磁頭數扇區數512B。
邏輯結構
硬碟的容量還非常小的時候,人們採用與軟盤類似的結構生產硬碟。也就是硬碟碟片的每一條磁軌都具有相同的扇區數。由此產生了所謂的3D參數 (Disk Geometry). 既磁頭數(Heads),柱面數(Cylinders),扇區數(Sectors),以及相應的定址方式。
其中:磁頭數(Heads)表示硬碟總共有幾個磁頭,也就是有幾面碟片, 最大為 255 (用 8 個二進制位存儲);柱面數(Cylinders) 表示硬碟每一面碟片上有幾條磁軌,最大為 1023(用 10 個二進制位存儲);每個扇區一般是 512個位元組, 理論上講這不是必須的,但好像沒有取別的值的。所以磁碟最大容量為:255 * 1023 * 63 * 512 / 1048576 = 8024 GB ( 1M =1048576 Bytes )或硬碟廠商常用的單位:255 * 1023 * 63 * 512 / 1000000 = 8414 GB ( 1M =1000000 Bytes )
在 CHS定址方式中,磁頭,柱面,扇區的取值范圍分別為 0到 Heads - 1。0 到 Cylinders - 1。 1 到 Sectors (注意是從 1 開始)。
基本 Int 13H 調用簡介
BIOS Int 13H 調用是 BIOS提供的磁碟基本輸入輸出中斷調用,它可以完成磁碟(包括硬碟和軟盤)的復位,讀寫,校驗,定位,診,格式化等功能。它使用的就是CHS 定址方式, 因此最大識能訪問 8 GB 左右的硬碟 (本文中如不作特殊說明,均以 1M = 1048576 位元組為單位)。
⑦ 硬碟存儲信息的格式的構成
為了便於管理,磁碟被劃分為若干級別的管理單位,它們分別是記錄面,柱面和扇區。 硬碟一般由多個碟片組成,碟片的上下兩面都能記錄信息。通常把磁碟片表面稱為記錄面。因為磁碟上存儲的信息必須由磁頭讀出,所以磁碟面的面數與磁頭數量是一樣的。一般就用磁頭號(Head)來代替記錄面號。 記錄面上一系列同心圓稱為磁軌。每個碟片表面通常有幾十到幾百個磁軌,每個磁軌又分為若干個扇區。磁軌的編址是從外向內依次編號,最外一個同心圓叫0磁軌,最裡面的一個同心圓叫n磁軌。所有記錄面上同一編號的磁軌就構成了柱面(Cylinder),所以柱面數就等同於每個盤面上的磁軌數。 每一個磁軌被劃分為若干個扇區(Sector)。扇區的編號有多種方法,可以連續編號,也可以間隔編號。磁碟記錄面經這樣編址後,就可用n磁軌m扇區的磁碟地址找到實際磁碟上與之相對應的記錄區。除了磁軌號和扇區號之外,還有磁頭號,以說明本次處理是在哪一個記錄面上。對活動頭磁碟組來說,磁碟地址是由磁頭號、磁軌號和扇區號三部分組成。 在磁軌上,信息是按扇區存放的,每個扇區中存放一定數量的位元組(一般為512個位元組),各個扇區存放的位元組數是相同的。因為磁軌是一個閉合的同心圓,為進行讀/寫操作,就必須定出磁軌的起始位置,這個起始位置稱為「索引」。索引標志在感測器檢索下可產生脈沖信號,再通過磁碟控制器處理,便可定出磁軌起始位置。 磁碟存儲器的每個扇區記錄定長的數據,因此讀/寫操作是以扇區為單位逐位串列讀出或寫入的。每一個扇區記錄一個記錄塊。
⑧ 電腦硬碟的結構
硬碟(hard disk)是計算機中最重要的存儲器之一。計算機需要正常運行所需的大部分軟體都存儲在硬碟上。因為硬碟存儲的容量較大,區別於內存、光碟。硬碟是電腦上使用使用堅硬的旋轉碟片為基礎的存儲設備。它在平整的磁性表面存儲和檢索數字數據。 磁頭
磁頭是硬碟中最昂貴的部件,也是硬碟技術中最重要和最關鍵的一環。傳統的磁頭是讀寫合一的電磁感應式磁頭,但是,硬碟的讀、寫卻是兩種截然不同的操作,為此,這種二合一磁頭在設計時必須要同時兼顧到讀/寫兩種特性,從而造成了硬碟設計上的局限。而MR磁頭(Magnetoresistive heads),即磁阻磁頭,採用的是分離式的磁頭結構:寫入磁頭仍採用傳統的磁感應磁頭(MR磁頭不能進行寫操作),讀取磁頭則採用新型的MR磁頭,即所謂的感應寫、磁阻讀。這樣,在設計時就可以針對兩者的不同特性分別進行優化,以得到最好的讀/寫性能。另外,MR磁頭是通過阻值變化而不是電流變化去感應信號幅度,因而對信號變化相當敏感,讀取數據的准確性也相應提高。而且由於讀取的信號幅度與磁軌寬度無關,故磁軌可以做得很窄,從而提高了碟片密度,達到200MB/英寸2,而使用傳統的磁頭只能達到20MB/英寸2,這也是MR磁頭被廣泛應用的最主要原因。MR磁頭已得到廣泛應用,而採用多層結構和磁阻效應更好的材料製作的GMR磁頭(Giant Magnetoresistive heads)也逐漸普及。
磁軌
當磁碟旋轉時,磁頭若保持在一個位置上,則每個磁頭都會在磁碟表面劃出一個圓形軌跡,這些圓形軌跡就叫做磁軌。這些磁軌用肉眼是根本看不到的,因為它們僅是盤面上以特殊方式磁化了的一些磁化區,磁碟上的信息便是沿著這樣的軌道存放的。相鄰磁軌之間並不是緊挨著的,這是因為磁化單元相隔太近時磁性會相互產生影響,同時也為磁頭的讀寫帶來困難。一張1.44MB的3.5英寸軟盤,一面有80個磁軌,而硬碟上的磁軌密度則遠遠大於此值,通常一面有成千上萬個磁軌。
磁碟表面塗有做為紀錄使用的磁性介質,其在顯微鏡下呈現出來的便是一個個磁顆粒。微小的磁顆粒極性可以被磁頭快速的改變,並且在改變之後可以穩定的保持,系統通過磁通量以及磁阻的變化來分辨二進制中的0或者1。也正是因為所有的操作均是在微觀情況下進行,所以如果硬碟在高速運行的同時受到外力的震盪,將會有可能因為磁頭拍擊磁碟表面而造成不可挽回的數據損失。除此之外,磁顆粒的單軸異向性和體積會明顯的磁顆粒的熱穩定性,而熱穩定性的高低則決定了磁顆粒狀態的穩定性,也就是決定了所儲存數據的正確性和穩定性。但是,磁顆粒的單軸異向性和體積也不能一味地提高,它們受限於磁頭能提供的寫入場以及介質信噪比的限制。扇區
磁碟上的每個磁軌被等分為若干個弧段,這些弧段便是磁碟的扇區,每個扇區可以存放512個位元組的信息,磁碟驅動器在向磁碟讀取和寫入數據時,要以扇區為單位。1.44MB3.5英寸的軟盤,每個磁軌分為18個扇區。
柱面
硬碟通常由重疊的一組碟片構成,每個盤面都被劃分為數目相等的磁軌,並從外緣的「0」開始編號,具有相同編號的磁軌形成一個圓柱,稱之為磁碟的柱面。磁碟的柱面數與一個盤面上的磁軌數是相等的。由於每個盤面都有自己的磁頭,因此,盤面數等於總的磁頭數。所謂硬碟的CHS,即Cylinder(柱面)、Head(磁頭)、Sector(扇區),只要知道了硬碟的CHS的數目,即可確定硬碟的容量,硬碟的容量=柱面數磁頭數扇區數512B。 硬碟參數釋疑
硬碟的容量還非常小的時候,人們採用與軟盤類似的結構生產硬碟。也就是硬碟碟片的每一條磁軌都具有相同的扇區數。由此產生了所謂的3D參數 (Disk Geometry). 既磁頭數(Heads),柱面數(Cylinders),扇區數(Sectors),以及相應的定址方式。
其中:磁頭數(Heads)表示硬碟總共有幾個磁頭,也就是有幾面碟片, 最大為 255 (用 8 個二進制位存儲);柱面數(Cylinders) 表示硬碟每一面碟片上有幾條磁軌,最大為 1023(用 10 個二進制位存儲);每個扇區一般是 512個位元組, 理論上講這不是必須的,但好像沒有取別的值的。所以磁碟最大容量為:255 * 1023 * 63 * 512 / 1048576 = 8024 GB ( 1M =1048576 Bytes )或硬碟廠商常用的單位:255 * 1023 * 63 * 512 / 1000000 = 8414 GB ( 1M =1000000 Bytes )
在 CHS定址方式中,磁頭,柱面,扇區的取值范圍分別為 0到 Heads - 1。0 到 Cylinders - 1。 1 到 Sectors (注意是從 1 開始)。
基本 Int 13H 調用簡介
BIOS Int 13H 調用是 BIOS提供的磁碟基本輸入輸出中斷調用,它可以完成磁碟(包括硬碟和軟盤)的復位,讀寫,校驗,定位,診,格式化等功能。它使用的就是CHS 定址方式, 因此最大識能訪問 8 GB 左右的硬碟 (本文中如不作特殊說明,均以 1M = 1048576 位元組為單位)。
⑨ 計算機硬碟是一個多盤面雙面的磁碟系統,它採用接觸式磁頭機制
它採用的是非接觸式!
磁頭與碟片間距大概是頭發絲的40分之一!
如果磁頭接觸碟片那就麻煩了,碟片就整體劃傷了!
那樣硬碟就是物理損壞!
⑩ 磁碟存儲器的結構原理
磁碟存儲器利用磁記錄技術在旋轉的圓盤介質上進行數據存儲的輔助存儲器。這是一種應用廣泛的直接存取存儲器。其容量較主存儲器大千百倍,在各種規模的計算機系統中,常用作存放操作系統、程序和數據,是對主存儲器的擴充。磁碟存儲器存入的數據可長期保存,與其他輔助存儲器比較,磁碟存儲器具有較大的存儲容量和較快的數據傳輸速率。典型的磁碟驅動器包括碟片主軸旋轉機構與驅動電機、頭臂與頭臂支架、頭臂驅動電機、凈化盤腔與空氣凈化機構、寫入讀出電路、伺服定位電路和控制邏輯電路等。
磁碟以恆定轉速旋轉。懸掛在頭臂上具有浮動面的頭塊(浮動磁頭),靠載入彈簧的力量壓向盤面,碟片表面帶動的氣流將頭塊浮起。頭塊與碟片間保持穩定的微小間隙。經濾塵器過濾的空氣不斷送入盤腔,保持碟片和頭塊處於高度凈化的環境內,以防頭塊與盤面劃傷。根據控制器送來的磁軌地址(即圓柱面地址)和尋道命令,定位電路驅動直線電機將頭臂移至目標磁軌上。伺服磁頭讀出伺服磁軌信號並反饋到定位電路,使頭臂跟隨伺服磁軌穩定在目標磁軌上。讀寫與選頭電路根據控制器送來的磁頭地址接通應選的磁頭,將控制器送來的數據以串列方式逐位記錄在目標磁軌上;或反之,從選定的磁軌讀出數據並送往控制器。頭臂裝在梳形架小車上,在尋道時所有頭臂一同移動。所有數據面上相同直徑的同心圓磁軌總稱圓柱面,即頭臂定位一次所能存取的全部磁軌。每個磁軌都按固定的格式記錄。在標志磁軌起始位置的索引之後,記錄該道的地址(圓柱面號和頭號)、磁軌的狀況和其他參考信息。在每一記錄段的尾部附記有該段的糾錯碼,對連續少數幾位的永久缺陷所造成的錯誤靠糾錯碼糾正,對有多位永久缺陷的磁軌須用備分磁軌代替。寫讀操作是以記錄段為單位進行的。記錄段的長度有固定段長和可變段長兩種。