當前位置:首頁 » 服務存儲 » 存儲深度的單位是
擴展閱讀
webinf下怎麼引入js 2023-08-31 21:54:13
堡壘機怎麼打開web 2023-08-31 21:54:11

存儲深度的單位是

發布時間: 2022-05-07 21:28:51

存儲深度對示波器的影響到底有多大

得益於電子技術的發展,在國外三巨頭壟斷的示波器領域,國產示波器也如雨後春筍般涌現出來,優秀國產示波器的代表:鼎陽(Siglent)科技和北京普源精電,如今得到了長足的發展,但由於信號傳輸的鏈路瓶頸以及IC封鎖,夾縫中生長的國產示波器註定暫時只能走低端路線,這導致了國產示波器同質化比較嚴重、各廠家生產的示波器性能跟質量參差不齊。放眼望去,外觀乃至界面各廠商都一致地採用所謂的「主流」操作方式,而作為衡量示波器的技術指標,工程師更多地考慮那些出現在產品手冊和雜志廣告的標題中列出的技術指標,在這些主要的技術指標中,眾所周知的是帶寬、采樣率和存儲深度。誠然帶寬指標理所當然非常重要。帶寬決定示波器對信號的基本測量能力。隨著信號頻率的增加,示波器對信號的准確顯示能力將下降。如果沒有足夠的帶寬,示波器將無法分辨高頻變化。幅度將出現失真,邊緣將會消失,細節數據將被丟失。如果沒有足夠的帶寬,得到的關於信號的所有特性,響鈴和振鳴等都毫無意義。本規格指出示波器所能准確測量的頻率范圍。每位工程師都足夠重視帶寬對測量的影響,所以大家都遵循測量的五倍法則:示波器所需帶寬=被測信號的最高信號頻率*5,使用五倍准則選定的示波器的測量誤差將不會超過+/-2%,對大多的操作來說已經足夠。關於采樣率,指數字示波器對信號采樣的頻率,類似於電影攝影機中的幀的概念。示波器的采樣速率越快,所顯示的波形的解析度和清晰度就越高,重要信息和事件丟失的概率就越小,信號重建時也就越真實。采樣率又分為實時采樣率跟等效采樣率,我們平常所說的采樣率是指實時采樣率,這是因為實時采樣率可以用來實時地捕獲非周期異常信號,而等效采樣率則只能用於採集周期性的穩定信號。 存儲深度雖然也作為重要指標之一,但在衡量示波器時候卻往往忽略它的重要性,一直以來都把它作為一個「次要」指標看待,並不是很清楚大的存儲深度對於測量有什麼影響,再加上有些示波器廠家對「存儲深度」的誤導,同時存儲深度跟采樣率的隱藏關聯關系,導致存儲深度處於一個形同虛設的指標,為了糾正這些誤解,下面跟大家一起探討什麼是存儲深度?大的存儲深度對測量有什麼影響? 何謂存儲深度存儲深度是示波器所能存儲的采樣點多少的量度。如果您需要不間斷的捕捉一個脈沖串,則要求示波器有足夠的存儲器以便捕捉整個事件。將所要捕捉的時間長度除以精確重現信號所須的取樣速度,可以計算出所要求的存儲深度,也稱記錄長度。並不是有些國內二流廠商對外宣稱的「存儲深度是指波形錄制時所能錄制的波形最長記錄「,這樣的偷換概念,完全向相反方向引導人們的理解,難怪乎其技術指標高達」1042K「的記錄長度。這就是為什麼他們不說存儲深度是在高速采樣下,一次實時採集波形所能存儲的波形點數。把經過A/D數字化後的八位二進制波形信息存儲到示波器的高速CMOS內存中,就是示波器的存儲,這個過程是「寫過程」。內存的容量(存儲深度)是很重要的。對於DSO,其最大存儲深度是一定的,但是在實際測試中所使用的存儲長度卻是可變的。在存儲深度一定的情況下,存儲速度越快,存儲時間就越短,他們之間是一個反比關系。同時采樣率跟時基(timebase)是一個聯動的關系,也就是調節時基檔位越小采樣率越高。存儲速度等效於采樣率,存儲時間等效於采樣時間,采樣時間由示波器的顯示窗口所代表的時間決定,所以:存儲深度=采樣率× 采樣時間(距離 = 速度×時間)由於DSO的水平刻度分為12格,每格的所代表的時間長度即為時基(timebase),單位是s/div,所以采樣時間= timebase × 12. 由存儲關系式知道:提高示波器的存儲深度可以間接提高示波器的采樣率,當要測量較長時間的波形時,由於存儲深度是固定的,所以只能降低采樣率來達到,但這樣勢必造成波形質量的下降;如果增大存儲深度,則可以以更高的采樣率來測量,以獲取不失真的波形。下圖曲線揭示了采樣率、存儲深度、采樣時間三者的關系及存儲深度對示波器實際采樣率的影響。比如,當時基選擇10us/div檔位時,整個示波器窗口的采樣時間是10us/div * 12格=120us,在1Mpts的存儲深度下,當前的實際采樣率為:1M÷120us︽8.3GS/s,如果存儲深度只有250K,那當前的實際采樣率就只要2.0GS/s了! 存儲深度決定了實際采樣率的大小一句話,存儲深度決定了DSO同時分析高頻和低頻現象的能力,包括低速信號的高頻雜訊和高速信號的低頻調制。明白了存儲深度與取樣速度密切關系後,我們來淺談下長存儲對於我們平常的測量帶來什麼的影響呢?平常分析一個十分穩定的正弦信號,只需要500點的記錄長度;但如果要解析一個復雜的數字數據流,則需要有上萬個點或更多點的存儲深度,這是普通存儲是做不到的,這時候就需要我們選擇長存儲模式。可喜的是現在國產示波已經具有這樣的選擇,比如鼎陽(Siglent)公司推出的ADS1000CA系列示波器高達2M的存儲深度,是目前國產示波器最大的存儲深度示波器,打破了只有高端示波器才可能具有大的存儲深度的功能。通過選擇長存儲模式,以便對一些操作中的細節進行優化,同時配備1G實時采樣率以及高刷新率,完美再現捕獲波形。長存儲對平常的測量中,影響最明顯的是在表頭含有快速變化的數據鏈和功率測量中。這是由於功率電子的頻率相對較低(大部分小於1MHz),這對於我們選擇示波器帶寬來說300MHz的示波器帶寬相對於幾百KHz的電源開關頻率來說已經足夠,但很多時候我們卻忽略了對采樣率和存儲深度的選擇.比如說在常見的開關電源的測試中,電壓開關的頻率一般在200KHz或者更快,由於開關信號中經常存在著工頻調制,工程師需要捕獲工頻信號的四分之一周期或者半周期,甚至是多個周期。開關信號的上升時間約為100ns,我們建議為保證精確的重建波形需要在信號的上升沿上有5個以上的采樣點,即采樣率至少為5/100ns=50MS/s,也就是兩個采樣點之間的時間間隔要小於100/5=20ns,對於至少捕獲一個工頻周期的要求,意味著我們需要捕獲一段20ms長的波形,這樣我們可以計算出來示波器每通道所需的存儲深度=20ms/20ns=1Mpts !這就是為什麼我們需要大的存儲深度的原因了!如果此時存儲深度達不到1 Mpts,只有普通示波器的幾K呢?那麼要麼我們無法觀測如此長周期信號,要麼就是觀測如此長周期信號時只能以低采樣率進行采樣,結果波形重建的時候根本無法詳細顯示開關頻率的波形情況。長存儲模式下,既保證了采樣在高速率下對信號進行采樣,又能保證記錄長時間的信號。如果此時只進行單次捕捉或停止採集,那麼在不同時基下擴展波形時由於數據點充分,可以很好觀測疊加在信號上面的小毛刺等異常信號,這對於工程師發現問題、調測設備帶來極大的便利。而如果是普通存儲,為了保持高的采樣率,則在長的記錄時間內,由於示波器的連續采樣,則內存中已經記錄了幾幀數據,內存中的數據並不是一次採集獲得的數據,此時如果停止採集,並對波形旋轉時基進行放大顯示,則只能達到有限的幾個檔位,無法實現全掃描范圍的觀察。在DSO中,通過快速傅立葉變換(FFT)可以得到信號的頻譜,進而在頻域對一個信號進行分析。如電源諧波的測量需要用FFT來觀察頻譜,在高速串列數據的測量中也經常用FFT來分析導致系統失效的雜訊和干擾。對於FFT運算來說,示波器可用的採集內存的總量將決定可以觀察信號成分的最大范圍(奈奎斯特頻率),同時存儲深度也決定了頻率解析度△f。如果奈奎斯特頻率為500 MHz,解析度為10 kHz,考慮一下確定觀察窗的長度和採集緩沖區的大小。若要獲得10kHz 的解析度,則採集時間至少為: T = 1/△f = 1/10 kHz = 100 ms,對於具有100kB 存儲器的數字示波器,可以分析的最高頻率為:△ f × N/2 = 10 kHz × 100kB/2 = 500MHz。對於DSO來說,長存儲能產生更好的FFT結果,既增加了頻率解析度又提高了信號對雜訊的比率。 一句話,長存儲起到一個總覽全局又細節呈現的的效果,存儲深度決定了DSO同時分析高頻和低頻現象的能力,包括低速信號的高頻雜訊和高速信號的低頻調制。

❷ 怎樣挑選示波器

1/7分步閱讀
了解您需要測試的信號

您要知道用示波器觀察什麼?您要捕捉並觀察的信號其典型性能是什麼?您的信號是否有復雜的特性?您的信號是重復信號還是單次信號?您要測量的信號過渡過程的帶寬,或者上升時間是多大?您打算用何種信號特性來觸發短脈沖、脈沖寬度、窄脈沖等?您打算同時顯示多少信號?您對測試信號作何種處理?

2/7
選擇示波器的核心技術差異:模擬(DRT)、數字(DSO)、還是數模兼合(DPO)

傳統的觀點認為模擬示波器具有熟悉的控制面板,價格低廉,因而總覺得模擬示波器 「 使用方便 」 。但是隨著 A/D 轉換器速度逐年提高和價格不斷降低,以及數字示波器不斷增加的測量能力和實際上不受限制的測量功能,數字示波器已獨領風騷。但是數字示波器顯示具有三維的缺陷、處理連續性數據慢等缺點,需要具有數模兼合技術的示波器,例 DPO 數字熒光示波器。

3/7
確定測試信號帶寬

帶寬一般定義為正弦波輸入信號幅度衰減到 -3dB 時的頻率,即幅度的70.7% 。帶寬決定示波器對信號的基本測量能力。如果沒有足夠的帶寬,示波器將無法測量高頻信號,幅度將出現失真,邊緣將會消失,細節數據將被丟失;如果沒有足夠的帶寬,得到的信號所有特性,包含響鈴和振鳴等都毫無意義。

4/7
A/D轉換器的采樣速率(或采樣速度)

單位為每秒采樣次數( S/s ),指數字示波器對信號采樣的頻率。示波器的采樣速率越快,所顯示的波形的解析度和清晰度就高,重要信息和事件丟失的概率就越小。

5/7
屏幕刷新率也稱為波形更新速度

所有的示波器都會閃爍,示波器每秒鍾以特定的次數捕獲信號,在這些測量點之間將不再進行測量,這就是波形捕獲速率,也稱屏幕刷新率,表示為波形數每秒( wfms/s )。一定要區分波形捕獲速率與A/D采樣速率的區別。采樣速率表示示波器在一個波形或周期內A/D采樣輸入信號的頻率 ; 波形捕獲速率則是指示波器採集波形的速度。波形捕獲速率取決於示波器的類型和性能級別,且有著很大的變化范圍。高波形捕獲速率的示波器將會提供更多的重要信號特性,並能極大地增加示波器快速捕獲瞬時的異常情況,如抖動、矮脈沖、低頻干擾和瞬時誤差的概率。

6/7
選用適當的存儲深度,也稱記錄長度

存儲深度是示波器所能存儲的采樣點多少的量度。如果您需要不間斷的捕捉一個脈沖串,則要

❸ 示波器設備技術參數中的存儲深度是什麼其單位Mpts是什麼意思

存儲深度是數字示波器的一個基本參數,其單位pts是points的縮寫。這個參數的含義是示波器一次採集顯示可以處理的波形點數,存儲深度32Mpts的意思是,示波器一次採集、處理和顯示波形,可以顯示32M(1M等於一百萬)個點(points)。

(3)存儲深度的單位是擴展閱讀:

示波器分類:

1、普通示波器。電路結構簡單,頻帶較窄,掃描線性差,僅用於觀察波形。

2、多用示波器。頻帶較寬,掃描線性好,能對直流、低頻、高頻、超高頻信號和脈沖信號進行定量測試。藉助幅度校準器和時間校準器,測量的准確度可達±5%。

3、多線示波器。採用多束示波管,能在熒光屏上同時顯示兩個以上同頻信號的波形,沒有時差,時序關系准確。

4、多蹤示波器。具有電子開關和門控電路的結構,可在單束示波管的熒光屏上同時顯示兩個以上同頻信號的波形。但存在時差,時序關系不準確。

❹ 什麼是數字示波器的存儲深度有何意義

存儲深度與存儲容量相當,又稱記錄長度,用記錄一幀波形數據佔有的存儲容量來表示,大的存儲深度方便分析因果關系或者持續很長時間的事件。存儲容量與水平解析度在數值上互為倒數關系。但存儲容量並非越大越好,由於儀器最高取樣速率的限制,若存儲容量選取不恰當,往往會因時間窗口縮短而失去信號的重要成分,或者因時間窗口增大而使水平解析度降低。 Siglent示波器採用創新的平衡方案解決,高達2M的存儲深度處於業界最高水平。

❺ 什麼是存儲深度

存儲深度是示波器所能存儲的采樣點多少的量度,如果您需要不間斷地撲捉一個脈沖串,則需要示波器有足夠的存儲器以便撲捉整個事件。將撲捉的時間長度除以信號所需的取樣速率,可以算出存儲深度,也叫做記錄長度。如國睿安泰信的ADS1102CML+的存儲深度為2Mpts。

❻ 示波器存儲深度pts是什麼 是多大的呀

pts是points縮寫,就是點的意思。

存儲深度,一般公式是:

存儲深度=采樣率*波形時長

但是要注意的是,存儲深度是個固定的指,而采樣率會隨著我們調節波形時長而變化。

所以有的示波器,比如標著采樣率是1G,但一看存儲深度是10幾K(1M=1024K),那麼實際上他很多時候是達不到這個采樣的。

比如1M點的記錄長度,意味著示波器最多一屏幕可以採集1百萬個點,M是millon百萬的意思

比如這台麥科信的STO1104C,存儲深度最大可以設置為28M

❼ 數字示波器中:Kpts,PPM,Sa/s,wfs,

Kpts(kilo points)是存儲深度的單位,即一次存儲多少個數據點,比如5Kpts一次性存儲5000個數據點.還有Mpts
PPM (parts permillion),是時基精度的單位,即誤差百萬分之幾,比如±10ppm在水平時基上有正負百萬分之十的誤差
Sa/s(sample/second)是采樣率的單位,即每秒採集多少採樣點,比如1GSa/s每秒採集1G個數據點.
wfs 不全,應該是wfs/s或者wfms/s(waveforms/seond)是波形捕獲率的單位,即每秒採集多少波形
Vrms(voltage root mean square)是電壓的單位,電壓有效值,電壓均方根值

❽ 什麼是示波器的實時采樣率

對於示波器而言帶寬、采樣率和存儲深度是它的三大關鍵指標。相對於工程師們對示波器帶寬的熟悉和重視,采樣率和存儲深度往往在示波器的選型、評估和測試中為大家所忽視。本文的目的是通過簡單介紹采樣率的相關理論結合常見的應用幫助工程師更好的理解采樣率和存儲深度這兩個指標的重要特徵及對實際測試的影響,同時有助於我們掌握選擇示波器的權衡方法,樹立正確的使用示波器的觀念。

在開始了解采樣和存儲的相關概念前,我們先了解一下數字存儲示波器的工作原理。

圖3 采樣率SF<2 f,混疊失真

圖4和圖5顯示的波形看上去非常相似,但是頻率測量的結果卻相差很大,究竟哪一個是正確的?仔細觀察我們會發現圖4中觸發位置和觸發電平沒有對應起來,而且采樣率只有250MS/s,圖5中使用了20GS/s的采樣率,可以確定,圖4顯示的波形欺騙了我們,這即是一例采樣率過低導致的混疊(Aliasing)給我們造成的假象。


因此在實際測量中,對於較高頻的信號,工程師的眼睛應該時刻盯著示波器的采樣率,防止混疊的風險。我們建議工程師在開始測量前先固定示波器的采樣率,這樣就避免了欠采樣。力科示波器的時基(Time Base)菜單里提供了這個選項,可以方便的設置。

由Nyquist定理我們知道對於最大采樣率為10GS/s的示波器,可以測到的最高頻率為5GHz,即采樣率的一半,這就是示波器的數字帶寬,而這個帶寬是DSO的上限頻率,實際帶寬是不可能達到這個值的,數字帶寬是從理論上推導出來的,是DSO帶寬的理論值。與我們經常提到的示波器帶寬(模擬帶寬)是完全不同的兩個概念。

那麼在實際的數字存儲示波器,對特定的帶寬,采樣率到底選取多大?通常還與示波器所採用的采樣模式有關。

采樣模式
當信號進入DSO後,所有的輸入信號在對其進行A/D轉化前都需要采樣,采樣技術大體上分為兩類:實時模式和等效時間模式。

實時采樣(real-time sampling)模式用來捕獲非重復性或單次信號,使用固定的時間間隔進行采樣。觸發一次後,示波器對電壓進行連續采樣,然後根據采樣點重建信號波形。

等效時間采樣(equivalent-time sampling),是對周期性波形在不同的周期中進行采樣,然後將采樣點拼接起來重建波形,為了得到足夠多的采樣點,需要多次觸發。等效時間采樣又包括順序采樣和隨機重復采樣兩種。使用等效時間采樣模式必須滿足兩個前提條件:1.波形必須是重復的;2.必須能穩定觸發。
實時采樣模式下示波器的帶寬取決於A/D轉化器的最高采樣速率和所採用的內插演算法。即示波器的實時帶寬與DSO採用的A/D和內插演算法有關。

這里又提到一個實時帶寬的概念,實時帶寬也稱為有效存儲帶寬,是數字存儲示波器採用實時采樣方式時所具有的帶寬。這么多帶寬的概念可能已經看得大家要抓狂了,在此總結一下:DSO的帶寬分為模擬帶寬和存儲帶寬。通常我們常說的帶寬都是指示波器的模擬帶寬,即一般在示波器面板上標稱的帶寬。而存儲帶寬也就是根據Nyquist定理計算出來的理論上的數字帶寬,這只是個理論值。
通常我們用有效存儲帶寬(BWa)來表徵DSO的實際帶寬,其定義為:BWa=最高采樣速率 / k,最高采樣速率對於單次信號來說指其最高實時采樣速率,即A/D轉化器的最高速率;對於重復信號來說指最高等效采樣速率。K稱為帶寬因子,取決於DSO採用的內插演算法。DSO採用的內插演算法一般有線性(linear)插值和正弦(sinx/x)插值兩種。K在用線性插值時約為10,用正弦內插約為2.5,而k=2.5隻適於重現正弦波,對於脈沖波,一般取k=4,此時,具有1GS/s采樣率的DSO的有效存儲帶寬為250MHz。

圖6 不同插值方式的波形顯示

我們記住以下結論:在使用正弦插值法時,為了准確再顯信號,示波器的采樣速率至少需為信號最高頻率成分的2.5倍。使用線性插值法時,示波器的采樣速率應至少是信號最高頻率成分的10倍。這也解釋了示波器用於實時采樣時,為什麼最大采樣率通常是其額定模擬帶寬的四倍或以上。

❾ Kpts/CH是什麼單位,字母分別代表什麼

Kpts(kilo points)是存儲深度的單位,即一次存儲多少個數據點,比如5Kpts一次性存儲5000個數據點。

CH(chanel)頻道。

Kpts/CH即每個頻道儲存的數據點的數量。